
Contents

Preface to the third edition ----- V

Preface to the second edition — VII

Preface — IX

1	Process Integration and Intensification: an introduction —— 1
1.1	Process Intensification — 1
1.2	Process Systems Engineering and Process Integration —— 3
1.3	Contributions to PIs and PI to energy and water saving — 4
1.4	What is Process Integration? — 5
1.5	A short history of the development of Process Integration —— 6
1.6	The aim and scope of this textbook, acknowledgements — 11
	References — 13
2	Setting energy targets and Heat Integration —— 18
2.1	Introduction —— 18
2.1.1	Overall development of Heat Integration — 19
2.1.2	Pinch Technology and targeting Heat Recovery: the thermodynamic
	roots — 19
2.1.3	Supertargeting: full-fledged HEN targeting — 21
2.1.4	Modifying the Pinch Idea for HEN retrofit — 21
2.1.5	Benefits of Process Integration — 22
2.2	Pinch analysis for maximising energy efficiency — 23
2.2.1	Introduction to Heat Exchange and Heat Recovery — 23
2.2.2	Basic principles — 25
2.2.3	Basic Pinch Technology — 33
2.3	Summary — 68
	References — 71
3	Synthesis of Heat Exchanger Networks —— 74
3.1	Introduction —— 74
3.2	HEN synthesis —— 75
3.2.1	The Pinch Design Method —— 75
3.2.2	Methods using mathematical programming — 95
3.3	Grassroots and retrofits; the impact of economic criteria — 99
3.3.1	Network optimisation — 100
3.3.2	The Network Pinch —— 100
3.4	Advanced Data Extraction — 102
3.4.1	Review of Data Extraction treatment in the literature —— 103

- 3.4.2 Analysis of the Data Extraction workflow **105**
- 3.4.3 Site- and process-level procedures 106
- 3.4.4 Illustrative example 108
- 3.5 Summary 110
- References 111

4 Total Site Integration — 114

- 4.1 Introduction 114
- 4.2 What is a Total Site, and what are the benefits? 116
- 4.2.1 Total Site definition 116
- 4.2.2 Total Site Analysis interfaces 117
- 4.3 HI extension for Total Sites: Data Extraction for Total Sites 118
- 4.3.1 The algorithm —— 118
- 4.3.2 Step-by-step guide 119
- 4.3.3 Working session 124
- 4.4 Total Site Profiles and Total Site Composite Curves 125
- 4.5 Site Utility Grand Composite Curve (SUGCC) 135
- 4.6 Modelling of utility systems ---- 136
- 4.6.1 A flexible steam turbine model for cogeneration evaluation 137
- 4.6.2 Utility network modelling: simulation and optimisation 142
- 4.6.3 Utility system: an illustrative example 143
- 4.7 Targeting of Combined Heat and Power generation (CHP, cogeneration) during process design 146
- 4.7.1 Targeting CHP using the SUGCC 147
- 4.7.2 Choice of optimal steam pressure levels 149
- 4.8 Advanced Total Site developments ----- 151
- 4.8.1 Introduction of the process-specific minimum allowed temperature differences **151**
- 4.8.2 Retrofit of industrial energy systems at the site level 152
- 4.8.3 Numerical tools for Total Site Heat Integration 153
- 4.8.4 Power Integration 159
- 4.8.5 Targeting for low CO₂ emissions with CO₂ emission Pinch Analysis — **172**
- 4.9 Summary 179
 - References 180

5 An integrated Pinch Analysis framework for low CO₂ industrial site planning — 183

- 5.1 Introduction 183
- 5.2 Framework for low CO₂ emissions industrial site planning 183
- 5.3 Case study 187
- 5.3.1 Stage 1: baseline study **187**

- 5.3.2 Stage 2: targeting for Total Site heat recovery with cogeneration using TSHI (Tool 1) **190**
- 5.3.3 Stage 3: targeting for hybrid power system, integrating RE resources with PoPA (Tool 2) 193
- 5.3.4 Stage 4: targeting for low CO₂ emission with CEPA (Tool 3) 197
- 5.3.5 Summarised network diagram 200
- 5.4 Conclusion 200
- References 202

6 Introduction to Water Pinch Analysis — 203

- 6.1 Water management and minimisation 203
- 6.2 History and definition of Water Pinch Analysis 204
- 6.3 Applications of Water Pinch Analysis ---- 205
- 6.4 Water Pinch Analysis steps 206
- 6.5 Analysis of water networks and data extraction 207
- 6.5.1 Analysis of water networks 207
- 6.5.2 Data extraction 209
- 6.5.3 Example 210
- 6.6 Summary 214
 - References ----- 214
- 7 Setting the Maximum Water Recovery targets 217
- 7.1 Introduction 217
- 7.2 Maximum Water Recovery target for single pure freshwater 220
- 7.2.1 Water Cascade Analysis technique 220
- 7.2.2 Source/Sink Composite Curves (SSCC) 223
- 7.2.3 Significance of the Pinch region 224
- 7.3 Maximum Water Recovery target for a single impure freshwater source 225
- 7.3.1 Pinched problems 225
- 7.3.2 Threshold problems 232
- 7.4 Maximum Water Recovery targets for multiple freshwater
- sources ----- 234
- 7.5 Working session 236
- 7.6 Solution 237
 - References 240

8 Water network design/retrofit — 242

- 8.1 Introduction 242
- 8.2 Source/Sink Mapping Diagram (SSMD) 242
- 8.3 Source and Sink Allocation Curves (SSAC) 244

- 8.3.1 Example of network design using SSCC for utility purity superior to all other streams 248
- 8.3.2 Example 8.1: Freshwater purity not superior to all other streams 252
- 8.3.3 Simplification of a water network or constructing other network possibilities **256**
- 8.4 Working session 258
- 8.5 Solution 258
- 8.6 Optimal Water[©] software **260**
 - References 262

9 Design of Cost-Effective Minimum Water Network (CEMWN) — 263

- 9.1 Introduction 263
- 9.2 Water Management Hierarchy 263
- 9.3 Cost-Effective Minimum Water Network (CEMWN) ---- 265
- 9.4 Industrial case study: a semiconductor plant 275
- 9.4.1 Using CEMWN targets as reference benchmarks 289

10 Extension of Water Integration to Water Mains, Total Site targeting and multiple quality problems — 295

- 10.1 Introduction 295
- 10.2 Water Mains/headers 295
- 10.2.1 Working session 1: Water Mains/headers targeting with Pinch Analysis 298
- 10.2.2 Working session 2 ----- 300
- 10.2.3 Solution ----- **301**
- 10.3 Total Site Water Integration **303**
- 10.3.1 Targeting minimum fresh resources in a Total Site **309**
- 10.4 Targeting fresh resources for multiple qualities 317
- 10.4.1 Conflicting sources **320**
- 10.4.2 Non-conflicting sources 321
- 10.4.3 Sources with *n*-contaminants (*n* > 2) **322**
- 10.4.4 Working session: design and target for multi-contaminants water allocation networks with Pinch-based heuristics 324
- 10.5 Conclusion 329
 - References 329

11 Resources or Solid Waste Pinch Analysis — 331

- 11.1 Introduction and the concept —— 331
- 11.2 Solid waste management targeting: time as quality indicator 332
- 11.2.1 Step-by-step guidance ---- 332
- 11.2.2 Working session 333
- 11.2.3 Solution 335

11.3	Solid waste management targeting: moisture content as quality indicator —— 338
11.3.1	Step-by-step guidance — 338
11.3.2	Working session — 339
11.3.3	Solution — 339
11.5.5	References — 346
	References — 346
12	Conclusions and sources of further information —— 347
12.1	HEN targeting, synthesis, and retrofit — 347
12.2	Total Site Integration — 348
12.3	Total Site Methodology addressing variable energy supply and
	demand —— 350
12.4	Utility system optimisation accounting for cogeneration — 351
12.5	Maximum water recovery targeting and design — 352
12.5.1	Recommended books for further reading — 352
12.5.2	State of-the-art review — 354
12.6	Analysing the designs of isolated energy systems —— 355
12.7	PI contribution to supply chain development — 356
12.8	Hydrogen networks design and management — 356
12.9	Oxygen Pinch Analysis —— 357
12.10	Pressure drop considerations and heat transfer enhancement in
	Process Integration — 358
12.11	Power (electricity) and Hybrid Pinch — 360
12.12	Computational and modelling tools suitable for applying PI —— 361
12.12.1	Heat and power PI applications — 361
12.12.2	Water Pinch software — 362
12.13	Challenges and recent developments in Pinch-based PI — 363
12.14	PRES Conferences on Process Integration, Modelling, and
	Optimisation for Energy Saving and Pollution Reduction —— 364
	References — 366

Index ----- 373