Eliaz | Degradation of Implant Materials | Buch | 978-1-4899-8569-9 | www.sack.de

Buch, Englisch, 516 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 791 g

Eliaz

Degradation of Implant Materials


2012
ISBN: 978-1-4899-8569-9
Verlag: Springer

Buch, Englisch, 516 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 791 g

ISBN: 978-1-4899-8569-9
Verlag: Springer


This book reviews the current understanding of the mechanical, chemical and biological processes that are responsible for the degradation of a variety of implant materials. All 18 chapters will be written by internationally renowned experts to address both fundamental and practical aspects of research into the field. Different failure mechanisms such as corrosion, fatigue, and wear will be reviewed, together with experimental techniques for monitoring them, either in vitro or in vivo. Procedures for implant retrieval and analysis will be presented. A variety of biomaterials (stainless steels, titanium and its alloys, nitinol, magnesium alloys, polyethylene, biodegradable polymers, silicone gel, hydrogels, calcium phosphates) and medical devices (orthopedic and dental implants, stents, heart valves, breast implants) will be analyzed in detail. The book will serve as a broad reference source for graduate students and researchers studying biomedicine, corrosion, surface science, and electrochemistry.

Eliaz Degradation of Implant Materials jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Medical implant corrosion: Electrochemistry at metallic biomaterial surfaces.- Degradation of titanium and its alloys.- Degradation of dental implants.- In vivo aging and corrosion aspects of dental implants.- Biodegradable metals.- Degradable and bioactive synthetic composite scaffolds for bone tissue engineering.- Biodegradation of calcium phosphate cement composites.- Enzyme-promoted degradation of polymeric matrices for controlled drug delivery: Analytical model and numerical simulations.- Degradation of bioceramics.- Fundamentals of tribology and the use of Ferrography and bio-Ferrography for monitoring the degradation of natural and artificial joints.- Fatigue failure of materials for medical devices.- Hypersensitivity to implant debris.- Implant infections and infection resistant materials.- Biomaterial calcification: Mechanisms and prevention.- Orthopaedic implant retrieval and failure analysis.- The use of finite element analysis in design, life prediction and failure analysis of biomaterials and medical devices.- Biological safety evaluation of polymers.- Biological responses to and toxicity of nanoscale implant materials.


Noam Eliaz is an Associate Professor at Tel-Aviv University, Israel, where he serves as the Head of The Biomaterials and Corrosion Laboratory. He also serves as a Chief Editor of the journal Corrosion Reviews (jointly with Ron Latanision). He received his B.Sc. and Ph.D. (direct track) in Materials Engineering, both cum laude, from Ben-Gurion University. Next, he became the first ever materials scientist to receive, simultaneously, a Fulbright postdoctoral award and a Rothschild postdoctoral fellowship and worked for two years in the H.H. Uhlig Corrosion Laboratory at M.I.T. To-date, he has contributed more than 230 journal and conference publications, including 31 plenary and invited talks, as well as 5 book chapters. In addition to editing this Degradation of Implant Materials book, he has edited a double volume entitled Applications of Electrochemistry and Nanotechnology in Biology and Medicine for the reputed book series Modern Aspects of Electrochemistry (Springer). He has garnered numerous accolades, including the T.P. Hoar Award for the best paper published in Corrosion Science during 2001 (on corrosion of Ti-Ag-based alloys processed by three-dimensional printing for biomedical applications), and NACE International’s Herbert H. Uhlig Award (2010) and Fellow Award (2012). His main research interests include environment-induced degradation of materials, failure analysis, Bio-Ferrography, biomaterials (with focus on electrocrystallization of hydroxyapatite and other calcium phosphates), and electrochemical processing (namely, electrodeposition, electroless deposition and electropolishing) of materials.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.