Inhaltsverzeichnis

Al	Abkürzungsverzeichnis xi							
Symbolverzeichnis								
1	Einl	leitung		1				
	1.1	Zielste	ellung	4				
	1.2	Aufba	u	4				
2	Hintergrund							
	2.1 Stromversorgungssystem		versorgungssystem	7				
		2.1.1	Entwicklung und Stand	7				
		2.1.2	Technische und ökonomische Grundlagen	11				
		2.1.3	Herausforderungen	18				
	2.2	Sektor	renkopplung	24				
		2.2.1	Wärmesektor	26				
		2.2.2	Verkehrssektor	28				
		2.2.3	Herausforderungen	29				
	2.3	Steuer	rung im Stromversorgungssystem					
		2.3.1	Smart Grid	31				
		2.3.2	Führungssysteme	35				
		2.3.3	Demand Side Management	38				
3	Agentenbasierte Steuerung auf Basis spieltheoretischer Methoden							
	3.1	Agent	en und Multi-Agenten-Systeme	44				
		3.1.1	Agentenbegriff und rationale Agenten	44				
		3.1.2	Klassifizierung rationaler Agenten	45				

		3.1.3	Umwelt von Agenten	47			
	3.2	Optim	ierung mittels Spieltheorie	48			
		3.2.1	Potenzialspiele	51			
		3.2.2	Lernmechanismen für Potenzialspiele	52			
		3.2.3	Anwendung für sektorenkoppelnde Anlagen	56			
4	Steuerungskonzept für sektorenkoppelnde Anlagen						
	4.1	Model	llierung von Energiesystemen	68			
		4.1.1	Grundbausteine	69			
		4.1.2	Anwendung	72			
	4.2	Optim	ierte Steuerung	74			
		4.2.1	Einsatzplanung	75			
		4.2.2	Echtzeitbetrieb	84			
	4.3	Imple	mentierung des Steuerungskonzepts	92			
5	Simulation ausgewählter Fallstudien						
	5.1	Fallstu	idie 1: Steuerung von Blockheizkraftwerken	97			
		5.1.1	Modellierung des Energiesystems	98			
		5.1.2	Design der Einsatzplanung	109			
		5.1.3	Design des Echtzeitbetriebs	116			
		5.1.4	Ergebnisse der Simulationen	122			
	5.2	Fallstu	udie 2: Steuerung von Wärmepumpen	131			
		5.2.1	Modellierung des Energiesystems	132			
		5.2.2	Design der Einsatzplanung	136			
		5.2.3	Design des Echtzeitbetriebs	141			
		5.2.4	Ergebnisse der Simulationen	145			
	5.3	Fallstu	udie 3: Steuerung von Elektroautos	154			
		5.3.1	Modellierung des Energiesystems				
		5.3.2	Design der Einsatzplanung				
		5.3.3	Design des Echtzeitbetriebs				
		534		166			

6	Schlussbetrachtung							
	6.1	Zusammenfassung	175					
	6.2	Fazit						
	6.3	Ausblick						
Li	teratu	urverzeichnis	187					
Aı	nhang	<u> </u>	203					
	A .1	Dynamische Programmierung	203					
		A.1.1 Dynamische Programmierung in der Einsatzplanung	203					
		A.1.2 Dynamische Programmierung im Echtzeitbetrieb	205					
	A.2	Beweis: Konvergenz der dezentralen Optimierung mittels GPP .	208					
	A.3	Bestimmung der Leistungs- und Energiereserven	210					
		A.3.1 Steuerung von Blockheizkraftwerken	211					
		A.3.2 Steuerung von Wärmepumpen	212					
	A.4	Detaillierte Ergebnisse: Steuerung von Blockheizkraftwerken 2						
	A.5	Detaillierte Ergebnisse: Steuerung von Wärmepumpen 21						
	A.6	Detaillierte Ergebnisse: Steuerung von Elektroautos	222					