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Preface




Let's say you commit to 2 hours per day and you're able to write 3 pages per hour. To write an average length book of 300 pages will take 50 days. (300 pages per book/6 pages per day = 50 days).

A posting on Life Learning Today: How to Write a Book in 60 Days or Less.



By not following the recommendations from the above quote the writing of this book took much longer. The book is a result of many semesters of teaching various statistical courses to engineering students at Duke University and the Georgia Institute of Technology. Through its scope and depth of coverage, the book addresses the needs of the vibrant and rapidly growing engineering fields while implementing software that engineers are familiar with.

This book is substantially revised version of the text originally published by Springer in 2011 (ISBN 978-1-4614-0394-4). In addition to providing many new examples and exercises, a number of new sections is added. The original edition served as a primary textbook for the course Introduction to Bioengineering Statistics, at The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech for 6 consecutive semesters. I noticed that it was used not only as a textbook but students found it useful as a repository of techniques for data analysis in other courses, class projects, senior design projects, and day-to-day laboratory data analysis. So by its scope this book is both: a textbook for introductory-to-intermediate applied biostatistics courses and a reference book with a coverage of a number of rather specialized techniques.

This book is heavily oriented to computation and hands-on approaches. The approach enforced avoids the use of mainstream statistical packages in which the procedures are often black-boxed. Rather, the students are expected to code the procedures on their own. The results may not be as flashy as they would be if the specialized packages were used, but the student will go through the process and understand each step of the program.

The computational support for this text is the MATLAB© programming environment since this software is predominant in the engineering communities.

Another dimension of this book is in the substantial coverage of Bayesian approaches to statistical inference. I avoided taking sides on the traditional (classical, frequentist) vs. Bayesian approach; it was my goal to expose students to both approaches. It is undeniable that classical statistics is overwhelmingly used in conducting and reporting inference among practitioners, and that Bayesian statistics is gaining in popularity, acceptance, and usage (FDA, Guidance for the Use of Bayesian Statistics in Medical Device Clinical Trials, 5 February 2010). Many examples in this book are solved using both the traditional and Bayesian methods, and the results are compared and commented upon.

This diversification is made possible by advances in Bayesian computation and the availability of the free software WinBUGS/OpenBUGS that provides painless computational support for Bayesian solutions. WinBUGS and MATLAB communicate well due to the interface software MATBUGS, written by Kevin P. Murphy and coauthors. The book also relies on stat toolbox within MATLAB.

The World Wide Web (WWW) facilitates the book. All custom-made MATLAB and WinBUGS programs (compatible with MATLAB R2017a and WinBUGS 1.4.3 or OpenBUGS 3.2.3) as well as data sets used in this book are available on the Web:


http://statbook.gatech.edu/



With the size of this book in mind the solutions and hints to some exercises can be found on the book's Web site. The computer scripts and examples are an integral part of the book, and all MATLAB codes and outputs are shown in blue typewriter font while all WinBUGS programs are given in red-brown typewriter font. The comments in MATLAB and WinBUGS codes are presented in green typewriter font.

The three icons  ,  , and  are used to point to data sets, MATLAB codes, and WinBUGS codes, respectively.

The difficulty of the material covered necessarily varies. More difficult sections that may be omitted in the basic coverage are denoted by a star, *. However, it is my experience that advanced undergraduate bioengineering students affiliated with school research labs need and use the “starred” material, such as functional ANOVA, variance stabilizing transforms, and nested experimental designs, to name just a few. Tricky or difficult places are marked with Donald Knut's “bend” .

Each chapter starts with a box titled WHAT IS COVERED IN THIS CHAPTER and ends with chapter exercises, a box called MATLAB AND WINBUGS FILES AND DATA SETS USED IN THIS CHAPTER, and chapter references.

The examples are numbered and the end of each example is marked with .

I am aware that this work could be improved with respect to both exposition and coverage. Thus, I would welcome any criticism and pointers from readers as to how this book could be improved.
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Chapter 1 
Introduction



Many people were at first surprised at my using the new words “Statistics” and “Statistical,” as it was supposed that some term in our own language might have expressed the same meaning. But in the course of a very extensive tour through the northern parts of Europe, which I happened to take in 1786, I found that in Germany they were engaged in a species of political inquiry to which they had given the name of “Statistics”…. I resolved on adopting it, and I hope that it is now completely naturalised and incorporated with our language.

– Sinclair, 1791; Vol XX

 






WHAT IS COVERED IN THIS CHAPTER


 


	What is the subject of statistics?

	Population, sample, data

	Appetizer examples
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The problems confronting health professionals today often involve fundamental aspects of device and system analysis, and their design and application. As such they are of extreme importance to engineers and scientists.

Due to many aspects of engineering and scientific practice involving nondeterministic outcomes, understanding and knowledge of statistics is important to any engineer and scientist. Statistics is a guide to the unknown. It is a science that deals with designing experimental protocols; collecting, summarizing, and presenting data; and, most important, making inferences and aiding decisions in the presence of variability and uncertainty. For example, R. A. Fisher's 1943 elucidation of the human blood-group system Rhesus in terms of the three linked loci C, D, and E, as described in Fisher (1947) or Edwards (2007), is a brilliant example of building a coherent structure of new knowledge guided by a statistical analysis of available experimental data.

The uncertainty that statistical science addresses derives mainly from two sources: (1) from observing only a part of an existing, fixed, but large population or (2) from having a process that results in nondeterministic outcomes. At least a part of the process needs to be either a black box or inherently stochastic, so the outcomes cannot be predicted with certainty.

A population is a statistical universe. It is defined as a collection of existing attributes of some natural phenomenon or a collection of potential attributes when a process is involved. In the case of a process, the underlying population is called hypothetical, for obvious reasons. Thus, populations can be either finite or infinite. A subset of a population selected by some relevant criteria is called a subpopulation.

Often we think about a population as an assembly of people, animals, items, events, times, etc., in which the attribute of interest is measurable. For example, the population of all US citizens older than 21 is an example of a population for which many attributes can be assessed. Attributes might be a history of heart disease, weight, political affiliation, level of blood sugar, etc.

A sample is an observed part of a population. Selection of a sample is a rich methodology in itself, but, unless otherwise specified, it is assumed that the sample is selected at random. The randomness ensures that the sample is representative of its population.

The sampling process depends on the nature of the problem and the population. For example, a sample may be obtained via a retrospective study (usually existing historical outcomes over some period of time), an observational study (an observer monitors the process or population in real time), a sample survey (a researcher administers a questionnaire to measure the characteristics and/or attitudes of subjects), or a designed study (a researcher makes deliberate changes in controllable variables to induce a cause/effect relationship), to name just a few.

Example 1.1. Ohm's Law Measurements. A student constructed a simple electric circuit in which the resistance R and voltage E were controllable. The output of interest is current I, and according to Ohm's law it is


[image: numbered Display Equation]

This is a mechanistic, theoretical model. In a finite number of measurements under an identical R, E setting, the measured current varies. The population here is hypothetical – an infinite collection of all potentially obtainable measurements of its attribute, current I. The observed sample is finite. In the presence of sample variability, one establishes an empirical (statistical) model for currents from the population as either (statistical) model for currents from the population as either


[image: numbered Display Equation]

On the basis of a sample, one may first select the model and then proceed with the inference about the nature of the discrepancy, ɛ.


Example 1.2. Cell Counts. In a quantitative engineering physiology laboratory, a team of four students was asked to make a LabVIEW© program to automatically count MC3T3-E1 cells in a hemocytometer (Fig. 1.1). This automatic count was to be compared with the manual count collected through an inverted bright field microscope. The manual count is considered the gold standard.


[image: Image described by caption and surrounding text.]

Fig. 1.1 Cells on a hemocytometer plate.




The experiment consisted of placing 10 μL of cell solutions at two levels of cell confluency: 20% and 70%. There were n1 =12 pairs of measurements (automatic and manual counts) at 20% and n2 = 10 pairs at 70%, as in the table below.






	
	20% confluency



	Automated
	34
	44
	40
	62
	53
	51
	30
	33
	38
	51
	26
	48



	Manual
	30
	43
	34
	53
	49
	39
	37
	42
	30
	50
	35
	54



	
	70% confluency



	Automated
	72
	82
	100
	94
	83
	94
	73
	87
	107
	102
	
	



	Manual
	76
	51
	92
	77
	74
	81
	72
	87
	100
	104
	
	






The students wish to answer the following questions:


	Are the automated and manual counts significantly different for a fixed confluency level? What are the confidence intervals for the population differences if normality of the measurements is assumed?

	If the difference between automated and manual counts constitutes an error, are the errors comparable for the two confluency levels?



We will revisit this example later in the book (Exercise 10.20) and see that for the 20% confluency level there is no significant difference between the automated and manual counts, whereas for the 70% level the difference is significant. We will also see that the errors for the two confluency levels significantly differ. The statistical design for comparison of errors is called a difference in differences (DiD) and is quite common in biomedical data analysis.


Example 1.3. Rana Pipiens. Students in a quantitative engineering physiology laboratory were asked to expose the gastrocnemius muscle of the northern leopard frog (Rana pipiens, and stimulate the sciatic nerve to observe contractions in the skeletal muscle. Students were interested in modeling the length–tension relationship. The force used was the active force, calculated by subtracting the measured passive force (no stimulation) from the total force (with stimulation).

The active force represents the dependent variable. The length of the muscle begins at 35 mm and stretches in increments of 0.5 mm, until a maximum length of 42.5 mm is achieved. The velocity at which the muscle was stretched was held constant at 0.5 mm/s.





	Reading
	Change in Length (in %)
	Passive force
	Total force





	 1
	 1.4
	0.012
	0.366



	 2
	 2.9
	0.031
	0.498



	 3
	 4.3
	0.040
	0.560



	 4
	 5.7
	0.050
	0.653



	 5
	 7.1
	0.061
	0.656



	 6
	 8.6
	0.072
	0.740



	 7
	10.0
	0.085
	0.865



	 8
	11.4
	0.100
	0.898



	 9
	12.9
	0.128
	0.959



	10
	14.3
	0.164
	0.994



	11
	15.7
	0.223
	0.955



	12
	17.1
	0.315
	1.019



	13
	18.6
	0.411
	0.895



	14
	20.0
	0.569
	0.900



	15
	21.4
	0.751
	0.905






The correlation between the active force and the percent change in length from 35 mm is –0.0941. Why is this correlation so low?

For example, one possible model can be found using linear regression (least squares):



[image: numbered Display Equation]

where [image: ] is the fitted active force and δ is the percent change. This model is nonlinear in variables but linear in coefficients, and standard linear regression methodology is applicable (Chapter 14). The model achieves a coefficient of determination of R2 = 87.16%.

A plot of the original data with superimposed model fit is shown in Figure 1.2a. Figure 1.2b shows the residuals F −[image: ] plotted against δ.



[image: Graphs show regression fit for active force on delta from 0 to 25 versus active force F from 0 to 0.9 and delta from 0 to 20 versus residuals from minus 0.05 to 0.05.]

Fig. 1.2 (a) Regression fit for active force. Observations are shown as yellow circles, while the smaller blue circles represent the model fits. Dotted (blue) lines are 95% model confidence bounds. (b) Model residuals plotted against the percent change in length δ.



Suppose that students are interested in estimating the active force for a change of 12%. The model prediction for δ = 12 is 0.8183, with a 95% confidence interval of [0.7867,0.8498].


Example 1.4. The 1954 Polio Vaccine Trial. One of the largest and most publicized public health experiments was performed in 1954 when the benefits of the Salk vaccine for preventing paralytic poliomyelitis was assessed. To ensure that there was no bias in conducting and reporting, the trial was blind to doctors and patients. In boxes of 50 vials, 25 had active vaccines and 25 were placebo. Only the numerical code known to researchers distinguished the well-mixed vials in the box. The clinical trial involved a large number of first-, second-, and third-graders in the United States.

The results were convincing. While the numbers of children assigned to active vaccine and placebo were approximately equal, the incidence of polio in the active group was almost four times lower than that in the placebo group.





	
	Inoculated with vaccine
	Inoculated with placebo





	Total number of children inoculated
	200,745
	201,229



	Number of cases of paralytic polio
	33
	115






On the basis of this trial, health officials recommended that every child be vaccinated. Since the time of this clinical trial, the vaccine has improved; Salk's vaccine was replaced by the superior Sabin preparation and polio is now virtually unknown in the United States. A complete account of this clinical trial can be found in Francis et al.’s (1955) article or Paul Meier's essay in a popular book by Tanur et al. (1972).

The numbers are convincing, but was it possible that an ineffective vaccine produced such a result by chance?

In this example there are two hypothetical populations. The first consists of all first-, second-, and third-graders in the United States who would be inoculated with the active vaccine. The second population consists of US children of the same age who would receive the placebo. The attribute of interest is the presence/absence of paralytic polio. There are two samples from the two populations. Randomness of the samples was ensured by randomization of vials in the boxes and random selection of geographic regions for schools. Further analysis of this data can be found in Examples 10.17 and 18.11.


The term statistics has a plural form but is used in the singular when it relates to methodology. To avoid confusion, we note that statistics has another meaning and use. Any sample summary will be called a statistic. For example, a sample mean is a statistic, and sample mean and sample range are statistics. In this context, statistics is used in the plural.

The ultimate summary for quantifying a population attribute is a statistical model. The statistical model term is used in a broad sense here, but a component quantifying inherent uncertainty is always present. For example, random variables, discussed in Chapter 5, can be interpreted as basic statistical models when they model realizations of the attributes in a sample. The model is often indexed by one, several, or sometimes even an infinite number of unknown parameters. An inference about the model translates to an inference about its parameters.

Data are the specific values pertaining to a population attribute recorded from a sample. Often, the terms sample and data are used interchangeably. The term data is used as both singular and plural. The singular mode relates to a set, a collection of observations, while the plural is used when referring to the observations. A single observation is called a datum.

The following table summarizes the fundamental statistical notions that we discussed:












	attribute

	Quantitative or qualitative property, feature(s) of interest



	population

	Statistical universe; an existing or hypothetical totality of attributes



	sample

	A subset of a population



	data

	Recorded values/realizations of an attribute in a sample



	statistical model

	Mathematical description of a population attribute that incorporates incomplete information, variability, and the nondeterministic nature of the population



	population parameter

	A component (possibly multidimensional) in a statistical model; the models are typically specified up to a parameter that is left unknown
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Chapter 2 
The Sample and Its Properties



When you're dealing with data, you have to look past the numbers.

– Nathan Yau







WHAT IS COVERED IN THIS CHAPTER


	MATLAB Session with Basic Univariate Statistics

	Numerical Characteristics of a Sample

	Multivariate Numerical and Graphical Sample Summaries

	Exploratory Principal Components

	Typology of Data
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2.1 Introduction

The famous American statistician John Tukey once said, “Exploratory data analysis can never be the whole story, but nothing else can serve as the foundation stone – as the first step.” The term exploratory data analysis is self-defining. Its simplest branch, descriptive statistics, is the methodology behind approaching and summarizing experimental data. No formal statistical training is needed for its use. Basic data manipulations such as calculating averages of experimental responses, translating data to pie charts or histograms, or assessing the variability and inspection for unusual measurements are all examples of descriptive statistics. Rather than focusing on the population using information from a sample, which is a staple of statistics, descriptive statistics is concerned with the description, summary, and presentation of the sample itself. For example, numerical summaries of a sample could be measures of location (mean, median, per-centiles, mode, extrema), measures of variability (sample standard deviation/variance, robust versions of the variance, range of data, interquartile range, etc.), higher-order statistics (kth moments, kth central moments, skewness, kurtosis), and functions of descriptors (coefficient of variation). Graphical summaries of samples involve various visual presentations such as box-and-whisker plots, pie charts, histograms, empirical cumulative distribution functions, etc. Many basic data descriptors are used in everyday data manipulation.

Ultimately, exploratory data analysis and descriptive statistics contribute to the principal goal of statistics – inference about population descriptors – by guiding how the statistical models should be set.

It is important to note that descriptive statistics and exploratory data analysis have recently regained importance due to ever increasing sizes of data sets. Some complex data structures require several terabytes of memory just to be stored. Thus, preprocessing, summarizing, and dimension-reduction steps are needed to prepare such data for inferential tasks such as classification, estimation, and testing. Consequently, the inference is placed on data summaries (descriptors, features) rather than the raw data themselves.

Many data-managing software programs have elaborate numerical and graphical capabilities. MATLAB provides an excellent environment for data manipulation and presentation with superb handling of data structures and graphics. In this chapter we intertwine some basic descriptive statistics with MATLAB programming using data obtained from real-life research laboratories. Most of the statistics are already built in; for some we will make a custom code in the form of m-functions or m-scripts.

This chapter has two goals: (i) to help you gently relearn and refresh your MATLAB programming skills through annotated sessions, and (ii) introduce some basic statistical measures, many of which should already be familiar to you. Many of the statistical summaries will be revisited later in the book in the context of inference. You are encouraged to continuously consult MATLAB's online help pages since details and command options are not fully covered in this text.


2.2 A MATLAB Session on Univariate Descriptive Statistics

In this section we will analyze data derived from an experiment, step by step with a brief explanation of the MATLAB commands used. The whole session can be found in a single annotated file  cellarea.m available at the book's Web page, http://statbook.gatech.edu/Ch2.Descriptive/. The data can be found in the file  cellarea.dat|mat|xlsx, which features measurements from the lab of Professor Todd McDevitt at Georgia Tech.

This experiment on cell growth involved several time durations and two motion conditions. Here is a brief description:


Embryonic stem cells (ESCs) have the ability to differentiate into all somatic cell types, making ESCs useful for studying developmental biology, in vitro drug screening, and as a cell source for regenerative medicine and cell-based therapies. A common method to induce differentiation of ESCs is through the formation of multicellular spheroids termed embryoid bodies (EBs). ESCs spontaneously aggregate into EBs when cultured on a nonadherent substrate; however, under static conditions, this aggregation is uncontrolled and EBs form in various sizes and shapes, which may lead to variability in cell differentiation patterns. When rotary motion is applied during EB formation, the resulting population of EBs appears more uniform in size and shape.

After 2, 4, and 7 days of culture, images of EBs were acquired using phase-contrast microscopy. Image analysis software was used to determine the area of each EB imaged. At least 100 EBs were analyzed from three separate plates for both static and rotary cultures at the three time points studied.


Here we focus only on the measurements of visible surface areas of cells (in μm2) after growth time of 2 days, t = 2, under the static condition. The data are recorded as an ASCII file  cellarea.dat. Importingthe data set into MATLAB is done using the command

 load('cellarea.dat');

provided that the data set is on the MATLAB path. If this is not the case, use addpath(’foldername’) to add the path foldername
in which the file resides. A glimpse at the data is obtained by histogram command, hist:

hist(cellarea, 100)

On inspecting the histogram (Fig. 2.1), we find that one quite unusual observation that is inconsistent with the remaining experimental measurements. We can assume that the unusual observation is an outlier and omit it from the data set:

car = cellarea(cellarea ∼= max(cellarea));


[image: Bar graph shows raw data histogram on from 0 to 14 in multiplied by 105 versus from 0 to 300 with plot for outlier.]

Fig. 2.1 Histogram of the raw data. Notice the unusual measurement beyond the point 12 × 105.



(Some formal diagnostic tests for outliers will be discussed later in the text.)

Next, the data are rescaled to more moderate values, so that the area is expressed in thousands of µm2 and the measurements have a convenient order of magnitude:

[image: image]
Thus, we obtain a sample of size n = 462 that we can further explore by descriptive statistics. The histogram we have plotted has already given us a sense of the distribution within the sample, and we have an idea of the shape, location, spread, symmetry, etc., of the observations.

Yet we need to find the numerical characteristics of the sample. First we will discuss its location measures, which, as the name indicates, evaluate the relative location of the sample.


2.3 Location Measures

Means. The three averages – arithmetic, geometric, and harmonic – are known as Pythagorean means. The arithmetic mean (mean),



[image: numbered Display Equation]

is a fundamental summary statistic. The geometric mean (geomean
) is



[image: numbered Display Equation]

and the harmonic mean (harmmean) is



[image: numbered Display Equation]



For the data set {1,2,3} the mean is 2, the geometric mean is [image: ], and the harmonic mean is 3/(1/1 + 1/2 + 1/3) = 1.6364. In standard statistical practice geometric and harmonic means are not used as often as arithmetic means. To illustrate the contexts in which they should be used, consider several simple examples.

Example 2.1. Use of Geometric Mean. You visit the bank to deposit a long-term monetary investment in the hope that it will accumulate interest over a three year span. Suppose that the investment earns 10% the first year, 50% the second year, and 30% the third year. What is its average rate of return? In this instance it is not the arithmetic mean, because in the first year the investment was multiplied by 1.10, in the second year it was multiplied by 1.50, and in the third year it was multiplied by 1.30. The correct measure is the geometric mean of these three numbers, which is about 1.29, or 29% of the annual interest. If, for example, the ratios are averaged (i.e., ratio = new method/old method) over many experiments, the geometric mean should be used. This is evident by considering an example. If one experiment yields a ratio of 10 and the next yields a ratio of 0.1, an arithmetic mean would misleadingly report that the average ratio was near 5. Taking a geometric mean will report a more meaningful average ratio of 1.


Example 2.2. Use of Harmonic Mean. Consider now two scenarios in which the harmonic mean should be used.


	If for half the distance of a trip one travels at 40 miles per hour and for the other half of the distance one travels at 60 miles per hour, then the average speed of the trip is given by the harmonic mean of 40 and 60, which is 48; that is, the total amount of time for the trip is the same as if one traveled the entire trip at 48 miles per hour. Note, however, that if one had traveled for half the time at one speed and then half time at another speed, the arithmetic mean, in this case 50 miles per hour, would be the correct average.

	In financial calculations, the harmonic mean is used to express the average cost of shares purchased over a period of time. For example, an investor purchases $1000 worth of stock every month for 3 months. If the three spot prices at execution time are $8, $9, and $10, then the average price the investor paid is $8.926 per share. However, if the investor purchased 1000 shares per month, then the arithmetic mean should be used.





Order Statistic. If the sample X1,…, Xn is ordered as X(1) ≤ X(2) ≤ … ≤ X(n) so that X(1) is the minimum and X(n) is the maximum, then X(1), X(2), …, X(n) is called the order statistic. For example, if X1 = 2, X2 = –1, X3 = 10, X4 = 0, and X5 = 4, then the order statistic is X(1) = –1, X(2) = 0, X(3) = 2, X(4) = 4, and X(5) = 10.

Median. The median 1 is the middle of the sample sorted in numerical order. In terms of the order statistic, the median is defined as


[image: numbered Display Equation]

If the sample size is odd, then there is a single observation in the middle of the ordered sample at the position (n + 1)/2. For even sample sizes, the ordered sample has two elements in the middle at positions w/2 and w/2 + 1, and the median is their average. The median is a robust estimator of location, that is, not easily affected by extremes and outliers. For instance, in both data sets, {−1,0,4,7,20} and {−1,0,4,7,200}, the median is 4. However, the means are 6 and 42, respectively.

Mode. The most frequent (fashionable 2) observation in the sample (if such exists) is the mode of the sample. If the sample is composite, the observation xi corresponding to the largest frequency ƒi is the mode. Composite samples consist of realizations xiand their frequencies ƒi, as in



[image: numbered Display Equation]

Mode may not be unique. If there are two modes, the sample is bimodal, three modes make it trimodal, etc.

Trimmed Mean. As mentioned earlier, the mean is a location measure sensitive to extreme observations and possible outliers. To make this measure more robust, one may trim a α 100% of the data symmetrically from both sides of the ordered sample (trim α/2 · 100% smallest and α/2 · 100% largest observations, Figure 2.2b).


[image: Diagrams show ordered sample, sample part from which alpha-trimmed mean is calculated, and sample which is modified for winsorized mean.]

Fig. 2.2 (a) Schematic graph of an ordered sample; (b) Part of the sample from which an α-trimmed mean is calculated; (c) Modified sample for the winsorized mean.



If your sample, for instance, is {1,2, 3,4, 5,6,7, 8,9,100}, then a 20% trimmed mean is a mean of {2,3, 4,5, 6,7, 8,9}.

Here is the command in MATLAB that determines the discussed locations for the cell data:

[image: image]
By applying α × 100% trimming, we end up with a sample of reduced size [(1 − α)× 100%]. Sometimes the sample size is important to preserve.

Winsorized Mean. A robust location measure that preserves sample size is the winsorized mean. Similar to a trimmed mean, a winsorized mean identifies outlying observations, but instead of being excluded, these outlying observations are replaced by either the minimum or maximum of the trimmed sample, depending on whether the trimming was done from below or above (Fig. 2.2c).

The winsorized mean is not a built-in MATLAB function. However, it can be calculated easily by the following code:

[image: image]
Figure 2.2 shows schematic graphs of an ordered sample, part of the sample from which an α-trimmed mean is calculated, and the modified sample for the winsorized mean.



2.4 Variability Measures

Location measures are intuitive, but they give a minimal glimpse at the nature of a sample. An important set of sample descriptors are dispersion measures, or measures of spread. There are many measures of variability in a sample. In the early nineteenth century, Karl Friedrich Gauss already used several variability measures on a set of 48 astronomical measurements concerning relative positions of Jupiter and its satellite Pallas (Gauss, 1816).

Sample Variance and Sample Standard Deviation. The variance of a sample, or sample variance, is defined as
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Note that we use [image: ] instead of [image: ] as one would expect. The reasons for this will be discussed later. An alternative expression for s2 that is more suitable for calculation (by hand) is



[image: numbered Display Equation]

see Exercises 2.5 and 2.7.

In MATLAB, the sample variance of a data vector x is var(x)or var(x,0) Flag 0 in the argument list indicates that the ratio 1/(n − 1) is used to calculate the sample variance. If the flag is 1, then var(x,1) stands for
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which is sometimes used instead of s2. We will see later that both estimators have good properties: s2 is an unbiased estimator of the population variance while s2* is the maximum likelihood estimator. The square root of the sample variance is the sample standard deviation:



[image: numbered Display Equation]

In MATLAB the standard deviation can be calculated by std(x)=std(x,0) or std(x,1), depending on whether the sum of squares is divided by n − 1 or by n.

[image: image]
Remark. When a new observation is obtained, one can update the sample variance without having to recalculate it. If [image: ] and s2n
are the sample mean and variance based on x1, x2,…, xn and a new observation xn+1 is obtained, then
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where [image: ].

MAD-Type Estimators. Another group of estimators of variability involves absolute values of deviations from the center of a sample. These estimators, known as MAD estimators, are less sensitive to extreme observations and outliers compared to the sample standard deviation. They belong to the class of so-called robust estimators. The acronym MAD stands for either mean absolute difference from the mean or, more commonly, median absolute difference from the median. According to statistics historians (David, 1998), both MADs were already used by Gauss at the beginning of the nineteenth century.

MATLAB uses mad(car) or mad(a,0) for the first and mad(car,1) for the second definition:
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A typical convention is to multiply the MAD1 estimator mad(car,1) by 1/norminv(3/4)=1.4826, to make it comparable in magnitude to the sample standard deviation.

[image: image]
Sample Range and IQR. Two simple measures of variability, or rather the spread of a sample, are the range R and interquartile range (IQR). In MATLAB these are range and iqr respectively. They are defined by the order statistic of the sample. The range is the maximum minus the minimum of the sample, R = X(n) − X(1), while IQR is defined by sample quantiles, to be explained later.

[image: image]
If the sample is bell-shape distributed, a robust estimator of variance is [image: ], and this summary was used by Adolphe Quetelet in the first part of the nineteenth century. It is a simple estimator, not affected by outliers (it ignores 25% of observations in each tail), but its variability is large.

Sample Quantiles/Percentiles. Sample quantiles (in units between 0 and 1) or sample percentiles (in units between 0 and 100) are very important summaries that reveal both the location and the spread of a sample. For example, we may be interested in a point xp that partitions the ordered sample into two parts, one with p · 100% of observations smaller than xp and another with (1 − p)100% observations greater than xp. In MATLAB, we use the commands quantile or prctile, depending on how we express the proportion of the sample. For example, for the 5, 10, 25, 50, 75, 90, and 95 percentiles we have

[image: image]
The same results can be obtained using the command

[image: image]
In our data set, 5% of the observations are less than 7, and 90% of the observations are less than 51.

Some percentiles/quantiles are special. For example, the median of the sample is the 50th percentile. Quartiles divide an ordered sample into four parts; the 25th percentile is known as the first quartile, Q1, and the 75th percentile is known as the third quartile, Q3. The median is Q2, of course. 3
In MATLAB, Q1=prctile(car,25); Q3=prctile(car,75). Nowwecan define the IQR as Q3 − Q1:

[image: image]
The five-number summary for univariate data is defined as (Min, Q1, Me, Q3, Max).

z-Scores. For a sample x1, x2, …, xn the z-score is the standardized sample x1, x2, …, xn, where [image: ]. In the standardized sample, the mean is 0 and the sample variance (and standard deviation) is 1. The basic reason why standardization may be needed is to assess extreme values, or compare samples taken at different scales. Some other reasons will be discussed in subsequent chapters.

[image: image]
Moments of Higher Order. The term sample moments is drawn from mechanics. If the observations are interpreted as unit masses at positions X1, … ,Xn, then the sample mean is the first moment in the mechanical sense – it represents the balance point for the system of all points. The moments of higher order have their corresponding mechanical interpretation. The formula for the kth moment is
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The moments mk are sometimes called raw sample moments. The power k mean is (mk)1/k, that is,



[image: numbered Display Equation]



For example, the sample mean is the first moment and power 1 mean,
[image: ]. The central
moments of order k
are defined as
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Notice that µ1 = 0 and that µ2 is the sample variance (calculated by var(.,1) with the sum of squares divided by n). MATLAB has a built-in function moment for calculating the central moments.

[image: image]
Skewness and Kurtosis. There are many uses of higher moments in describing a sample. Two important sample measures involving higher-order moments are skewness and kurtosis.

Skewness is defined as



[image: numbered Display Equation]

and measures the degree of asymmetry in a sample distribution. Positively skewed distributions have longer right tails, and their sample mean is larger than the median. Negatively skewed sample distributions have longer left tails, and their mean is smaller than the median.

Kurtosis is defined as
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It represents the measure of “peakedness” or flatness of a sample distribution. In fact, there is no consensus on the precise interpretation of kurtosis since flat but fat-tailed distributions would also have high kurtosis. Distributions that have a kurtosis of <3 are called platykurtic and those with a kurtosis of >3 are called leptokurtic. Kurtosis is sometimes defined as μ4/μ22 − 3 and termed excess kurtosis, or simply excess.

[image: image]
A robust version of the skewness measure was proposed by Bowley (1920) as



[image: numbered Display Equation]

and ranges between −1 and 1. Moors (1988) proposed a robust measure of kurtosis based on sample octiles:



[image: numbered Display Equation]

where Oi is the i/8 × 100 percentile (ith octile) of the sample for i = 1,2, … ,7. If the sample is large, one can take Oi as X(⌊i/8 × n⌋). The constant 1.766 is sometimes added to k*n as a calibration adjustment so that it becomes comparable with the traditional measure of kurtosis for samples from Gaussian populations, which will be discussed extensively later in Chapter 6.

[image: image]
Coefficient of Variation. The coefficient of variation, CV, is the ratio
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The CV expresses the variability of a sample in the units of its mean. In other words, a CV equal to 2 would mean that the standard deviation is equal to [image: ]. The assumption is that the mean is positive. The CV is used when comparing the variability of data reported on different scales. For example, instructors A and B teach different sections of the same class but design their final exams individually. To compare the effectiveness of their respective exam designs at creating a maximum variance in exam scores (a tacit goal of exam designs), they calculate CVs. It is important to note that the CVs would not be related to the exam grading scale, to the relative performance of the students, or to the difficulty of the exam.

[image: image]
The reciprocal of CV, [image: ], is sometimes called the signal-to-noise ratio, and it is often used in engineering quality control.

Composite Sample. When a sample is large and many observations are repetitive, data are often recorded as grouped. For example, the data set

[image: image]
is called a simple sample, or raw sample, as it lists explicitly all observations. It can be presented in a more compact form, as grouped or composite sample:

[image: image]
where Xi are distinctive values in the data set with frequencies fi, and the number of groups is k = 7. Notice that Xi = 5 appears six times in the simple sample, so its frequency is fi = 6.

The function  [xi fi]=simple2comp(a) provides frequencies fi for a list xi
of distinctive values in a.

[image: image]
Here, [image: ].

When a sample is composite, the sample mean and variance are calculated as
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for [image: ]. By defining the mth raw and central sample moments as
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one can express skewness, kurtosis, CV, and other sample statistics that are functions of moments.

Diversity Indices for Categorical Data. If the data are categorical and numerical characteristics such as moments and percentiles cannot be defined, but the frequencies fi of classes/categories are given, one can define Shannon's diversity index: 



(2.1)[image: numbered Display Equation]

where n is total sample size and k is the number of categories.

If some frequency is 0, then 0 × log 0 = 0. The maximum of H is log k; it is achieved when all fi are equal. The normalized diversity index, EH = H/log k, is called Shannon's homogeneity (equitability) index of the sample.

Neither H nor EH depends directly on the sample size but on relative class-frequencies fi/n since H can be expressed as [image: ].

Example 2.3. Homogeneity of Blood Types. Suppose that samples from Brazilian, Indian, Norwegian, and US populations are taken and the frequencies of blood types (ABO/Rh) are obtained.





	Population
	O+
	A+
	B+
	AB+
	O−
	A−
	B−
	AB−
	Total



	Brazil
	115

	108

	25

	6

	28

	25

	6

	1

	314




	India
	220

	134

	183

	39

	12

	6

	6

	12

	612




	Norway
	83

	104

	16

	8

	14

	18

	2

	1

	246




	US
	99

	94

	21

	8

	18

	18

	5

	2

	265







Which country's sample is most homogeneous with respect to the blood type attribute?

[image: image]
Among the four samples, the sample from Brazil is the most homogeneous with respect to the blood types of its population, as it maximizes the statistic EH. See also Exercise 2.14 for an alternative definition of diversity/homogeneity indexes.



2.5 Ranks

Let X1, X2,…, Xn be a sample. The ranks of a sample X1, X2,…, Xn are defined as indices of ordered sample
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For example,

[image: image]
The function  ranks.m is

[image: image]
For example, when the input is a matrix, the optional parameter glob = 1 produces global ranking, while for glob not equal to 1, columnwise ranking is performed.

[image: image]
In the case of ties, it is customary to average the tied rank values. The

script  ranks.m does just that:

[image: image]
Here r(2) = 3, r(1)= 1.5, r(7)= 4, and so on. Note that 1 appears twice and ranks 1 and 2 are averaged. In the case

[image: image]
the ranks of three 9s are 4, 5, and 6, which are averaged to 5.


2.6 Displaying Data

Besides being represented by their numerical descriptors, samples are often presented in a graphical manner. In this section, we discuss some basic graphical summaries.

Box-and-Whiskers Plot. The top and bottom of the “box” are the 25th and 75th percentile of the data, respectively, with the distances between them representing the IQR. The line inside the box represents the sample median. If the median is not centered in the box, it indicates sample skewness. Whiskers extend from the lower and upper sides of the box to the data's most extreme values within 1.5 times the IQR. Potential outliers are displayed with red “+” beyond the endpoints of the whiskers.

The MATLAB command boxplot(X) produces a box-and-whisker plot for X. If X is a matrix, the boxes are calculated and plotted for each column. Figure 2.3a is produced by

[image: image]

[image: Graph shows box plot on from 0 to 200, and bar graph shows cell data car histogram on from 0 to 250 versus from 0 to 90.]

Fig. 2.3 (a) Box plot and (b) histogram of cell data car.



Histogram. As illustrated previously in this chapter, the histogram (Greek: histos, a web or tissue; gramma, a thing written or drawn) is a rough approximation of the population distribution based on a sample. Plotted in a histogram are frequencies (or relative frequencies for normalized histograms) for interval-grouped data. Graphically, the histogram is a barplot over contiguous intervals or bins spanning the range of data (Fig. 2.3b). In MATLAB, the typical command for a histogram is [fre,xout] = hist(data,nbins)
, where nbins
is the number of bins and the outputs fre
and xout
are the frequency counts and the bin locations, respectively. Given the output, one can use bar(xout,n)
to plot the histogram. When the output is not requested, MATLAB produces the plot by default.

[image: image]
Histogram is only an approximation of the distribution of measurements in the population from which the sample is obtained.

There are several rules on how to automatically determine the number of bins or, equivalently, bin sizes, none of them superior to the others on all possible data sets. A commonly used proposal is Sturges’ rule (Sturges, 1926), where the number of bins k is given as



[image: numbered Display Equation]

where n is the size of the sample. Sturges’ rule was intended for bell-shaped distributions of data and may oversmooth data that are skewed, multimodal, or have some other features. Other suggestions specify the bin size as h = 2 · IQR/n1/3 (Diaconis–Freedman rule) or, alternatively, h =(7s)/(2n1/3) (Scott's rule; s is the sample standard deviation). The number of bins is found by dividing the range of the data by h.

For example, for cell-area data car, Sturges’ rule suggests 10 bins, Scott's 19 bins, and the Diaconis–Freedman rule 43 bins. The default nbins in MATLAB is 10 for any sample size.

The histogram is a crude estimator of probability densities discussed in detail later in Chapter 5. A more esthetic estimator of the population distribution is given by the kernel smoother density estimate, or ksdensity. We will not go into the details of kernel smoothing at this point in the text; however, note that the spread of a kernel function (such as a Gaussian kernel) regulates the degree of smoothing and in some sense is equivalent to the choice of bin size in histograms.

Command [f,xi,u]=ksdensity(x) computes a density estimate based on data x. Output f is the vector of density values evaluated at the points in xi. The estimate is based on a normal kernel function, using a window parameter width that depends on the number of points in x. The default width u is returned as an output and can be used to tune the smoothness of the estimate, as is done in the example below. The density is evaluated at 100 equally spaced points that cover the range of the data in x:

[image: image]
Empirical Cumulative Distribution Function.The empirical cumulative distribution function (ECDF) Fn(x) for a sample X1,…, Xn is defined as



(2.2)[image: numbered Display Equation]

and represents the proportion of sample values smaller than x. Here 1(Xi ≤ x) is either 0 or 1. It is equal to 1 if {Xi ≤ x} is true, 0 otherwise.

The function  empiricalcdf(x,sample) will calculate the ECDF based on the observations in sample at a value x.

[image: image]
In MATLAB, [f xf]=ecdf(x)
is used to calculate the proportion f
of the sample x
that is smaller than xf
. Figure 2.4b shows the ECDF for the cell area data, car
.


[image: Graph shows histogram for different widths of smoothing kernel from minus 50 to 250 versus from 0 to 0.06, and graph shows empirical CDF on x from 0 to 250 versus Fn (x) from 0 to 1.]

Fig. 2.4 (a) Smoothed histogram (density estimator) for different widths of smoothing kernel; (b) Empirical CDF.



Q–Q Plots. Q–Q plots, short for quantile–quantile plots, compare the distribution of a sample with some standard theoretical distribution, such as normal distribution, or with a distribution of another sample. This is done by plotting the sample quantiles of one distribution against the correspond ing quantiles of the other. If the plot is approximately linear, then the distributions are close (up to a scale and shift). If the plot is close to the 45° line, then the compared distributions are approximately equal. In MATLAB the command qqplot(X,Y) produces an empirical Q–Q plot of the quantiles of the data set X
versus the quantiles of the data set Y. If the data set Y
is omitted, then qqplot(X)
plots the quantiles of X
against standard normal quantiles and essentially checks the normality of the sample.

Figure 2.5 gives us the Q–Q plot of the cell area data set against the normal distribution. Note the deviation from linearity suggesting that the distribution is skewed. A line joining the first and third sample quartiles is superimposed in the plot. This line is extrapolated out to the ends of the sample to help visually assess the linearity of the Q–Q display. Q–Q plots will be discussed in more detail in Chapter 17.


[image: Graph shows data plotted quantiles against corresponding normal quantiles on standard normal quantiles from minus 4 to 4 versus quantiles of input sample from minus 50 to 250.]

Fig. 2.5 Quantiles of data plotted against corresponding normal quantiles, via



Pie Charts. If we are interested in visualizing proportions or frequencies, a pie chart is appropriate. A pie chart (pie in MATLAB) is a graphical display in the form of a circle in which particular sample proportions are assigned segments.

Suppose that in the cell area data set we are interested in comparing proportions of cells with areas in three regions: smaller than or equal to 15, between 15 and 30, and larger than 30. We would like to emphasize the proportion of cells with areas between 15 and 30. The following MATLAB code plots the pie charts (Fig. 2.6).

[image: image]

[image: Pie charts show frequencies of 213, 139, and 110 of areas of cell smaller than or equal to 15, between 15 and 30, and larger than 30 with markings for 46 percent, 24 percent, and 30 percent.]

Fig. 2.6 Pie charts for frequencies 213, 139, and 110 of cell areas smaller than or equal to 15, between 15 and 30, and larger than 30. The proportion of cells with the area between 15 and 30 is emphasized.



Note that option explode=[0 1 0] separates the second segment from the circle. The command pie3 plots a 3D version of a pie chart (Fig. 2.6b).


2.7 Multidimensional Samples: Fisher's Iris Data and Body Fat Data

In the cell area example, the sample was univariate, that is, each measurement was a scalar. If a measurement is a vector of data, then descriptive statistics and graphical methods increase in importance, but they are much more complex than in the univariate case. The methods for understanding multivariate data range from the simple rearrangements of tables in which raw data are tabulated to quite sophisticated computer-intensive methods in which exploration of the data is reminiscent of futuristic movies of space explorations.

Multivariate data from an experiment are first recorded in the form of tables, by either a researcher or a computer. In some cases, such tables may appear uninformative simply because of their format of presentation. By simple rules, such tables can be rearranged in more useful formats. There are several guidelines for successful presentation of multivariate data in the form of tables. (i) Numbers should be maximally simplified by rounding as long as it does not affect the analysis. For example, the vector (2.1314757, 4.9956301, 6.1912772) could probably be simplified to (2.14, 5, 6.19); (ii) Organize the numbers to compare columns rather than rows; and (iii) The user's cognitive load should be minimized by spacing and table layout so that the eye does not travel long in making comparisons.

Fisher's Iris Data. An example of multivariate data is provided by the celebrated Fisher's iris data. Plants of the family Iridaceae grow on every continent except Antarctica. With a wealth of species, identification is not simple. Even iris experts sometimes disagree about how some flowers should be classified. Fisher's (Anderson, 1935; Fisher, 1936) data set contains measurements on three North American species of iris: Iris setosa canadensis, Iris versicolor, and Iris virginica. The 4-dimensional measurements on each of the species consist of sepal length, sepal width, petal length, and petal width.

The data set fisheriris is part of the MATLAB distribution and contains two fields: meas
and species
. The meas
field, shown in Figure 2.7a, is a 150 × 4 matrix and contains 150 entries, 50 for each species. Each row in the matrix meas
contains four elements: sepal length, sepal width, petal length, and petal width. Note that the convention in MATLAB is to store variables as columns and observations as rows.


[image: Graph shows meas matrix fisheriris from 0.5 to 4.5 versus from 140 to 20, and graph shows from box plots of sepal length versus species from setosa to virginica versus values from 4.5 to 8.]

Fig. 2.7 (a) Matrix meas in meas in fisheriris; (b) Box plots of sepal length (the first column in matrix meas) versus species.



The data set species contains names of species for the 150 measurements. The following MATLAB commands plot the data and compare sepal lengths among the three species.

[image: image]
Correlation in Paired Samples. We will briefly describe how to find the correlation between two aligned vectors, leaving detailed coverage of correlation theory to Chapter 13.

Sample correlation coefficient r measures the strength and direction of the linear relationship between two paired samples X = (X1, X2,…, Xn) and Y=(Y1, Y2, …,Yn). Note that the order of components is important and the samples cannot be independently permuted if the correlation is of interest. Thus the two samples can be thought of as a single bivariate sample (Xi,Yi), i = 1, … ,n.






The correlation coefficient between samples X = (X1, X2, …, Xn) and Y = (Y1, Y2, …, Yn) is



[image: numbered Display Equation]



The summary [image: ] is called the sample covariance. The correlation coefficient can be expressed as a ratio:



[image: numbered Display Equation]

where sX and sY are sample standard deviations of samples X and Y.






Covariances and correlations are basic exploratory summaries for paired samples and multivariate data. Typically, they are assessed in data screening before building a statistical model and conducting an inference. The correlation ranges between –1 and 1, which are the two ideal cases of decreasing and increasing linear trends. Zero correlation does not, in general, imply independence but signifies the lack of any linear relationship between samples.

To illustrate the preceding principles, we find covariance and correlation between sepal and petal lengths in Fisher's iris data. These two variables correspond to the first and third columns in the data matrix. The conclusion is that these two lengths exhibit a high degree of linear dependence as evident in Figure 2.8. The covariance of 1.2743 by itself is not a good indicator of this relationship since it is scale (magnitude) dependent. However, the correlation coefficient is scale independent and, in this case, shows a strong positive relationship between the variables:

[image: image]

[image: Graph shows correlation between petal and sepal lengths in data set of iris from 4 to 8 versus from 1 to 7 with plots.]

Fig. 2.8 Correlation between petal and sepal lengths (columns 1 and 3) in iris data set. Note the strong linear dependence with a positive trend. This is reflected by a covariance of 1.2743 and a correlation coefficient of 0.8718.



In the next section we will describe an interesting multivariate data set and, using MATLAB, find some numerical and graphical summaries.

Example 2.4. Body Fat Data.We now discuss a multivariate data set analyzed in Johnson (1996) that was submitted to  http://www.amstat.org/publications/jse/datasets/fat.txt
and featured in Penrose et al. (1985). This data set can be found on the book's Web page as well, as
 fat.dat.

Percentage of body fat, age, weight, height, and ten body circumference measurements (e.g., abdomen) were recorded for 252 men. The percentage of body fat was estimated through an underwater weighing technique (Fig. 2.9).


[image: Image described by caption and surrounding text.]

Fig. 2.9 Water test to determine body density. It is based on underwater weighing (Archimedes’ principle) and is regarded as the gold standard for body composition assessment.



The data set has 252 observations and 19 variables. The Brozek and Siri indexes (Brozek et al., 1963; Siri, 1961) and fat-free weight are obtained by underwater weighing, while other anthropometric variables are obtained using scales and a measuring tape. The anthropometric variables are less intrusive but also less reliable in assessing the body fat index.

Remark. There are a few erroneous recordings. The body densities for cases 48, 76, and 96, for instance, each seem to have one digit in error as seen from the two body fat percentage values. You will also note the presence of a man (case 42) over 200 lb. in weight who is less than 3 ft. tall (the height should presumably be 69.5 in., not 29.5 in.)! The percent body fat estimates are truncated to zero when negative (case 182).


[image: image]



Table 2.1 Structure of file fat.dat





	Column
	Name
	Variable description





	 1
	casen
	Case number



	 2
	broz
	Percent body fat using Brozek's equation: 457/density – 414.2



	 3
	siri
	Percent body fat using Siri's equation: 495/density – 450



	 4
	densi
	Density (g/cm3)



	 5
	age
	Age (years)



	 6
	weight
	Weight (lb)



	 7
	height
	Height (in)



	 8
	adiposi
	Adiposity index = weight/(height2) (kg/m2)



	 9
	ffwei
	Fat-free weight = (1 – fraction of body fat) × weight, using Brozek's formula (lb)



	10
	neck
	Neck circumference (cm)



	11
	chest
	Chest circumference (cm)



	12
	abdomen
	Abdomen circumference (cm)



	13
	hip
	Hip circumference (cm)



	14
	thigh
	Thigh circumference (cm)



	15
	knee
	Knee circumference (cm)



	16
	ankle
	Ankle circumference (cm)



	17
	biceps
	Extended biceps circumference (cm)



	18
	forearm
	Forearm circumference (cm)



	19
	wrist
	Wrist circumference (cm) “distal to the styloid processes”






casen = fat(:,1);

broz = fat(:,2);

siri = fat(:,3);

densi = fat(:,4);

age = fat(:,5);

weight = fat(:,6);

height = fat(:,7);

adiposi = fat(:,8);

ffwei = fat(:,9);

neck = fat(:,10);

chest = fat(:,11);

abdomen = fat(:,12);

hip = fat(:,13);

thigh = fat(:,14);

knee = fat(:,15);

ankle = fat(:,16);

biceps = fat(:,17);

forearm = fat(:,18);

wrist = fat(:,19);

We will analyze this data set again in this chapter, and later in Chapter 14, in the context of multiple regression.




2.8 Multivariate Samples and Their Summaries*

Multivariate samples are organized as a data matrix, where the rows are observations and the columns are variables or components. One such data matrix of size n × p is shown in Figure 2.10.


[image: Image described by caption and surrounding text.]

Fig. 2.10 Data matrix X. In the multivariate sample the rows are observations and the columns are variables.



The measurement xij denotes the jth component of the ith observation. There are n row vectors x1', x2', …, xn' and p columns x(1), x(2), …, x(p), so that



[image: numbered Display Equation]



Note that xi = (xi1, xi2, …, xip)′
is a p-vector denoting the ith observation, while x(j) = (x1j, x2j, …, xnj)′ is an n-vector denoting values of the jth variable/component.

The mean of data matrix X is a vector [image: ], which is a p-vector of column means



[image: numbered Display Equation]



By denoting a vector of ones of size n × 1 as 1, the mean can be written as [image: ], where X′ is the transpose of X.

Note that [image: ] is a column vector, but MATLAB's command mean(X) will produce a row vector. It is instructive to take a simple data matrix and inspect step by step how MATLAB calculates the multivariate summaries. For instance,

[image: image]





For any two variables (columns) in X, x(i) and x(j), one can find the sample covariance:



[image: numbered Display Equation]



All Sijs form a p × p matrix, called a sample covariance matrix and denoted by S.






A simple representation for S uses matrix notation:



[image: numbered Display Equation]



Here J is a standard notation for a matrix consisting of ones. If one defines a centering matrix H as [image: ], then [image: ]. Here I is the identity matrix.

[image: image]
An alternative definition of the covariance matrix, [image: ], is coded in MATLAB as cov(X,1). Note that the diagonal of S contains sample variances of variables, since
[image: ].

Matrix S describes scattering in data matrix X. Sometimes it is convenient to have scalars as measures of scatter, and for that purpose two summaries of S are typically used: (i) the determinant of S, |S|, as a generalized variance and (ii) the trace of S, trS, as the total variation.

The sample correlation coefficient between the ith and jth variables is



[image: numbered Display Equation]
where [image: ] is the sample standard deviation. Matrix R with elements rij is called a sample correlation matrix. If R = I, the variables are uncorrelated. If D = diag(si) is a diagonal matrix with (s1, s2, …, sp) on its diagonal, then



[image: numbered Display Equation]



Next we show how to standardize multivariate data. Data matrix Y is a standardized version of X if its rows y'i are standardized rows of X,



[image: numbered Display Equation]



Y has a covariance matrix equal to the correlation matrix. This is a multivariate version of the z-score. For the two-column vectors from Y, y(i) and y(j), the correlation rij can be interpreted geometrically as the cosine of the angle ϕij between the vectors. This shows that correlation is a measure of similarity because close vectors (with a small angle between them) will be strongly positively correlated, whereas the vectors orthogonal in the geometric sense will be uncorrelated. This is why uncorrelated vectors are sometimes called orthogonal.

Another useful transformation of multivariate data is the Mahalanobis transformation. When data vector is subjected to the Mahalanobis transformation, its components become decorrelated. For this reason, such transformed data are sometimes called “sphericized.”



[image: numbered Display Equation]

Because the Mahalanobis transform decorrelates the components, the covariance matrix Cov(Z) is an identity matrix. The Mahalanobis transformation is useful in defining the distances between multivariate observations. For further discussion on the multivariate aspects of statistics, we direct the student to the excellent classical book by Morrison (2004).

Example 2.5  The iris data set was a data matrix of size 150 × 4, while the size of the body fat data was 252 × 19. To illustrate some of the multivariate summaries just discussed, we construct a new, 5-dimensional data matrix from the body fat data set. The selected columns are broz, densi, weight, adiposi, and biceps. All 252 rows are retained.

[image: image]
[image: image]
Figure 2.11 shows data plots for a subset of five variables and the two transformations, standardizing and Mahalanobis. Panel (a) shows components broz, densi, weight, adiposi, and biceps over all 252 measurements. Note that the scales are different and that weight has much larger magnitudes than the other variables.

Panel (b) shows the standardized data. All column vectors are centered and divided by their respective standard deviations. Note that the data plot here shows the correlation across the variables. The variable is negatively correlated with the other variables.

Panel (c) shows the decorrelated data. Decorrelation is done by centering and multiplying by the Mahalanobis matrix, which is the matrix square root of the inverse of the covariance matrix. The correlations visible in panel (b) disappeared.


[image: Graphs show data plots from 1 to 5 versus from 250 to 50 and scales from 0 to 350, from minus 3 to 6, and from minus 6 to 12.]

Fig. 2.11 Data plots for (a) 252 five-dimensional observations from Body Fat data where the variables are broz, densi, weight, adiposi, and biceps. (b) Y is standardized X, and (c) Z is a decorrelated X.






2.9 Principal Components of Data

Principal components were introduced by Pearson (1901) and fully developed by Hotelling (1933). Without insisting on their theoretical properties, we will apply this methodology as algebraic transformations of multivari-ate data sets. Our goal is to better understand the multivariate data and reduce its dimensionality.

Let X1, …, Xn be a sample consisting of n of p-dimensional observations Xi = (Xi1, …, Xip). The sample is organized as a (n × p) data matrix X, in which, as before, the observations are rows while the components within the observations form columns:



[image: numbered Display Equation]



Operationally, the principal component analysis is an algebraic decomposition on the sample covariance matrix S. As a background, we will briefly review notions of eigenvectors and eigenvalues.

When multiplied by a matrix A, vectors generally change their direction. However, certain vectors Ax remain in the same direction as the original x. Such vectors x are called eigenvectors. Thus, the vector Ax is λ times the original x. In this case, λ is an eigenvalue corresponding to eigenvector x. When A is a full rank covariance matrix of size p × p, it has p eigenvectors with nonnegative eigenvalues.

The sample covariance matrix S can be decomposed as



[image: numbered Display Equation]

where V is an orthogonal matrix consisting of eigenvectors (as columns) of S, and D is a diagonal p × p matrix with eigenvalues λ1 ≥ … λp ≥ 0 on the diagonal. In algebra, this is called spectral decomposition.

After multiplying S = VDV′ by V′ from the left and V from the right, we see that V diagonalizes S,



[image: numbered Display Equation]



In MATLAB,

[image: image]
Matrix V in the output consists of coefficients defining the principal axes. The columns of V are called principal components. The principal components form an orthonormal basis of p-dimensional space to which the data form X are transformed.

The scores, organized as data matrix Y,



(2.3)[image: numbered Display Equation]
 consist of p-tuples, which are observations from X represented in this new coordinate system. Geometrically, each row of X represents a point in a p-dimensional space. The space is rotated (V is an orthogonal matrix) and the scores Y represent coordinates of the points in this rotated coordinate system. Note that transformation in (2.3) is linear; each component of ith score Yi(ith row of Y) is a linear combination of all components of ith observation Xi where coefficients are the elements of the corresponding eigenvectors.

The diagonal matrix D contains eigenvalues of S ordered from the largest to the smallest. This matrix is a covariance matrix of the transformed data, and it is diagonal. This means that principal components are uncor-related and the total variance trace(S)= trace(D) is preserved.

When the coordinates have different magnitudes and scales, it is advisable to use sample correlation matrix R instead of covariance matrix S. This is equivalent to applying the previous transformations on the z-scores of X. In this case trace(R)= trace(D)= p, since we have p components, each with variance one.

MATLAB's built-in function is [V, Y, d] = pca(X); where V, Y are as above and diag(d)= D.

In its most rudimentary form, the principal components can be found by applying the singular value decomposition directly on the centered data matrix:

[image: image]
Example 2.6. Principal Components of Fisher's Iris Data. Fisher's iris data matrix (150 × 4) was described on page 30. We will find principal components for this data set and explore how they behave for different iris species. The following MATLAB script imports the data, finds principal components, scores, and variances, and plots the results:

[image: image]
Note that in the domain of original measurements the first two components do not separate species as well as in the domain of principal components (Fig 2.12). Here the principal components help identify features in the data that discriminate between the species. Also, the first principal component is responsible for 92.46% of the variability in this data set.


[image: Graph shows first coordinate from 4 to 8 versus 2nd coordinate from 2 to 4.5, and graph shows 1st principal coordinate from 2 to 10 versus second principal component from 4 to 7 with plots.]

Fig. 2.12 (a) First vs second component in the original data; (b) First vs second principal component in scores.



Example 2.7. Wisconsin Diagnostic Breast Cancer (WDBC). Wolberg, Street, and Mangasarian (1994) were interested in applying machine learning to diagnosing breast cancer from fine-needle aspirates (FNA). The data set
 wdbc.mat
contains a matrix wdbc
with 569 rows (subjects) of which 357 correspond to controls and 212 to cancer. The matrix has 31 columns: column 1 is diagnosis (0 = control, 1 = cancer), and columns 2-31 contain 30 features. The features are computed from a digitized image of a FNA of a breast mass, as shown in Figure 2.13. The characteristics of the cell nuclei present in the image are listed as follows:





	Variable
	Mean
	S.Error
	Extreme



	Radius (average distance from the center)
	Col 2
	Col 12
	Col 22



	Texture (standard deviation of gray-scale values)
	Col 3
	Col 13
	Col 23



	Perimeter
	Col 4
	Col 14
	Col 24



	Area
	Col 5
	Col 15
	Col 25



	Smoothness (local variation in radius lengths)
	Col 6
	Col 16
	Col 26



	Compactness (perimeter2 / area - 1.0)
	Col 7
	Col 17
	Col 27



	Concavity (severity of concave portions of the contour)
	Col 8
	Col 18
	Col 28



	Concave points (number of concave portions of the contour)
	Col 9
	Col 19
	Col 29



	Symmetry
	Col 10
	Col 20
	Col 30



	Fractal dimension (“coastline approximation” - 1)
	Col 11
	Col 21
	Col 31







[image: Bar graph shows pareto plot on PC from 1 to 10 versus variance from 0 to 25, and graph shows first PC from minus 10 to 20 versus second PC from minus 10 to 15 with plots for no cancer and cancer.]

Fig. 2.13 FNA: A digitized image of a fine-needle aspirate of a breast mass.



The mean, standard error, and extreme (largest) of nuclei measures were computed for each image, resulting in 30 features. For instance, column 2 is Mean Radius, column 12 is Radius Standard Error, column 22 is Extreme Radius.

Below is MATLAB code that finds PCs for this data set and plots the Pareto graph.

[image: image]
The dimension reduction in this context means that most of the variance in data is explained by only a few components. Total variance is 30, equal to p, since we used z-scores, or equivalently, the correlation matrix. The first two components explain 63.24% of variance, (sum(latent1(1:2))/30 = 0.6324). The first 5 components contain roughly 85% of information (variability) and the applicability of this methodology in data compression is obvious.

Often a scatterplot of the leading components of scores may reveal patterns (as in Example 2.6) that are useful in data mining. In this example the first two components are not discriminatory of cancer because their scatterplot is well mixed (Fig. 2.14(b)).



[image: Bar graph shows pareto plot on PC from 1 to 10 versus variance from 0 to 25, and graph shows first PC from minus 10 to 20 versus second PC from minus 10 to 15 with plots for no cancer and cancer.]

Fig. 2.14 (a) Pareto plot for principal components of wdbc data; (b) Scatterplot of scores for the first two principal components.




2.10 Visualizing Multivariate Data

The need for graphical representation is much greater for multivariate data than for univariate data, especially if the number of dimensions exceeds three.

For data given in matrix form (observations in rows, components in columns), we have already seen an illuminating graphical representation, which we called a data matrix.

It is straightforward to extend the histogram to bivariate data. An example of a 2D histogram obtained by m-file hist2d is given in Figure 2.15a. The histogram (in the form of an image) shows the sepal and petal lengths from the data set. A scatterplot of the 2D measurements is superimposed.


[image: Graphs show histogram and scattercloud plot on sepal length from 4.5 to 7.5 versus petal length from 1 to 6, and graph shows petal length from 0 to 10 versus sepal length from 4 to 8, et cetera.]

Fig. 2.15 (a) Two-dimensional histogram of Fisher's iris sepal (X) and petal (Y) lengths. The plot is obtained by hist2d.m; (b) Scattercloud plot – smoothed histogram with superimposed scatterplot, obtained by scattercloud.m; (c) Kernel-smoothed and normalized histogram obtained by smoothhist2d.m.



Panels (b) and (c) in Figures 2.15 show the smoothed histograms. The histogram in panel (c) is normalized so that the area below the surface is 1. The smoothed histograms are plotted by  scattercloud.m and  smoothhist2d.m (S. Simon and E. Ronchi, MATLAB Central).

If the dimension of the data is three or more, one can gain additional insight by plotting pairwise scatterplots. This is accomplished by the MATLAB command gplotmatrix(X,Y,group), which createsa matrix arrangement of scatterplots. Each subplot in the graphical output contains a scatterplot of one column from data set X against a column from data set Y. For a single data set (as in body fat and Fisher iris examples), Y is omitted or set at, and the scatterplots contrast the columns of X. The plots can be grouped by the grouping variable group. This variable can be a categorical variable, vector, string array, or cell array of strings.

The variable group must have the same number of rows as X. Points with the same value of group appear on the scatterplot with the same marker and color. Other arguments in gplotmatrix(x,y,group,clr,sym,siz) specify the color, marker type, and size for each group. An example of the gplotmatrix command is given in the code below. The output is shown in Figure 2.16a.

[image: image]

[image: Graph shows gplotmatrix for broz (0 to 40), densi (1 to 1.1), weight, adipose, and biceps, and graph shows from broz to biceps versus coordinate value from minus 4 to 8 with plots for 0 and 1.]

Figure 2.16 (a) gplotmatrix for broz, densi, weight, adiposi, and biceps; (b) parallelcoords plot for X, by age>55.



Parallel Coordinates Plots. In a parallel coordinates plot, the components of the data are plotted on uniformly spaced vertical lines called component axes. A p-dimensional data vector is represented as a broken line connecting a set of points, one on each component axis. Data represented as lines create readily perceived structures. A command for parallel coordinates plot parallelcoords is given below with the output shown in Figure 2.16b.

[image: image]
Figure 2.17a shows parallel coords for the groups age > 55 and age <=55 with 0.25 and 0.75 quantiles.

[image: image]

[image: Graph shows X with quantiles from broz to biceps versus coordinate value from minus 1.5 to 1.5, and graph shows andrewsplot on t from 0 to 1 versus f (t) from minus 15 to 15 with plots for 0 and 1.]

Fig. 2.17 (a) X by age>55 with quantiles; (b) andrewsplot for X by age>55.



Andrews’ Plots. An Andrews plot (Andrews, 1972) is a graphical representation that utilizes Fourier series to visualize multivariate data. With an observation (X1, …, Xp), one associates the function



[image: numbered Display Equation]
where t ranges from −1 to 1. One Andrews’ curve is generated for each multivariate datum - a row of the data matrix. Andrews’ curves preserve the distances between observations. Observations close in the Euclidian distance sense are represented by close Andrews’ curves. Hence, it is easy to determine which observations (i.e., rows when multivariate data are represented as a matrix) are most alike by using these curves. Due to the definition, this representation is not robust with respect to the permutation of coordinates. The first few variables tend to dominate, so it is a good idea when using Andrews’ plots to put the most important variables first. Some analysts recommend running a principal components analysis first, then generating Andrews’ curves for principal components.

An example of Andrews’ plots is given in the code below with the output in Figure 2.17b.

[image: image]
Star Plots. The star plot is one of the earliest multivariate visualization objects. Its rudiments can be found in the literature from the early nineteenth century. Similar plots (rose diagrams) are used in Florence Nightingale's Notes on Matters Affecting the Health, Efficiency and Hospital Administration of the British Army (Nightingale, 1858).

The star glyph consists of a number of spokes (rays) emanating from the center of the star plot and connected at the ends. The number of spokes in the star plot is equal to the number of variables (components) in the corresponding multivariate datum. The length of each spoke is proportional to the magnitude of the component it represents. The angle between two neighboring spokes is 2π/p, where p is the number of components. The star glyph connects the ends of the spokes.

An example of the use of star plots is given in the code below with the output in Figure 2.18a.

[image: image]

[image: Diagram shows X’s star plots with labels for 78, 79, 84, 85, 87, 246, 247, 248, et cetera, and diagram shows X’s Chernoff faces plot with labels for 6, 12, 96, 109, 140, 145, 156, 192, and 194.]

Figure 2.18 (a) Star plots for X; (b) Chernoff faces plot for X.



Chernoff Faces. People grow up continuously studying faces. Minute and barely measurable differences are easily detected and linked to a vast catalog stored in memory. The human mind subconsciously operates as a super computer, filtering out insignificant phenomena and focusing on the potentially important. Such mundane characters as :), :(, :O, and >:p are readily linked in our minds to joy, dissatisfaction, shock, or affection.

Face representation is an interesting approach to taking a first look at multivariate data and is effective in revealing complex relations that are not visible in simple displays that use the magnitudes of components. It can be used to aid in cluster analysis and discrimination analysis and to detect substantial changes in time series.

Each variable in a multivariate datum is connected to a feature of a face. The variable-feature links in MATLAB are as follows: variable 1 – size of face; variable 2 – forehead/jaw relative arc length; variable 3 – shape of forehead; variable 4 – shape of jaw; variable 5 – width between eyes; variable 6 – vertical position of eyes; variables 7–13 – features connected with location, separation, angle, shape, and width of eyes and eyebrows; and so on. An example of the use of Chernoff faces is given in the code below with the output in Figure 2.18b.

[image: image]


2.11 Observations as Time Series

Observations that have a time index, that is, if they are taken at equally spaced instances in time, are called time series. EKG and EEG signals, high-frequency bioresponses, sound signals, economic indexes, and astronomic and geophysical measurements are all examples of time series. The following example illustrates a time series.

Example 2.8. Blowflies Time Series. The data set  blowflies.dat consists of the total number of blowflies (Lucilia cuprina) in a population under controlled laboratory conditions. The data represent counts for every other day. The developmental delay (from egg to adult) is between 14 and 15 days for insects under the conditions employed. Nicholson (1954) made 361 bi-daily recordings over a 2-year period (722 days), see Figure 2.19a.



[image: Graph shows blowfly population on days from 100 to 700 versus numbers from 2000 to 14000, and graph shows autocorrelation function on lag from 0 to 25 versus autocorrelation from minus 0.2 to 0.8.]

Fig. 2.19 (a) Bi-daily measures of size of the blowfly population over a 722-day period, (b) The autocorrelation function of the time series. Note the peak at lag 19 corresponds to the periodicity of 38 days.



In addition to analyzing basic location, spread, and graphical summaries, we are also interested in evaluating the degree of autocorrelation in time series. Autocorrelation measures the level of correlation of the time series with a time-shifted version of itself. For example, autocorrelation at lag 2 would be a correlation between X1, X2, X3, …, Xn−3, Xn−2 and X3, X4,…, Xn−1, Xn. When the shift (lag) is 0, the autocorrelation is just a correlation. The concept of autocorrelation is introduced next, and then the autocorrelation is calculated for the blowflies data.

Let X1, X2,…, Xn be a sample where the order of observations is important. The indices 1,2, …, n may correspond to measurements taken at time points t,t + Δt,t + 2Δt, … ,t + (n − 1) Δt, for some start time t and time increments Δt. The autocovariance at lag 0 ≤ k ≤ n − 1 is defined as



[image: numbered Display Equation]



Note that the sum is normalized by a factor [image: ] and not by [image: ], as one may expect.

The autocorrelation is defined as normalized autocovariance,



[image: numbered Display Equation]



Autocorrelation is a measure of self-affinity of the time series with its own shifts and is an important summary statistic. MATLAB has the built-in functions autocov and autocorr. The followin gtwofunc tion sare simplified versions illustrating how the autocovariances and autocorrelations are calculated:

[image: image]
Figure 2.19a shows the time series illustrating the size of the population of blowflies over 722 days. Note the periodicity in the time series. In the autocorrelation plot (Fig. 2.19b) the peak at lag 19 corresponds to a time shift of 38 days. This indicates a periodicity with an approximate length of 38 days in the dynamic of this population. A more precise assessment of the periodicity and related inference can be done in the frequency domain of a time series, but this theory is beyond the scope of this course. Good follow-up references are Brillinger (2001), Brockwell and Davis (2009), and Shumway and Stoffer (2005). Also, see Exercises 2.30 and 2.31.


2.12 About Data Types

The cell data elaborated in this chapter are numerical. When measurements are involved, the observations are typically numerical. Other types of data encountered in statistical analysis are categorical. Stevens (1946), who was influenced by his background in psychology, classified data as nominal, ordinal, interval, and ratio. This typology is loosely accepted in other scientific circles. However, there are vibrant and ongoing discussions and disagreements (e.g., Veleman and Wilkinson, 1993). Nominal data, such as race, gender, political affiliation, and names, cannot be sensibly ordered. For example, the counties in northern Georgia, Cherokee, Clayton, Cobb, DeCalb, Douglas, Fulton, and Gwinnett, cannot be ordered, though there is a nonessential alphabetical order of their names. Of course, numerical attributes of these counties, such as size, area, and revenue, can be ordered.

Ordinal data could be ordered and sometimes assigned numbers that do not convey their relative standing. For example, data on the five-point Lik-ert scale have five levels of agreement: (1) Strongly Disagree, (2) Disagree, (3) Neutral, (4) Agree, and (5) Strongly Agree; the numbers 1 to 5 are assigned to the degree of agreement and have no quantitative meaning. The difference between Agree and Neutral is not equal to the difference between Disagree and Strongly Disagree. Other examples are the attributes “Low” and “High” or student grades A, B, C, D, and F. It is an error to treat ordinal data as numerical. Unfortunately this is a common practice (e.g., GPA). Sometimes T-shirt-size attributes, such as “small,” “medium,” “large,” and “X-large,” may falsely enter the model as if they were measurements 1, 2, 3, and 4.

Nominal and ordinal data are examples of categorical data, since the values fall into categories.

Interval data refers to numerical data for which the differences can be well interpreted. However, for this type of data, the origin is not defined in a natural way, so the ratios would not make sense. Temperature is a good example. We cannot say that a day in July with a temperature of 100°F is twice as hot as a day in November with a temperature of 50°F. Test scores are another example of interval data as a student who scores 100 on a midterm may not be twice as good as a student who scores 50.

Ratio data are at the highest level; these are usually standard numerical values for which ratios make sense and the origin is absolute. Length, weight, and age are all examples of ratio data.

Interval and ratio data are examples of numerical data.

MATLAB provides a way to keep such heterogeneous data in a single structure array with a syntax resembling C language.

Structures are arrays comprised of structure elements and are accessed by named fields. The fields (data containers) can contain any type of data. Storage in the structure is allocated dynamically. The general syntax for a structure format in MATLAB is structurename(recordnumber).fieldname=data

For example,

[image: image]

2.13 Big Data Paradigm

The phrase Big Data usually refers to massive, heterogeneous, longitudinal, complex, and/or distributed data sets generated by devices, sensors, scanners, Internet, or other sources of digital information.

The bioengineering research community is undergoing a profound transformation with the use of large-scale and diverse data sets that allow for data-guided decision-making. New statistical models, prediction procedures, and multiscale domains for data analysis are enabling this paradigm shift in biomedical research.

In simplistic terms, Big Data initiative aims to accelerate the progress of scientific discovery and innovation. Under the umbrella of Big Data new fields of inquiry that would not otherwise be possible to discover can be formulated, analyzed, and utilized. The development of new data analytic tools would lead to more efficient and less expensive healthcare. In addition, it would lead to increased quality of life by enabling breakthrough discoveries and innovations in health and medical sciences. Big Data provides a platform to support cross-disciplinary collaborations necessary to make advances in complex grand challenges in bioengineering.

In data science, the term meta analysis describes the methodology that puts together isolated studies in order to improve overall inferential power. In a simplified way the Big Data paradigm can be thought as meta-analytic approach to fusion of distributed and massive data sets. Typically, for a data to be classified as “big,” the conditions from popular “Four Vee” definition need to be satisfied: volume, velocity, variety, and veracity.

Volume. The data is massive, often measured in tera-, peta-, even exa-byte units. A commonsense understanding is that if storage and manipulation of data are not routine due to their size, such data can be classified as massive. Size of data needs to be understood in relative terms, since for some complex inferential models, even moderate-sized data sets are “big.” So in addition to their sheer volume posing storage and handling challenges, the data become big when the scalability of methodologies traditionally used for their processing breaks.

Velocity. Speed at which the data is created, recorded, stored, transmitted, and analyzed is data's Velocity. The speed at which data is created and processed nowadays is unimaginable. For example, every minute millions of email and Google quarries are conducted. Unlike the batch-processing approach, where data are static and processed in batches, in the Big Data era, information needs to be stored and analyzed dynamically, that is in real time or near real time.

Variety. In addition to classical text book data-type classes such as numeric, ordinal, nominal, etc., Big Data encompasses a range of heterogenous formats and structures. In fact, most of the data obtained today is nontra-ditional, unstructured, and distributed (video clips, images, data generated by biomedical devices, sensory data, incomplete data, preferences and sentiments, satellite data, click streams, etc). Such a variety of types and sources poses new challenges for data analysis and fusion. The concept of variability often attributed to Big Data differs form the concept of variety. It represents the a degree of variability for a repeated single attribute.

Veracity. Increasing the volume, speed, and variety of data is worthless if data are incorrect or irrelevant. Biased data can cause a lot of problems in decision making. Therefore, it is important to have safeguards for data quality, to eliminate or minimize the human-error factors, and to have robust data analytic procedures that are less sensitive to variation form the postulated data models.

Although this text is not about Big Data methodology, the concepts and procedures covered in this and subsequent chapters are critical for understanding and utilizing the Big Data. Many of the procedures covered here are directly scalable to massive data sets; however, most are prohibitively computationally expensive and require the interplay of statistics, computer science, and problem content science, to be tackled. To this end, this book may provide the first inferential step.


2.14 Exercises



	

Auditory Cortex Spikes. This data set comes from experiments in the lab of Dr. Robert Liu of Emory University 4 and concerns single-unit elec-trophysiological recordings in the auditory cortex of nonanesthetized female mice. The motivating question is the exploration of auditory neural differences between female parents and female virgins and their relationship to cortical response.

Researchers in Liu's lab developed a restrained awake setup to collect single neuron activity from both female types. Multiple trials are performed on the neurons from one maternal and one naïve animal. The recordings are made from a region in the auditory cortex of the mouse with a single tungsten electrode. A sound stimulus is presented at a time of 200 ms during each sweep (time shown is 0-611 and 200 is the point at which a stimulus is presented). Each sweep is 611ms long and the duration of the stimulus tone is 10 to 70 ms. The firing times for maternal and naïve mice are provided in the data set  spikes.dat, in columns 2 and 3. Column 1 is the numbering from 1 to 611.


	Using MATLAB's diff command, find the inter-firing times. Plot a histogram for both sets of inter-firing times. Use biplot.m to plot the histograms back to back.

	For inter-firing times in the maternal mouse's response find descriptive statistics similar to those in the cell area example.






	

On Average. It is an anecdotal truth that an average Australian has less than two legs! Because some Australians have lost their leg(s), the number of legs is less than twice the number of people.

Here is the exercise in which several averages are calculated and compared.. A small company reports the following salaries: 4 employees at 20K, 3 employees at 30K, the vice-president at 200K, and the president at 400K. Calculate the arithmetic mean, geometric mean, median, harmonic mean, and mode. If the company is now hiring, would an advertising strategy in which the mean salary is quoted be fair? If not, suggest an alternative.




	

Contraharmonic Mean and f-Mean. The contraharmonic mean for X1, X2,…, Xn is defined as



[image: numbered Display Equation]



	Show that C(X1, X2) is twice the sample mean minus the harmonic mean of X1, X2.

	Show that C(x,x,x, …, x) = x.
The generalized f-mean of X1, …, Xn is defined as



[image: numbered Display Equation]







where f is suitably chosen such that f(Xi) and f−1 are well defined.


	Show that [image: ], log x gives the mean, harmonic mean, power k mean, and geometric mean.






	

Mushrooms. The unhappy outcome of uninformed mushroom picking is poisoning. In many such cases, the poisoning is due to ignorance or a superficial approach to identification. The most dangerous fungi are Death Cap (Amanita phalloides) and two species akin to it, A. verna and Destroying Angel (A. virosa). These three toadstools cause the majority of fatal poisoning.

One of the keys to mushroom identification is the spore deposit. Spores of Amanita phalloides
are colorless, nearly spherical, and smooth. Measurements in microns of 28 spores are given below:





	9.2
	8.8
	9.1
	10.1
	8.5
	8.4
	9.3



	8.7
	9.7
	9.9
	8.4
	8.6
	8.0
	9.5



	8.8
	8.1
	8.3
	9.0
	8.2
	8.6
	9.0



	8.7
	9.1
	9.2
	7.9
	8.6
	9.0
	9.1








	Find the five-number summary (Min, Q1, Me, Q3, Max) for the spore measurement data.

	Find the mean and the mode.

	Find and plot the histogram of z-scores, [image: ].






	

Manipulations with Sums. Prove the following algebraic identities involving sums, which are useful in demonstrating properties of some sample summaries:





	(a) [image: ]



	(b) If [image: ]



	(c) If y1 = c · x1, y2 = c · x2, …, yn = c · xn, then [image: ]



	(d) If [image: ] then [image: ]



	(e) [image: ]



	(f) [image: ]



	(g) [image: ]



	(h) For any constant a, [image: ]









	

Emergency Calculation. Graduate student Rosa Juliusdottir reported the results of an experiment to her advisor who wanted to include these results in his grant proposal. Before leaving to Reykjavik for a short vacation, she left the following data in her advisor's mailbox: sample size n = 12, sample mean [image: ], and sample variance s2 = 34.

The advisor noted with horror that the last measurement X12was wrongly recorded. It should have been 16 instead of 4. It would be easy to fix [image: ] and s2, but the advisor did not have the previous 11 measurements nor the statistics training necessary to make the correction. Rosa was in Iceland, and the grant proposal was due the next day. The advisor was desperate, but luckily you came along. Can you update [image: ] and s2?




	

Sample Mean and Standard Deviation after a Change. It is known that [image: ], sy = 4.4045, and n = 15. The observation y12 = 7 is removed and observation y13 was misreported; it was not 10, but 20. Find [image: ]and sy(new) after the changes.




	

Aspirin Weights. Stoodley (1984) provides 100 weights of aspirin tablets determined using a laboratory balance and rounded to the nearest mg. The data in  aspirin.dat are given as a simple sample.


	Form a composite sample using frequencies of the measurements.

	From the composite sample find location and spread measures, skewness, and kurtosis.






	

Surveys on Different Scales. We are interested in determining whether UK voters (whose parties have somewhat more distinct policy positions than those in the United States) have a wider variation in their evaluations of the parties than US voters. The problem is that the British election survey takes evaluations scored 0-10, whereas the US National Election Survey gets evaluations scored 0-100. Here are two surveys:





	UK
	6
	7
	5
	10
	3
	9
	9
	6
	8
	2
	7
	5



	US
	67
	65
	95
	86
	44
	100
	85
	92
	91
	65
	
	






Using CV, compare the degree of variation without worrying about the different scales.




	

Merging Two Samples. Suppose that [image: ]and s2X are the mean and variance of the sample X1,…, Xm and [image: ] and s2Y of the sample Y1,…, Yn. If the two samples are merged into a single sample, show that its mean and variance are



[image: numbered Display Equation]






	

Fitting the Histogram. The following is a demonstration of MATLAB's built-in function histfit on a simulated data set:

[image: image]
The function histfit plots the histogram of data and overlays it with the best-fitting Gaussian curve. As an exercise, take Brozek index broz from the data set  fat.dat (second column) and apply the histfit command. Comment on how the Gaussian curve fits the histogram.




	

Orientation of Stem Cells. Human mesenchymal stem cells were seeded into synthetic poly(ethylene glycol)-based hydrogels. Two types of hydrogels were used - one hydrogel type that would degrade slowly and one hydrogel type that would degrade quickly. Then, hydrogels were stretched repeatedly in a single direction. Cells in slow-degrading gels would be limited in changing their orientation, while cells in fast-degrading gels would be much more able to change their orientation. It was hypothesized that cells in fast-degrading gels would reorient in the direction of strain after 14 days of culture.

To measure orientation, pictures of gels were taken using a confocal microscope and calcein staining of cells. The data provided (courtesy of Dr. Peter Young from Temenoff Lab at Georgia Tech) describe the distribution of particle orientation angles of the longer axis of the ellipse relative to the positive direction of the x-axis. This angle is measured in absolute value and ranges between 0 and 90 degrees.

The data set
 gel.mat
reads in as a structure gel, where the fields gel.static14
are angles for slow degrading gel, and gel.dynamic14
are angles for fast degrading gel.

For both static and dynamic data


	Plot histograms with 30 bins. Use back-to-back histogram code bihist.m.

	Plot box-and-whiskers summaries of the samples.

	Calculate location measures (mean, median, mode, 20% trimmed mean, 20% winsorized mean).

	Calculate measures of spread (variance, standard deviation, real-MAD).

	Find skewness and kurtosis.

	Find 20th percentile or 0.2-quantile of the sample.



Organize all tasks in a single m-file. MATLAB-publish the file as PDF report.




	

QT Syndrome. The QT interval is a time interval between the start of the Q wave and the end of the T wave in a heart's electrical cycle (Fig. 2.20). It measures the time required for depolarization and repolarization to occur. In a long QT syndrome, the duration of repolarization is longer than normal, which results in an extended QT interval. An interval above 440 ms is considered prolonged. Although the mechanical function of the heart could be normal, the electrical defects predispose affected subjects to arrhythmia, which may lead to sudden loss of consciousness (syncope) and, in some cases, to a sudden cardiac death.

The data set  QT.dat|mat was compiled by Christov et al. (2006) and is described in http://www.biomedical-engineering-online.com/content/5/1/31. It provides 548 QT times taken from 293 subjects. The subjects include healthy controls (about 20%) and patients with various diagnoses, such as myocardial infarction, cardiomyopathy/heart failure, bundle branch block, dysrhythmia, and myocardial hypertrophy. Prolonged QT (> 440 ms) is a risk factor for abnormality of heart's electric system. The Q-onsets and T-wave ends are evaluated by five independent experts, and medians of their estimates are used in calculations o f the QT for a subject.

Plot the histogram of this data set and argue that the data are reason-ably “bell-shaped.” Find the location (mean, median, mode) and spread measures (s2, MAD, iqr) of the sample. What proportion of this sample has prolonged QT?


[image: Graph shows ECG plot with QT time between bars from 0 to 0.8 versus from minus 0.4 to 0.8 with plot for QT.]

Fig. 2.20 Schematic plot of ECG, with QT time between the red bars.






	

Simpson's Diversity Index. An alternative diversity measure to Shannon's in (2.1) is the Simpson diversity index defined as



[image: numbered Display Equation]



This measure achieves its maximum k when all frequencies are equal; thus Simpson's homogeneity (equitability) index is defined as ED = D/k. Repeat the calculations from Example 2.3 with Simpson's diversity and homogeneity indexes in place of Shannon's. Is the Brazilian sample still the most homogeneous, as it was according to Shannon's EH index?




	

Speed of Light. Light travels very fast. It takes about 8 minutes to reach Earth from the Sun and over 4 years to reach Earth from the closest star outside the solar system. Radio and radar waves also travel at the speed of light, and an accurate value of that speed is important to communicate with astronauts and orbiting satellites. Because of the nature of light, it is very hard to measure its speed. The first reasonably accurate measurements of the speed of light were made by A. Michelson and S. Newcomb. The table below contains 66 transformed measurements made by Newcomb between July and September 1882. Entry 28, for instance, corresponds to the actual measurement of 0.000024828 seconds. This was the amount of time needed for light to travel approximately 4.65 miles.





	28
	22
	36
	26
	28
	28
	26
	24
	32
	30
	27



	24
	33
	21
	36
	32
	31
	25
	24
	25
	28
	36



	27
	32
	34
	30
	25
	26
	26
	25
	−44
	23
	21



	30
	33
	29
	27
	29
	28
	22
	26
	27
	16
	31



	29
	36
	32
	28
	40
	19
	37
	23
	32
	29
	−2



	24
	25
	27
	24
	16
	29
	20
	28
	27
	39
	23






You can download  light.data|mat and read it in MATLAB.

If we agree that outlier measurements are outside the interval [Q1 − 2.5 IQR, Q3 + 2.5 IQR], what observations qualify as outliers? Make the data “clean” by excluding outlier(s). For the cleaned data, find the mean, 20% trimmed mean, real MAD, std, and variance.

Plot the histogram and kernel density estimator for an appropriately selected bandwidth.




	

Spatial Distribution of Weed. Collecting exact counts of weed in an agricultural field is trivial but extremely time-consuming task. Instead, image analysis algorithms for object extraction applied to pictures of agricultural fields are used to estimate the weed content. High resolution (about 1 m2), pictures that are acquired at a large number of sites can be used to obtain maps of weed content over a whole field at a reasonably low cost. However, these image-based estimates are not perfect, and acquiring exact weed counts is in fact highly useful both for assessing the accuracy of the image-based algorithms and for improving the estimates by use of the combined data.

The data file  weed.dat|xlsx|mat has 100 rows, where each row consists of two spatial coordinates, exact weed counts, and image estimate of weed counts.


	Using function bihist.m plot back-to-back histograms of exact and image counts.

	Find correlation between the two types of counts.

	Using MATLAB's scatter, plot a scatterplot of circles with centers at location coordinates, of size proportional to the exact count, and with color mapped to the difference between exact and image counts. Consult the help for scatter.






	

AFM. The AFM is a type of scanned probe microscopy (SPM) that can measure the adhesion strength between two materials at the nanonewton scale. In AFM, a cantilever beam is adjusted until it bonds with the surface of a sample, and then the force required to separate the beam and sample is measured from the beam deflection. Beam vibration can be caused by factors such as thermal energy of the surrounding air or the footsteps of someone outside the laboratory. The vibration of a beam acts as noise on the deflection signal.

The AFM data from the adhesion measurements between carbohydrate and the cell adhesion molecule (CAM) E-Selectin was collected by Bryan Marshal at Georgia Institute of Technology. The technical description is provided in Marshall et al. (2003)


	Read data set  afm.dat into MATLAB. The array has 3000 measurements. Form data vector force by taking measurements with index greater or equal to 335, (force=afm(335:3000);), thus avoiding the “ramp” artifact, Figure 2.21.

	For vector force find mean, standard deviation, median, IQR, 0.95-quantile, skewness, and kurtosis.

	To visually check for normality of force, find qqplot. Is it linear?

	Use function acorr to find autocorrelations up to 20 lags to check whether the observations are autocorrelated. Plot the autocorrelations by MATLAB's stem plot. The autocorrelation at lag 0 is always 1, but what about other lags?




[image: Graph shows measurements of AFM on time from 0 to 3000 versus force from minus 0.02 to 0.1.]

Fig. 2.21 The AFM measurements.






	

Limestone Formations in Jamaica. This data set contains 18 observations of nummulite specimens from the Eocene yellow limestone formation in northwestern Jamaica ( limestone.dat). The use of faces to represent points in k-dimensional space graphically was originally illustrated on this data set (Chernoff, 1973). Represent this data set graphically using Chernoff faces.





	ID
	Z1
	Z2
	Z3
	Z4
	Z5
	Z6
	ID
	Z1
	Z2
	Z3
	Z4
	Z5
	Z6



	1

	160

	51

	10

	28

	70

	450

	45

	195

	32

	9

	19

	110

	1010




	2

	155

	52

	8

	27

	85

	400

	46

	220

	33

	10

	24

	95

	1205




	3

	141

	49

	11

	25

	72

	380

	81

	55

	50

	10

	27

	128

	205




	4

	130

	50

	10

	26

	75

	560

	82

	70

	53

	7

	28

	118

	204




	6

	135

	50

	12

	27

	88

	570

	83

	85

	49

	11

	19

	117

	206




	41

	85

	55

	13

	33

	81

	355

	84

	115

	50

	10

	21

	112

	198




	42

	200

	34

	10

	24

	98

	1210

	85

	110

	57

	9

	26

	125

	230




	43

	260

	31

	8

	21

	110

	1220

	86

	95

	48

	8

	27

	114

	228




	44

	195

	30

	9

	20

	105

	1130

	87

	95

	49

	8

	29

	118

	240










	

Duchenne Muscular Dystrophy. Duchenne muscular dystrophy (DMD), or Meryon's disease, is a genetically transmitted disease, passed from a mother to her children (Fig. 2.22). Affected female offspring usually suffer no apparent symptoms and may unknowingly carry the disease. Male offspring with the disease die at a young age. Not all cases of the disease come from an affected mother. A fraction, perhaps one-third, of the cases arise spontaneously, to be genetically transmitted by an affected female. This is the most widely held view at present. The incidence of DMD is about 1 in 10,000 male births. The population risk (prevalence) that a woman is a DMD carrier is about 3 in 10,000.


[image: Diagram shows carrier’s each son has 50 percent chance of having DMD and each daughter has same chance of being carrier with markings for defective gene on X-chromosome and normal X-chromosome.]

Fig. 2.22 Each son of a carrier has a 50% chance of having DMD and each daughter has a 50% chance of being a carrier.



Download data set  dmd.dat|mat|xls from the text page. This data set is modified data from Percy et al. (1981) (entries containing missing values excluded). It consists of 194 observations corresponding to blood samples collected in a project to develop a screening program for female relatives of boys with DMD. The program was implemented in Canada, and its goal was to inform a woman of her chances of being a carrier based on serum markers as well as her family pedigree. Another question of interest was whether age should be taken into account. Enzyme levels were measured in known carriers (67 samples) and in a group of noncarriers (127 samples).

The first two serum markers, creatine kinase and hemopexin (ck, h), are inexpensive to obtain, while the last two, pyruvate kinase and lactate dehydroginase (pk, ld), are expensive. The variables (columns) in the data set are:





	Column
	Variable
	Description



	1
	age
	Age of a woman in the study



	2
	ck
	Creatine kinase level



	3
	h
	Hemopexin



	4
	pk
	Pyruvate kinase



	5
	ld
	Lactate dehydroginase



	6
	carrier
	Indicator if a woman is a DMD carrier







	Find the mean, median, standard deviation, and real MAD of pyruvate kinase level, pk, for all cases (carrier=1).

	Find the mean, median, standard deviation, and real MAD of pyruvate kinase level, pk, for all controls (carrier=0).

	Find the correlation between variables pk and carrier.

	Use MATLAB's gplotmatrix to visualize pairwise dependencies between the six variables.

	Plot the histogram with 30 bins and smoothed normalized histogram (density estimator) for pk. Use ksdensity.





	

Ashton's Dental Data. The evolutionary status of fossils (Australopithecinae, Proconsul, etc.) stimulated considerable discussion in the 1950s. Particular attention was paid to the teeth of the fossils, comparing their overall dimensions with those of human beings and of the extant great apes. As “controls,” measurements were taken on the teeth of three types of the modern man (British, West African native, Australian aboriginal) and of the three living great apes (gorilla, orangutan, and chimpanzee).

The data in the table below are taken from Ashton et al. (1957, p. 565), who used 2D projections to compare the measurements. Andrews (1972) used an excerpt of these data to illustrate his methodology. The values in the table are not the original measurements, but the first eight canonical variables produced from the data in order to maximize the sum of distances between different pairs of populations.





	A. West African
	−8.09

	0.49

	0.18

	0.75

	−0.06

	−0.04

	0.04

	0.03




	B. British
	−9.37

	−0.68

	−0.44

	−0.37

	0.37

	0.02

	−0.01

	0.05




	C. Au. aboriginal
	−8.87

	1.44

	0.36

	−0.34

	−0.29

	−0.02

	−0.01

	−0.05




	D. Gorilla: male
	6.28

	2.89

	0.43

	−0.03

	0.10

	−0.14

	0.07

	0.08




	E. Female
	4.82

	1.52

	0.71

	−0.06

	0.25

	0.15

	−0.07

	−0.10




	F. Orangutan: Male
	5.11

	1.61

	−0.72

	0.04

	−0.17

	0.13

	0.03

	0.05




	G. Female
	3.60

	0.28

	−1.05

	0.01

	−0.03

	−0.11

	−0.11

	−0.08




	H. Chimpanzee: male
	3.46

	−3.37

	0.33

	−0.32

	−0.19

	−0.04

	0.09

	0.09




	I. Female
	3.05

	−4.21

	0.17

	0.28

	0.04

	0.02

	−0.06

	−0.06




	J. Pithecanthropus
	−6.73

	3.63

	1.14

	2.11

	−1.90

	0.24

	1.23

	−0.55




	K. pekinensis
	−5.90

	3.95

	0.89

	1.58

	−1.56

	1.10

	1.53

	0.58




	L. Paranthropus robustus
	−7.56

	6.34

	1.66

	0.10

	−2.23

	−1.01

	0.68

	−0.23




	M. Paranthropus crassidens
	−7.79

	4.33

	1.42

	0.01

	−1.80

	−0.25

	0.04

	−0.87




	N. Meganthropus paleojavanicus
	−8.23

	5.03

	1.13

	−0.02

	−1.41

	−0.13

	−0.28

	−0.13




	O. Proconsul africanus
	1.86

	−4.28

	−2.14

	−1.73

	2.06

	1.80

	2.61

	2.48







Andrews (1972) plotted curves over the range −π < t < π and concluded that the graphs clearly distinguished humans, the gorillas and orangutans, the chimpanzees, and the fossils. Andrews noted, for example, that the curve for the fossil Proconsul africanus corresponds to a plot inconsistent with that of all other fossils as well as those of humans and apes.

Graphically present this data using (a) star plots, (b) Andrews plots, and (c) Chernoff faces.




	

Andrews Plots of Iris Data. Fisher iris data are 4D, and Andrews plots can be used to explore clustering of the three species (Setosa, Versicolor, and Virginica). Discuss the output from the code below:


[image: image]

What species clearly separate? What species are more difficult to separate?




	

Leptoconops - Biting Flies. Atchley (1974) collected morphological characteristics of two species of biting flies Leptoconops torrens and Leptoconops carteri. They are morphologically so similar that for many years they have been considered to be the same species.

The data set, as reported by Johnson and Whichern (1988), contains 35 multivariate observations of each species. An observation is composed of 7 dependent taxonomic responses: wing length, wing width, third palp length, third palp width, fourth palp length, length of antennal segment 12, and length of antennal segment 14.

This data set is given as a structure field leptoconops.morpho in MATLAB's structure file  leptoconops.mat. The field leptoconops.names contains names of seven recorded morphological measures: winglen, wingwid, papl3len, palp3wid, palp4len, ant12len, and ant14len. The two species are identified in the field leptoconops.spec where 0’s correspond to L.torrens and 1’s to L.carteri.


	Find the sample means and covariance matrices for L.torrens and Lxarteri.

	Using MATLAB's built-in command gplotmatrix create a matrix of scatter plots where each figure (i,j) contains a scatter plot of a column i against a column j of leptoconops.morpho. The plots should use markers defined by the grouping variable leptoconops.spec.

	Explore whether it is possible to visually delimit 2 phenetic clusters within the torrens-carteri complex?

	Experiment with MATLAB's graphical tools imagesc, parallelcoords, andrewsplot, glyphplot with options star and face. Submit only your recommended method with discussion (an open-ended question). Check the MATLAB Help for the syntax options for the commands above.






	

Cork Boring Data. Cork is the bark of the cork oak (Quercus suber L), a noble tree with very special characteristics that grows in the Mediter ranean. This natural tissue has unique qualities: light weight, elasticity insulation and impermeability fire retardancy, resistance to abrasion, etc. The data measuring cork boring of trees given in Rao (1948) consist of the weights (in centigrams) of cork boring in four directions (north, east, south, and west) for 28 trees. Data given in Table 2.2 can also be found in  cork.dat|mat.


	Graphically display the data as a data plot, pairwise scatterplots, an Andrews plot, and Chernoff faces.

	Find the mean [image: ] and covariance matrix S for this data set. Find the trace and determinant of S.

	Find the Mahalanobis transformation for these data. Check that the covariance matrix for the transformed data is the identity matrix.





Table 2.2 Rao's cork data. Weights of cork boring in four directions (north, east, south, west) for 28 trees.





	Tree
	N
	E
	S
	W
	Tree
	N
	E
	S
	W



	1

	72
	66
	76
	77
	15

	91
	79
	100
	75



	2

	60
	53
	66
	63
	16

	56
	68
	47
	50



	3

	56
	57
	64
	58
	17

	79
	65
	70
	61



	4

	41
	29
	36
	38
	18

	81
	80
	68
	58



	5

	32
	32
	35
	36
	19

	78
	55
	67
	60



	6

	30
	35
	34
	26
	20

	46
	38
	37
	38



	7

	39
	39
	31
	27
	21

	39
	35
	34
	37



	8

	42
	43
	31
	25
	22

	32
	30
	30
	32



	9

	37
	40
	31
	25
	23

	60
	50
	67
	54



	10

	33
	29
	27
	36
	24

	35
	37
	48
	39



	11

	32
	30
	34
	28
	25

	39
	36
	39
	31



	12

	63
	45
	74
	63
	26

	50
	34
	37
	40



	13

	54
	46
	60
	52
	27

	43
	37
	39
	50



	14

	47
	51
	52
	43
	28

	48
	54
	57
	43









	

Balance. When a human experiences a balance disturbance, muscles throughout the body are activated in a coordinated fashion to maintain an upright stance. Researchers at Lena Ting Laboratory for Neuroengineering at Georgia Tech are interested in uncovering the sensori-motor mechanisms responsible for coordinating this automatic postural response (APR). Their approach was to perturb the balance of a human subject standing upon a customized perturbation platform that translates in the horizontal plane.

Platform motion characteristics spanned a range of peak velocities (5 cm/s steps between 25 and 40 cm/s) and accelerations (0.1 g steps between 0.2 and 0.4 g). Five replicates of each perturbation type were collected during the experimental sessions. Surface electromyogram (EMG) signals, which indicate the level of muscle activation, were collected at 1080 Hz from 11 muscles in the legs and trunk.

The data in  balance2.mat are processed EMG responses to backward-directed perturbations in the medial gastrocnemius muscle (an ankle plantar flexor located on the calf) for all experimental conditions. There is 1 s of data, beginning at platform motion onset. There are 5 replicates of length 1024, each collected at 12 experimental conditions (4 velocities crossed with 3 accelerations), so the data set is 3D, 1024 × 5 × 12.

For example, data(:,1, 4) is an array of 1024 observations corresponding to first replicate, under the fourth experimental condition (30 cm/s, 0.2 g).

Consider a fixed acceleration of 0.2g and only the first replicate. Form 1024 4D observations (velocities 25, 30, 35, and 40 as variables) as a data matrix. For the first 16 observations find multivariate graphical summaries using MATLAB's gplotmatrix, parallelcoords, andrewsplot, and glyphplot.




	

Cats. Cats are often used in studies about locomotion and injury recovery. In one such study, a bundle of nerves in a cat's legs were cut and then surgically repaired. This mimics the surgical correction of injury in people. The recovery process of these cats was then monitored. It was monitored quantitatively by walking a cat across a plank that has force plates, as well as by monitoring various markers inside the leg. These markers provided data for measures such as joint lengths and joint moments. A variety of data was collected from three different cats: Natasha, Riga, and Korina. Natasha (cat = 1) has 47 data entries, Riga (cat = 2) has 39 entries, and Korina (cat = 3) has 35 entries.

The measurements taken are the number of steps for each trial, the length of the stance phase (in milliseconds), the hip height (in meters), and the velocity (in meters/second). The researchers observe these variables for different reasons. They want uniformity both within and between samples (to prevent confounding variables) for steps and velocity. The hip height helps monitor the recovery process. A detailed description can be found in Farrell et al. (2009).

The data set, courtesy of Dr. Boris Prilutsky School of Applied Physiology at, Georgia Tech, is given as the MATLAB structure file  cats.mat. Form a data matrix X = [cat.nsteps cat.stancedur cat.hipheight cat.velocity cat.cat]; and find its mean and correlation matrix. Form matrix Z by standard izing the columns of X (use zscore). Plot the image of the standardized data matrix.




	

BUPA Liver Data. The BUPA liver disorders database (courtesy of Richard Forsyth, BUPA Medical Research Ltd.) consists of 345 records of male individuals. Each record has 7 attributes:





	Attribute
	Name
	Meaning



	1
	mcv
	Mean corpuscular volume



	2
	alkphos
	Alkaline phosphotase



	3
	sgpt
	Alamine aminotransferase



	4
	sgot
	Aspartate aminotransferase



	5
	gammagt
	Gamma-glutamyl transpeptidase



	6
	drinks
	Number of half-pint equivalents of alcoholic beverages drunk per day



	7
	selector
	Field to split the database






The first five variables are all blood tests that are thought to be sensitive to liver disorders that might arise from excessive alcohol consumption.

The variable selector was used to partition the data into two sets, very likely into a training and validation part.

Using gplotmatrix,explore the elationship among variable s1 through 6 (exclude the selector).




	

Triazines. A common step in pharmaceutical development is the formation of a quantitative structure-activity relationship (QSAR) to model an exploratory series of compounds. A QSAR generalizes how the structure (shape) of a compound relates to its biological activity. The data set  triazines.mat involves variables/attributes potentially important for the inhibition of ratlmouse tumor DHFR by triazines. This data set is fully explained in Hirst et al. (1994), but here is the basic summary: Number of instances: 186; Number of attributes: 60; Attribute names as in the table below; Number of responses: 1 (activity).

[image: image]
Read the data set into MATLAB. Form a vector activity from the 61st column. Transform this vector as y = activity.ˆ 3;



	For y, find descriptive statistics: sample mean and variance, median, interquartile range, 0.05- and 0.9-sample quantiles. Plot the histogram with 20 bins for y.

	Plot data matrix triazines(:,1:60) using command imagesc.

	Conduct principal component analysis on triazines(:,1:60). How much variability is contained in the first 5 principal components?

	Form vector x as the fourth coordinate of scores for triazines. Find the correlation between x and y.






	

Principal Components for BUPA Liver Data. The BUPA liver disorders database was discussed in Exercise 2.26.


	For the variables 1-6 conduct principal component analysis.

	What proportion of variance is contained in the first two principal components? Show the Pareto plot.

	Plot the scatterplot of scores for the first two principal components.






	

Cell Circularity Data. In the lab of Dr. Todd McDevitt at Georgia Tech, researchers wanted to elucidate differences between the “static” and “rotary” culture of embrionic bodies (EBs) that were formed under both conditions with equal starting cell densities. After 2, 4, and 7 days of culture, images of EBs were acquired using phase-contrast microscopy. Image analysis software was used to determine the circularity (defined as 4π(Area/Perimeter2)) of each EB imaged. A total of n = 325 EBs were analyzed from three separate plates for both static and rotary cultures at the three time points studied. The circularity measures were used to examine differences in the shape of EBs formed under the two conditions as well as differences in their variability.

The data set  circ.dat|mat consists of six columns corresponding to six treatments (2d, rotary), (4d, rotary), (7d, rotary), (2d, static), (4d, static), and (7d, static). Note that this is not an example of multivariate data since the columns are freely permutable, but rather six univariate data sets.


	For rotation and static 2d measurements, plot back-to-back histograms ( bihist.m) as well as boxplots.

	For static 7d measurements, graph by pie chart (pie) the proportion of EBs with circularity smaller than 0.75.






	

Blowfly Count Time Series. For the data in Example 2.8, it was postulated that a major transition in the dynamics of blowfly population size appeared to have occurred around day 400. This was attributed to biological evolution, and the whole series cannot be considered as representative of the same system. Divide the time series into two data segments with indices 1-200 and 201-361. Calculate and compare the autocorrelation functions for the two segments.




	

Canadian Lynx Time Series. The Canadian lynx data set is popular in time series modeling. The data set  lynx.mat|xlsx contains the annual record of the number of the Canadian lynx trapped in the Mackenzie River district of northwest Canada for the period 1821–1934.


	Plot this data. Find and plot autocorrelation function up to lag 40.

	Notice that autocorrelation function has local maximum every 9-10 years. What does this imply for the original time series?













MATLAB FILES AND DATA SETS USED IN THIS CHAPTER

http://statbook.gatech.edu/Ch2.Descriptive/

  acorr.m, acov.m, ashton.m, balances.m, balancespca.m, bat.m, bihist.m, biomed.m, blowfliesTS.m, BUPAliver.m, carea.m, cats.m, cats1.m, circular.m, corkrao.m, corkraopca.m, crouxrouss.m, crouxrouss2.m, diversity.m, ecg.m, empiricalcdf.m, fisher1.m, fisheriris.m, grubbs.m, hist2d.m, histn.m, lightrev.m, limestone.m, lynx.m, mahalanobis.m, meanvarchange.m, multifat.m, multifatstat.m, mushrooms.m, myquantile.m, mytrimmean.m, piecharts.m, scattercloud.m, simple2comp.m, smoothhist2D.m, spikes.m, surveysUKUS.m, wdbcpca.m, weed.m

 afm.dat|mat, amanita28.dat, ashton.dat, aspirin.dat, balance2.mat, bat.dat, blowflies.dat|mat, BUPA.dat|mat|xlsx, cats.mat, cellarea.dat|mat, circ.dat|mat, coburn.mat, cork.dat|mat, diabetes.xls, dmd.dat|mat|xls, fat.dat, leptoconops.mat|xlsx, light.dat, limestone.dat, lynx.mat|xlsx, QT.dat|mat, raman.dat|mat, spikes.dat, triazines.dat|mat|xlsx, tsdata.mat, wdbc.mat, weed.dat|mat|xlsx








Notes


1Latin: medianus = middle
2Mode (fr) = fashion
3The range is equipartitioned by a single median, two terciles, three quartiles, four quintiles, five sextiles, six septiles, seven octiles, eight naniles, or nine deciles.
4http://www.biology.emory.edu/research/Liu/index.html
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Chapter 3 
Probability, Conditional Probability, and Bayes’ Rule




Ultimately, in my extreme view, all reasoning reduces to probability calculations.

– Dennis Victor Lindley



 






WHAT IS COVERED IN THIS CHAPTER


	Events, Sample Spaces, and Classical Definition of Probability

	Probability of Unions and Intersections of Events

	Independence of Events and Conditional Probability

	Total Probability and Bayes’ Rule



[image: numbered Display Equation]








3.1 Introduction

If statistics can be defined as the science that studies uncertainty, then probability is the branch of mathematics that quantifies it. One's intuition of chance and probability develops at a very early age(Piaget and Inhelder, 1976). However, the formal, precise definition of probability is elusive. There are several competing definitions for the probability of an event,butthe most practical one usesits relative frequency in a potentially infinite series of experiments.

Probability is a part of all introductory statistics programs for a good reason: it is the theoretical foundation of statistics. The basic statistical concepts of random sample, sampling distributions, statistic, etc., require familiarity with probability to be understood, explained, and applied.

Probability is critical for the development of statistical concepts. Despite this fact, it will not be a focal point of this text. There is a dangerous temptation to dwell on urns,black and white balls, and combinatorics for solong that moreimportant statistical concepts such as regression or ANOVA, fall into a zeitnot (a term used in chess to describe the pressure felt from having little remaining time).

Many students taking a university-level introductory statistics course have already been exposed to probability and statistics in their previous education. With this in mind, we will use this chapter as a survey of probability using a range of examples. The more important concepts of independence, conditioning, and Bayes’ rule will be covered in more detail and repeatedly used later in various contexts. Ross (2009) is recommended for a review and comprehensive coverage.



3.2 Events and Probability

If an experiment has the potential to be repeated an infinite number of times, then the probability of an outcome can be defined through its relative frequency of appearing. For instance, if we rolled a die a number of times, we could construct a table showing how many times each face came up. These individual frequencies (ni) can be transformed into proportions or relative frequencies, by dividing them by the total number of tosses n: fi = ni/n. If we were to see the outcome [image: image] in 53 out of 300 tosses, then that face's proportion, or relative frequency, would be f6 = 53/300 = 0.1767. As more tosses are made, we would “expect” the proportion of [image: image] to stabilize around [image: ]. The “experiments” in the next example are often quoted in the literature on elementary probability.

Example 3.1 Famous Coin Tosses. Buffon tossed a coin 4,040 times. Heads appeared 2,048 times. K. Pearson tossed a coin 12,000 times and 24,000 times. The heads appeared 6,019 times and 12,012, respectively. For these three tosses the relative frequencies of heads are 2048/4040 ≈ 0.5049, 6019/12000 ≈ 0.5016, and 12012/24000 ≈ 0.5005.


What if the experiments cannot be repeated? For example, what is the probability that “Squiki” the guinea pig survives its first treatment by a particular drug? Or in the “experiment” of taking a statistics course this semester, what is the probability of getting an A? In such cases we can define probability subjectively as a measure of strength of belief. Here is another example.

Example 3.2 Tutubalin's Problem. In a desk drawer in the office of numismatist Mr. Jay Parrino there is a coin, a 1913 Liberty Head nickel, one of only five known. What is the probability that the coin is heads up? This is an example where equal levels of uncertainty for the two sides lead to the subjective answer of 1/2.


The symmetry of the experiment led to the classical definition of probability. An ideal die is symmetric. All sides are “equiprobable.” When rolling a fair die, the probability of outcome [image: image]
is a ratio of the number of favorable outcomes (in our example only one outcome is favorable) to the number of all possible outcomes, 1/6. 1

Among several possible ways to define probability, three are outlined below.






Frequentist. An event's probability is the proportion of times that we would expect the event to occur if the experiment were repeated a large number of times.

Subjectivist. A subjective probability is an individual's degree of belief in the occurrence of an event.

Classical. An event's probability is the ratio of the number of favorable outcomes to possible outcomes in a (symmetric) experiment.






A formal definition of probability is axiomatic (Kolmogorov, 1933) and is a special case of measure theory in mathematics.

The events that are assigned probabilities can be considered as sets of outcomes. Table 3.1 uses a rolling die experiment to introduce the set notation among events:



Table 3.1 Notation in a rolling die experiment.





	Term
	Description
	Example





	Experiment
	A phenomenon, action, or procedure where the outcomes are uncertain
	A single roll of a balanced sixsided die



	Sample space
	Set of all possible outcomes in an experiment
	S = {[image: image], [image: image], [image: image], [image: image], [image: image], [image: image]}



	Event
	A collection of outcomes; a subset of S
	A = {[image: image]} (3 dots show), B = {[image: image], [image: image], [image: image], [image: image]} (at least three dots show), C = {[image: image], [image: image]}



	Probability
	A number between 0 and 1 assigned to an event
	

[image: ]






To understand the probabilities in Table 3.1, consider a simple MATLAB code that will simulate rolling a fair die. A random number from (0, 1) is generated and multiplied by 6. This becomes a random number between 0 and 6. When this number is rounded up to the closest integer, the outcomes [image: image], [image: image], …, [image: image] are simulated. They are all equally likely. For example, the outcome [image: image] comes from the original number, which is in the range (3, 4), and this interval is one-sixth part of (0, 6). Formal justification of this fact requires the concept of uniform distribution, which will be covered in Chapter 5.

The MATLAB code [image: image] rollingdie1.m generates 50,000 outcomes and checks the proportion of those equal to 3, probA, those outcomes greater than or equal to 3, probB, and those smaller than 3, probC. The relative frequencies of these outcomes tend to their theoretical probabilities of 1/6, 2/3, and 1/3. Figure 3.1 shows the outcomes of the first 100 simulations described in the MATLAB code below.


[image: image]


[image: Graph shows simulation of MATLAB of rolling fair die on trial number from 0 to 100 versus outcome from one to six with plots.]

Figure 3.1 MATLAB simulation of rolling a fair die. The first 100 outcomes {4, 6, 6, 5, 1,…,4, 5, 3} are shown.



Events in an experiment are sets containing the elementary outcomes, that is, distinctive outcomes of the experiment. Among all events in an experiment, two are special: a sure event and an impossible event. A sure event occurs every time an experiment is repeated and has a probability of 1. It consists of all outcomes and is equal to the sample space of the experiment, S. An impossible event never occurs when an experiment is performed and is usually denoted as ∅. It contains no elementary outcomes and its probability is 0.






For any event A, the probability that A will occur is a number between 0 and 1, inclusive:



[image: numbered Display Equation]



Also,



[image: numbered Display Equation]








The intersection A ∩︀ B of two events A and B occurs if both events A and B occur. The key word in the definition of the intersection is and. The intersection of two events A ∩︀ B is often written as a product AB. We will use both the ∩︀ and product notations.

The product of the events translates into the product of their probabilities only if the events are independent, meaning the outcome of one does not affect the outcome of the other. We will see later that relationship
[image: ]is the definition of the independence of events A
and B.

Events are said to be mutually exclusive if they have no common elementary outcomes. In other words, it is impossible for both events to occur in a single trial of the experiment. For mutually exclusive events,
[image: ].

In the die-toss example, events A = {[image: image]} and B = {[image: image], [image: image], [image: image], [image: image]} are not mutually exclusive, since the elementary outcome {[image: image]} belongs to both of them. The events A = {[image: image]} and C = {[image: image], [image: image]} are mutually exclusive.

The union A ∪︀ B of two events A and B occurs if at least one of the events A or B occurs. The key word in the definition of the union is or.

For mutually exclusive events, the probability that at least one of them occurs is



[image: numbered Display Equation]



For example, if the probability of event A = {[image: image]} is 1/6, and the probability of the event C = {[image: image], [image: image]} is 1/3, then the probability of A or C is



[image: numbered Display Equation]



The additivity property is valid for any number of mutually exclusive events A1, A2, A3,…:



[image: numbered Display Equation]



What is
[image: ] if events A and B are not mutually exclusive?






For any two events A and B, the probability that either A or B will occur is given by the inclusion-exclusion rule:



(3.1)[image: numbered Display Equation]



 






If events A and B are exclusive, then
[image: ], and we get the familiar result
[image: ].

The inclusion-exclusion rule can be generalized to unions of an arbitrary number of events. For example, for three events A, B, and C, the rule is



(3.2)[image: numbered Display Equation]



For every event defined on a space of elementary outcomes, S, we can define a counterpart event called its complement. The complement Ac of an event A consists of all outcomes that are in S but are not in A. The key word in the definition of a complement is not. In our example, Ac consists of the outcomes {[image: image], [image: image], [image: image], [image: image], [image: image]}.

Events A and Ac are mutually exclusive by definition. Consequently,



[image: numbered Display Equation]



Since we also know from its definition that Ac includes all outcomes in the sample space, S, that are not in A, so that S = A ∪︀ Ac, it follows that



[image: numbered Display Equation]








For any pair of complementary events A and Ac,

[image: ].






These equations simplify the solutions of some probability problems. If [image: ] is easier to calculate than
[image: ], then the equations above let us obtain
[image: ] indirectly.
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-0.1458  0.0004 -0.3323 -0.0496  -0.6280
139.6715 -0.3323 863.7227 95.1374 71.0711
20.5847 -0.0496 95.1374 13.3087  8.2266
11.5455 -0.0280 71.6711  8.2266  9.1281
R = corr(X)
R=
1.0000 -0.9881  0.6132  0.7280  ©.4930
-0.9881  1.0000 -0.5941 -0.7147  -0.4871
0.6132 -0.5941  1.0000  0.8874  0.8004
0.7280 -0.7147  0.8874  1.0000  0.7464
0.4930 -0.4871  0.8604  0.7464  1.0000

hand"*

[n pl=size(X);

H = eye(n) - 1/n + ones(n,1)+ones(1,n);
S=1/(n-1) * X' * H* X;

stds = sqrt(diag(s));

D = diag(stds);

R = inv(D) * S * inv(D);

%5 and R here coincide with S and R
%calculated by built-in functions cov and cor.

Xc= X - repmat(mean(X),n,1); %center X
ssubtract component means
%from variables in each observation.

%standardization
Y = Xc x inv(D); %for Y, S=R

sMahalanobis transformation
M = sqrtm(inv(S)) %sqrtm is a square root of matrix

M=
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xx = min(car)-1:0.01:max(car)+1;
yy = empiricalcdf(xx, car);
plot(xx, yy, 'k-',’linewidth’,2)
xlabel(’x"); ylabel('F_n(x)")
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nl

um( car <= 15 ); %n1=213
sum( (car > 15 ) & (car <= 30) ); %n2=139
um( car > 30 ); %n3=110

14n2+n3 = 462

% proportions n1/n, n2/n, and n3/n are

% 0.4610,0.3009 and 0.2381

explode = [0 1 0]

pie([n1, n2, n3], explode)

pie3([nl, n2, n3], explode)
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load fisheriris

s1 = meas(1:50, 1);  %setosa, sepal length
52 = meas(51:100, 1); %versicolor, sepal length
53 = meas(101:150, 1); %virginica, sepal length
s = [s1 s2 s3];

figure;

imagesc(meas)

figure;

boxplot(s, ‘notch’, "on’, ...
"labels’,{'setosa’, 'versicolor’, 'virginica’})
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load fisheriris
X =meas(:, 1);  %sepal length
Y =meas(:, 3);  %petal length
cv = cov(X, Y); cv(1,2) %1.2743
corr(X, Y) %0.8718
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function acv = acov(ts, maxlag)
%acov.m: computes the sample autocovariance function
% ts = 1-D time series
% maxlag = maximum lag ( < length(ts))
susage: z = autocov (a,maxlag);
n = length(ts);
ts = ts(:) - mean(ts); %note overall mean
suma = zeros(n,maxlag+1);
suma(:,1) = ts."2;
for h = 2:maxlag+l

suma(1:(n-h+1), h) = ts(h:n);

suma(:,h) = suma(:,h) . ts;
end
acv = sum(suma)/n; %note the division by n

sand not by expected (n-h)

function [acrr] = acorr(ts , maxlag)
acr = acov(ts, maxlag);
acrr = acr ./ acr(1);
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parallelcoords(X, 'group’, age>55, ...
‘standardize’,’on’, 'labels’,varNames,’'quantile’,0.25)
set(gcf, 'color’, ‘white’);
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4 andrewsplot(X, 'group’, age>55, 'standardize’,’on’)
set(gcf, 'color’, 'white’);
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ind = find(age>67);

strind = num2str(ind);

h = glyphplot(X(ind,:), 'glyph’,’star’, ‘varLabels’,...
varNames, ‘obslabels’, strind);

,3), 'FontSize’,8); set(gcf, color’, white’);

set(h
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ind = find(height > 74.5);
strind = num2str(ind);

h = glyphplot(X(ind,:), 'glyph’,'face’, 'varlabels’,...

varNames, 'obslabels’, strind);
set(h(:,3), 'FontSize’,10); set(gcf,’'color’, 'white’);
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‘ load fisheriris % meas (150 x 4), species cell(150)

[coefs,vars] = eigs(cov(meas));
scores=meas*coefs;
variances=diag(vars);

% species is cell array

gse = ismember(species,'setosa’);
gvi = ismember(species,’virginica');
gve = ismember(species,’versicolor’);

% gse, gvi, gve are logical arrays

figure;

plot( meas(find(gse),1), meas(find(gse),2),
hold on

plot( meas(find(gvi),1), meas(find(gvi),2), 'go’)
plot( meas(find(gve),1), meas(find(gve),2), 'ko’)
legend('Setosa’, 'Virginica’, 'Versicolor’,0)
xlabel(’1st Coordinate’)

ylabel('2nd Coordinate’)

ro’)

figure;

plot( scores(find(gse),1), scores(find(gse),2), 'ro’)
hold on

plot( scores(find(gvi),1), scores(find(gvi),2), 'go’)
plot( scores(find(gve),1), scores(find(gve),2), 'ko’)
Tegend(’Setosa’, 'Virginica’, 'Versicolor’,0)
xlabel(’1st Principal Component’)

ylabel('2nd Principal Component’)

variances(1)/sum(variances) % 92.46% (explained by 1st PC)
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‘load(’wdbc.mat”)
Y = wdbc(:,1);
X = wdbc(:,2:31);
[n pl=size(X);
%
Z=zscore(X): % comoonents of matrix X are on verv different scales.
% S0 a zscored matrix is used.
C=cov(2) % cov(Z) is the same as corr(X)
% pca is MATLAB built in. Gives PC (coeffs), transformed data (scores),
% and vecyor of variances (latent). When Z is used sum(variances)= p= 14.
[coeffsl, scoresl, latentl] = pca(Z);
%
sEquivalent task using eig or eigs. Note that eigenvectors
s%s(columns of V) are PCs, and variances are on the diagonal of D.
% Scores are recovered as Z+V
[V Dl=eigs(C,30);
coeffs2=V;
scores2=Z+V;
latent2=diag(D);

%

figure;
pareto(latent2) % Pareto plot of variance balance
xlabel('PC’)
ylabel(*Variance’)

%

figure;

plot(scores1(Y==0, 1), scoresl(Y==0, 2),
hold on

plot(scoresl(Y==1, 1), scoresl(Y==1, 2),
Tlegend(’No cancer’,’Cancer’,2)
xlabel(’1st PC'); ylabel('2nd PC')
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% From multifat.m

X = [broz densi weight adiposi biceps

varNames = {’broz’; 'densi’; 'weight’

agegr = age > 55;

gplotmatrix(X,[],agegr,['b’, r'],['x’,"0"],[], ' false’);

text([.08 .24 .43 .66 .83], repmat(-.1,1,5), varNames, ...
'FontSize’,8);

text(repmat(-.12,1,5), [.86 .62 .41 .25 .02], varNames, ...
'FontSize’,8, 'Rotation’,90);

adiposi’; 'biceps’};
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parallelcoords(X, 'group’, age>55, ...
‘standardize’,’on’, 'labels’,varNames)
set(gcf, ‘color’, 'white’);
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cX =X - repmat(mean(X), n,1); %centered data matrix
[U lam Vl=svd(cX);

sv=coeffs
D = lam.”2/(n-1) %variances
) %scores
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% rollingdiel.m
outcomes = []; skeep outcomes here
M=50000 %# of rolls
for i= 1M
outcomes = [outcomes ceil( Gerand )1;
% ceil(6+rand) rounds up (takes ceiling) of random
% number from (0, 6), thus the outcones 1, 2, 3, 4, 5, and 6
% are equally likely
end
probA = sun( (outcones = 3)) /M
% probA = 0.1692
prob8 = sun( (outcones >= 3)) /M
% probB = 0.6693
probC = sun( (outcanes < 3))/M
% probC = 6.3307
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