Inhaltsverzeichnis

Zι	usammenfassung	ii
Αl	bstract	i
Αŀ	bbildungsverzeichnis	vii
Ta	abellenverzeichnis	xi
Αŀ	bkürzungsverzeichnis	xii
Fc	ormelzeichen	xiv
1 I	Einleitung	1
1	1.1 Ausgangssituation	. :
	1.1.1 Übersicht über die Elektromotorenherstellung	1
	1.1.2 Designkonzept in der industriellen Produktentwicklung	3
	1.1.2.1 Aktuelle Vorgehensweise in der Designoptimierungsphase	3
	1.1.2.2 Technologie- und Kostenbetrachtung	
1	1.2 Problemstellung	
	1.2.1 Probleme bei der Kostenberechnung	
	1.2.2 Identifikation der industriellen Wissenslücke	13
1	1.3 Zielsetzung der Arbeit mit Bezug zu der industriellen Wissenslücke	15
1	1.4 Aufbau der Arbeit	16
2 5	Stand der Wissenschaft und Technik	19
2	2.1 Einfluss des Designs auf die Fertigung	19
2	2.2 Einfluss des Designs auf die Kosten	23
2	2.3 Einfluss der Fertigung auf die elektromagnetische Eigenschaft des Motors	30
	2.4 Zusammenfassung und Bewertung des Standes der Wissenschaft und Technik	
	2.5 Wissenschaftliche Forschungslücke und Zielsetzung der Arbeit	
	Lösungsansatz	
	3.1 Definition der für die Arbeit relevanten Begriffe	
	3.2 Strukturierung der Forschungsaufgaben	
3	3.3 Designabhängige Prozesskostenmodellierung	
	3.3.1 Kostenstruktur	
	3.3.2 Designabhängige Materialkostenberechnung	
	3.3.3 Designabhängige Prozesskostenmodellierung	
	3.4 Einfluss der Fertigung auf die elektromagnetischen Eigenschaften	
3	3.5 Zusammenfassung hinsichtlich des Gestaltungs- und Analysemodells	48

4 Einführung in die Zielapplikation und Fertigungsmodellierung	50
4.1 Produkt: Permanenterregte Synchronmaschine (PSM) für Fahrzeugantriebe	50
4.1.1 Komponente der PSM	50
4.1.2 Materialien des Lamellenpaketes	51
4.1.3 Elektromagnetische Eigenschaft des Blechmaterials	53
4.1.4 Designparameter eines Lamellenpaketes für PSM	56
4.2 Fertigungsprozesse der Lamellenpaketfertigung	58
4.2.1 Einzelne Lamellen ausschneiden	60
4.2.2 Paketieren	61
4.2.3 Wärmebehandlung	63
5 Design- und prozesskettenbasierte Kostenmodellierung	65
5.1 Designabhängige Prozesskostenmodellierung	65
5.1.1 Finanzmodell	65
5.1.2 Analyse der Eingangsparameter	67
5.1.3 Materialkostenmodell	76
5.1.4 Prozessmodell	84
5.1.4.1 Abbildung des Wertstroms	84
5.1.4.2 Fertigungsvariante (FV)	85
5.1.4.3 Prozesskostenmodell	89
5.1.4.4 Pre-Kostenfilter	96
5.1.5 Operationsmodell (OpM)	97
5.1.6 Sensitivitätsanalyse und Designeinfluss auf die Kosten	103
5.2 Untersuchung der Fertigungseinflüsse auf das Design	107
5.2.1 Qualitative Analyse	107
5.2.1.1 Einflussfaktoren für magnetische Flussdichte	107
5.2.1.2 Einflussfaktoren für Eisenverlust im Lamellenpaket	108
5.2.1.3 Qualitative Bewertung der Fertigungseinflüsse	108
5.2.2 Quantitative Analyse	110
5.2.2.1 Design-Konzeption	110
5.2.2.2 Theoretische Simulation bezüglich des Einflusses	
von Statorsegmentierungen	111
5.2.2.3 Experimentelle Methodenentwicklung und Methodenanwendur	g115
5.2.2.4 Ergebnisse	118

5.3 Vergleichsmodell zur Auswahl der Fertigungsvariante	132
6 Validierung des Verfahrens am Beispiel der Lamellenpaketproduktion an einem Produktionsstandort in China	136
6.1 Design-Konzeption (2 Designs)	136
6.2 Kostenberechnung für die Designs	140
6.3 Elektromagnetische Eigenschaftsanalyse der Fertigungsvariante und	
Auswahl der Fertigungsvariante für das einzelne Design	141
6.4 Interpretation	143
7 Diskussion	
7.1 Anwendbarkeit des Verfahrens	145
7.2 Skalierung	145
8 Zusammenfassung und Ausblick	147
Literatur	150