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Preface 

The European power systems undergo a huge transition towards renewable genera-
tion, having a significant impact on risk management and operations in the markets 
for electricity. Gas- and coal-fired power plants are one of the major sources of 
carbon emissions, and have to be substituted to reach the net-zero goals of Europe. 
This rapid transition creates new and challenging problems within quantitative 
energy finance, some of which we address in this volume. 

In the book Quantitative Energy Finance – Modeling, Pricing, and Hedging in 
Energy and Commodities Markets (F. E. Benth, V. A. Kholodnyi and P. Laurence 
(eds.), Springer Verlag 2014), the focus was on bridging risk management tools from 
financial theory over to energy and commodity markets, with a particular view on 
power. Nearly a decade later, the markets for electricity in Europe have experienced 
a huge development, with closer integration between regions, fast development of 
renewable power and regulatory changes such as the EU taxonomy on sustainable 
finance. The markets after 2020 have also been hit by unprecedented highs and lows 
of electricity prices, explained by longer periods of little to no wind over Europe, a 
high degree of intermittency in the generation, and the cut in the import of Russian 
gas. In the future, climate change is predicted to further impact the power markets, 
with changing weather patterns leading to more frequent extreme weather such as 
heat waves, "Dunkelflaute" and cold spells. The electrification of society (transport, 
households, industry) leads, on the other hand, to an increased demand for power. 

With the current volume Quantitative Energy Finance – Recent Trends and 
Developments, which is a stand-alone continuation of the book published in 2014, 
we have collected a set of scientific papers analysing important aspects and 
challenges that we see for the moment and on the way ahead towards a net-zero 
energy system. 

We have grouped the papers according to three broad topics: The first group of 
articles is concerned with the modelling of energy prices taking recent changes in 
energy generation into account, followed by articles on the energy transition, and 
we conclude the book with a recent survey on the topic of climate risk. 

We will now briefly summarise the main contributions of each chapter.

v
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Modelling of Energy Prices 
Estimation of the Number of Factors in a Multi-factorial Heath–Jarrow–Morton 
Model in Power Markets by Olivier Féron, and Pierre Gruet: This chapter advances 
calibration methods for multi-factorial Heath–Jarrow–Morton models in the context 
of power markets with a particular focus on determining the optimal number 
of Gaussian factors in the model. The authors calibrate the model jointly on 
both spot and futures prices using maximum-likelihood techniques combined with 
information criteria. In an empirical study of Belgian, French, and German power 
prices, they demonstrate close similarities between the three markets and the number 
of factors needed to model the prices well. 

Hawkes Processes in Energy Markets: Modelling, Estimation and Derivatives 
Pricing by Riccardo Brignone, Luca Gonzato and Carlo Sgarra: In this chapter, the 
authors first review recent developments in using Hawkes processes to model energy 
prices and carry out derivatives pricing, including a description of exact simulation 
methods for Hawkes processes. Next, they propose a stylised new model for energy 
spot prices, which is built on a Hawkes process. Since this model is formulated under 
the historical probability measure, they furthermore establish a structure-preserving 
change of measure to also describe the corresponding risk-neutral dynamics of the 
spot prices needed for derivatives pricing. Using particle filtering techniques, the 
model can be estimated and an application to pricing exotic derivatives concludes 
this work. 

Periodic Trawl Processes: Simulation, Statistical Inference and Applications in 
Energy Markets by Almut E. D. Veraart: This chapter introduces the new class of 
continuous-time periodic trawl processes, which can account for periodic behaviour 
in the serial correlation either in a short- or long-memory framework. It presents 
their probabilistic properties and establishes the asymptotic theory for (generalised) 
method of moments estimators for the model parameters and proposes efficient 
simulation schemes for such processes. The methodology is applied to electricity 
spot prices from the German electricity market. 

Energy Transition 
Fuelling the Energy Transition: The Effect of German Wind and PV Electricity 
Infeed on TTF Gas Prices by Christoph Halser and Florentina Paraschiv: In order to 
facilitate the energy transition, low-carbon and flexible balancing tools are needed 
to deal with the intermittency of renewable energy generation. Gas has been playing 
an important role in the current energy transition and hence the authors study the 
substitution effect between gas and renewable energies wind and PV. They carry out 
their analysis in the context of threshold regression models applied to recent daily 
Dutch natural gas prices. They find a negative marginal effect of the day-ahead wind 
and PV infeed forecasts on day-ahead natural gas prices and a positive association 
between the day-ahead gas price and CO2 prices, coal prices, heating demand and 
supplier concentration. 

A Mean-Field Game Model of Electricity Market Dynamics by Alicia Bassiére, 
Roxana Dumitrescu and Peter Tankov: This chapter develops a mean-field game
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model for the long-term dynamics of electricity markets. This new model includes 
various refinements over existing models, such as that an arbitrary number of 
technologies with endogenous fuel prices can be considered, agents can both invest 
and divest, and various temporal aspects of the plant construction and age can be 
incorporated. The new model aims to describe the impacts of energy transition on 
electricity markets with a particular focus on the role gas plays, in the medium 
term, as a substitute for coal. The authors illustrate the properties of the new model 
through numerical computations and a stylised example. 

PPA Investments of Minimal Variability by Fred Espen Benth: A power purchase 
agreement (PPA) is a long-term financial contract between an electricity generator 
and a customer. In this chapter, the focus is on a PPA, where one can virtually 
operate a solar or wind power park. Since renewable energy generation is highly 
volatile, such a PPA could be used as a spatial hedge, where production is spread 
out geographically. This chapter proposes a model for the capacity factors of solar 
and wind generation by a square-integrable random field in a Hilbert space with 
an associated covariance operator and analyses how the variability of a portfolio of 
power plants spread out over various spatial locations can be minimised. In a case 
study of a PPA of a portfolio of solar power plants in Germany, it is shown that the 
variability of the difference between solar power production and electricity demand 
can be reduced significantly by a spatial hedge. 

Climate Risk 
Climate Risk in Structural Credit Models by Alexander Blasberg and Rüdiger 
Kiesel: The book concludes with a timely survey on how the impact of climate 
risk on financial markets can be described by structural credit risk models. Physical 
and transition risks, often considered the key components of climate risk, can 
be captured by the classical Merton model and its extensions, and the authors 
carefully describe the advantages and shortcomings of the existing models and 
outline possible improvements. 

All chapters have been refereed by peers, to whom we are grateful for their 
(anonymous) contribution to the scientific quality of this book. 

We thank Remi Lodh and Ute McCrory at Springer Verlag for creating the 
opportunity for publishing a second volume on quantitative energy finance and for 
their support and assistance throughout the preparations. F. E. Benth acknowledges 
financial support from Spatus, a thematic research group funded by UiO:Energy and 
Environment at the University of Oslo. 

Oslo, Norway Fred Espen Benth 
London, UK Almut E. D. Veraart 
October 2023
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Modelling of Energy Prices



Estimation of the Number of Factors in 
a Multi-Factorial Heath-Jarrow-Morton 
Model in Power Markets 

Olivier Féron and Pierre Gruet 

Abstract We study the calibration of specific multi-factorial Heath-Jarrow-Morton 
models to power market prices, with a focus on the estimation of the optimal 
number of Gaussian factors. We describe a common statistical procedure based on 
likelihood maximisation and Akaike/Bayesian information criteria, in the case of a 
joint calibration on both spot and futures prices. We perform a detailed analysis on 
three national markets within Europe: Belgium, France, and Germany. The results 
show a lot of similarities among all the markets we consider, especially on the 
optimal number of factors and on the behaviour of the different factors. 

1 Introduction 

Electricity generation and supply have been widely liberalised in a large set of 
countries over the last decades. Although their precise organisation varies across 
places, power markets share a common structure linked to the specificities of 
electricity: it is not storable and therefore has to be produced exactly when it is 
consumed. For instance, in Western Europe, the spot market takes place everyday 
and allows one to define the amounts of electricity that will be produced (and 
consumed) during each of the hours in the next day, based on quite accurate 
forecasts of consumption needs and production capacities. However, as prices are 
very volatile on the spot market, utilities may casually want to avoid having their full 
production exposed to the spot price, and they can mitigate their financial exposure 
on the spot market by trading derived products on the financial futures market. On  
this futures market, standardised contracts can be exchanged continuously for the 
next weeks, months, quarters and years or seasons. Grasping the characteristics of 
the evolution of prices on the futures market is essential to be able to use it efficiently 
by computing relevant hedging strategies and risk indicators. 

O. Féron · P. Gruet (O) 
EDF R&D and Fime Lab, Palaiseau, France 
e-mail: olivier-2.feron@edf.fr; pierre.gruet@edf.fr; https://www.fime-lab.org 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
F. E. Benth, A. E. D. Veraart (eds.), Quantitative Energy Finance, 
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We address the statistical estimation of a family of models for electricity prices 
and propose a methodology to select one of those models using information criteria. 
We consider Heath-Jarrow-Morton (HJM) models, introduced in [18] to represent 
the dynamics of the forward rates. In that work devoted to the term structure of 
interest rates, the forward rates processes were led by a sum of N Brownian motions 
and a drift. Being common to all maturities, this set of stochastic factors was driving 
the whole forward rate curve. Reference [18] focuses on the use of their model for 
valuing contingent claims, and some examples are given. 

Using such models to represent electricity prices has been done by many authors. 
Reference [5] defined a 1- and a 3-factor HJM models to represent the dynamics 
of instantaneous delivery futures in power markets. As they acknowledged that 
the actually traded contracts are flow futures, meaning there is some delivery 
period, they used an approximation studied in [23] to derive a valuation formula 
for such flow futures contracts. In contrast, [7] applied HJM models to oil prices: 
they designed a methodology to search for the best number of factors by doing 
a Principal Component Analysis (PCA) on their data. Reference [25] followed 
the same approach on electricity prices, while accounting for the existence of 
the delivery period. Those last two articles let the volatility functions be totally 
unspecified: the PCA leads to nonparametric volatility functions. As they did, many 
authors have also looked for the best number of stochastic factors and for the shape 
of the volatility coefficients: keeping them simple ensures the models can be used 
operationally for risk management purposes and can lead to simple formulas for 
prices of derivatives. Reference [27] designed 1- and 2-factor models for the elec-
tricity spot price only. Reference [22] designed 1- to 4-factor models for electricity 
prices, accounting for the delivery period, and designed an extended Kalman filter to 
estimate the models on data from Nordpool market. They suggested to use 2- or 3-
factor models, but had no mathematical criterion to argue. Their model incorporates 
a noise process, which features market imperfections. Reference [28] proposed a 
sum of two Ornstein-Uhlenbeck mean-reverting processes to represent gas futures 
prices, which they estimated on Henry Hub price data. Reference [10] studied the 
risk premia in power markets with a 3-factor model that they estimated using a two-
step procedure. Reference [24] introduced a 2-factor model for electricity prices, 
which they calibrated on German market to implied volatilities. The same model 
was studied in [13] where the calibration results show instability of the parameters, 
depending on the data that are considered. Reference [1] discussed the use of HJM 
models for futures contracts in power markets. They explained the implications of 
various modelling choices from a practical viewpoint. Reference [11] proposed a 2-
factor model similar to the one in [24]. Their model does not allow for delivery 
periods, but it can account for more commodities to be correlated. It is applied 
on oil prices data after many estimation methods are described. References [2, 26] 
recently proposed HJM-type additive models to jointly represent instantaneous and 
flow futures. The former article lists conditions so that such models do not allow 
for arbitrage. It gives examples of simple models suiting their frame. The latter 
article performs estimation in such an additive model with 2 factors, by minimising 
the difference between the theoretical and empirical covariations of processes.
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Reference [14] performed the efficient estimation of a 2-factor model with stochastic 
volatility, working within a market model representing the dynamics of futures 
contracts with a delivery duration of one month. For a thorough introduction to 
factor models as well as a review of articles using them to model electricity prices, 
one may refer to [9]. 

In the context of interest rates, [3] estimated HJM models on Australian interest 
rates data. In their model, the volatility is a function of the level of the process. 
Reference [4] performed maximum likelihood estimation of a 1-factor model on 
American short term interest rates data. Reference [19] discussed the estimation 
of HJM models on German bond data by performing a PCA, and then by using 
nonlinear regression to estimate parametrically four specific models. Reference [20] 
worked on HJM models for interest rates dynamics where the volatility is an 
unspecified function of the rate level. They acknowledged that there are less 
Brownian motions than yield curves to be represented in their model, which implies 
stochastic singularity: some deterministic relationships between yield curves hold 
using the model, although they do not hold on real-world data. 

In order to be able to select a relevant model, one of the main stakes is to represent 
the volatility structure of prices. Among all possible models, we have to find an 
equilibrium between a good quality of representation and a simple and parsimonious 
form. We are focusing on models in which the dynamics of prices is driven by 
a sum of correlated Brownian motions, with deterministic volatility coefficients 
which decrease exponentially as the remaining time to delivery increases. This class 
of models is very well known and used in practice for its tractability to deal with 
option pricing and hedging purposes. It encompasses the set of seminal commodity 
models [15, 27, 30], which are used for pricing derivatives, for example, in [8] and 
more recently in [12]. Our aim is not to find the best price model, but rather to 
find differences and similarities on different power markets by means of a quite 
simple class of HJM models. We focus our study on the number of needed Brownian 
motions as a function of the market and the data used in order to be parsimonious 
while reaching a good quality of representation. To this end, we compute the 
classical Akaike information Criterion (AIC) and Bayesian information criterion 
(BIC), and we also propose some additional indicators to help the user choose an 
efficient number of factors. 

Selecting the appropriate number of stochastic components to describe electricity 
prices was also the focus of [16]. Starting with a Gaussian Ornstein-Uhlenbeck 
stochastic factor, they added Lévy-driven Ornstein-Uhlenbeck processes to the 
dynamics to model either positive or negative jumps until the predictive p-values 
of their models are satisfactory. Based on deseasonalised daily electricity spot 
prices without the weekends from the UK and Europe on various historical periods, 
they found that (depending on the datasets) one or two jump components give 
a satisfactory quality of representation given their metrics. Here we shall only 
consider Gaussian processes but the estimation will be performed on spot and 
futures contracts jointly. 

The rest of the chapter is organised as follows. In Sect. 2 we present the model 
and recall the corresponding dynamics of the prices for spot and futures contracts
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with delivery periods. The estimation procedure is described in Sect. 3. In Sect. 4 
we precisely describe the data used for the estimation, and we show and analyse the 
estimation results. Section 5 concludes this work and outlines some future research 
directions. 

2 Model Description 

In this section we introduce the model for electricity price futures and we derive the 
equation for spot prices. In the sequel we use the following notation: 

• .Ft(T ) denotes the unitary power futures price at date t for the delivery of one 
megawatt-hour (hereafter MWh) of electricity at date T . Such a unitary futures 
is not traded on the markets, but is used as a modelling brick to write the spot 
price and the prices of quoted futures, see [9] for a thorough discussion on this 
approach; 

• .St = Ft(t) is the power spot price; 
• .Ft(T , θ) denotes the power futures price quoted at t , delivering 1 MWh during 

all the hours between times T and .T + θ , where . θ is the length, in years, of the 
delivery period. 

Let .(o,F,F = (Ft )t≥0,P) be a filtered probability space, and let us assume the 
absence of arbitrage. There exists a unique risk-neutral measure . Q equivalent to 
. P, and under this risk-neutral measure we consider the classical Heath-Jarrow-
Morton [18] model written on the unitary futures price: 

.
dFt (T )

Ft (T )
=

NE

k=1

e−αk(T −t)σkdWk
t , (1) 

where .N ≥ 1 is the number of stochastic factors, .(Wk)k=1,...,N is a N -dimensional 
.F-adapted .Q-Brownian motion, of which components k and . k' have correlation 
.ρk,k' , .σk > 0 for .1 ≤ k ≤ N , and .0 < α1 < · · · < αN in order to guarantee 
identifiability of the model. 

By integrating Eq. (1) and letting .T = t , we deduce the expression of the spot 
price . St as a function of .Ft0(t), for .t0 ≤ t : 

.

St = Ft0(t) exp

{
− 1

2

NE

k=1

NE

k'=1

ρk,k'σkσk'
1 − e−(αk+αk' )(t−t0)

αk + αk'

+
NE

k=1

f t

t0

σke
−αk(t−s)dWk

s

}
.

(2)
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Applying Itô formula and assuming that . Ft0 is differentiable, we get the dynamics 
of the spot price, namely 

. 
dSt

St

=
(

F '
t0
(t)

Ft0(t)
+ 1

2

nE

k=1

NE

k'=1

σkσk'ρk,k'
)
1 − e−(αk+αk' )(t−t0)

))
dt +

NE

k=1

dZk
t ,

where we introduced the auxiliary processes . Zk , .k = 1, . . . , N , defined by 

.

dZk
t = −αkZ

k
t dt + σkdWk

t ,

Zk
t0

= 0 ,
(3) 

for .1 ≤ k ≤ n. It is worth emphasising that the dynamics of the spot price can be 
written as being led by a sum of Ornstein-Uhlenbeck processes. 

Concerning the futures prices, as in [13], we can consider the no-arbitrage 
(discrete) relationship between futures contract prices and unitary futures prices in 
the form 

. Ft(T , θ) = h

θ

θ/h−1E

i=0

Ft(T + ih) ,

where h is a the timestep (1 hour or 1 day for example) considered in the 
discretization of the forward curve. Combining this equation with Eq. (1), we can 
deduce the dynamics of the futures contract prices: 

.

dFt (T , θ)

Ft (T , θ)
= 1

Ft(T , θ)

h

θ

θ/h−1E

i=0

Ft(T + ih)

NE

k=1

e−αk(T +ih−t)σkdWk
t

=
NE

k=1

e−αk(T −t)σk

⎛

⎝h

θ

θ/h−1E

i=0

Ft(T + ih)

Ft (T , θ)
e−αkih

⎞

⎠ dWk
t .

(4) 

3 Estimation 

In this section we describe the estimation methodology based on Kalman filtering 
and the maximum likelihood principle, and we explain how we compute the 
classical AIC and BIC in order to study the optimal number of factors. The 
likelihood function is obtained from a state-space equation system and computed 
via a Kalman filter: the likelihood function is the one of the residuals of the filter, 
which are multivariate Gaussian at each time step and are independent from one time 
step to the other. Also, as already described in [17], we will introduce a Gaussian 
error model to face the stochastic singularity (see [20]) when the number of model 
factors is lower than the number of observed futures contracts.
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In the sequel we consider .n+1 quotation dates .t0, . . . , tn and we use the notation 
.Ati = ti − ti−1 and .An

i X = Xti − Xti−1 for any process X. Thus the index n stands 
for the number of updates in the Kalman filtering step, and thus for the number of 
Kalman residuals that will be computed. 

We will assume that the historical measure . P and the risk-neutral measure . Q
coincide, so that the .Q-Brownian motions are also .P-Brownian motions and the 
dynamics (1) also holds under . P. Our motivation to do so is twofold: 

• Assuming the dynamics (1) holds under . Q, we could consider a dynamics with a 
drift term under . P, for example 

. 
dFt (T )

Ft (T )
=

NE

k=1

bke
−αk(T −t)dt +

NE

k=1

e−αk(T −t)σkd -Wk
t ,

where the . -Wk are .P-Brownian motions and .b1, . . . , bN are real numbers. There 
is no technical difficulty in making inference about those N real numbers along 
with the volatility parameters by following the methodology described hereafter. 
Still this increases the dimension of the optimization problem while our goal is 
to discuss the volatility structure; 

• As [10] reported in 2006, there is empirical evidence that the absolute values of 
risk premia decrease as markets become more mature and attract speculators. 

3.1 Distributions of the Changes in Futures and Spot Prices 

We consider the approximation of the futures prices dynamics, as in [13], stating 
that the shaping factors .Ft (T +ih)

Ft (T ,θ)
are all equal to 1. This assumption boils down to 

asserting the contribution of each hour in a given delivery period to the price of the 
whole delivery is the same, and then that, for each delivery period .[T , T + θ ], all  
prices .Ft(s) for .s ∈ [T , T + θ ], are identical and equal to the observed futures price 
.Ft(T , θ). In order to avoid inconsistency, it is necessary to consider futures with 
disjoint delivery periods: for any couple .(Ft (T1, θ1), Ft (T2, θ2)) of futures contracts 
considered in the sequel, we have .[T1; T1 + θ1] ∩ [T2; T2 + θ2] = ∅. In practice, this 
means that a preprocess (described hereafter in Sect. 4.1.2) is needed to remove any 
overlap in the futures’ delivery periods. With these assumptions, one can compute 
the dynamics (4) as 

. 
dFt (T , θ)

Ft (T , θ)
=

NE

k=1

e−αk(T −t)σkψh(αk, θ)dWk
t ,

where .ψh(α, θ) = h
θ
1−e−αθ

1−e−αh .
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By denoting .X
T,θ
t = log(Ft (T , θ)) and applying Itô’s lemma we get 

. 

An
i X

T,θ =
NE

k=1

f ti

ti−1

ψh(αk, θ)e−αk(T −t)σkdWk
t

− 1

2

NE

k=1

NE

k'=1

f ti

ti−1

e−(αk+αk' )(T −t)ρk,k'σkσk'ψh(αk, θ)ψh(αk' , θ)dt .

(5) 

At each time . ti we assume observing . Li prices of futures contracts1 which are 
denoted by .Fti (Tl, θl), for  .l = 1, . . . , Li . When .Li > N , the model presents a 
stochastic singularity (already studied in [20] and in [17] in the case of a two-factor 
model applied to electricity prices). In order to face this problem we introduce a 
model error term and assume observing noisy returns. Precisely, we do not observe 
the increments .An

i X
Tl,θl of the price process, but instead we observe 

. An
i Y

Tl,θl = An
i X

Tl,θl + ε
Tl,θl

i ,

where .ε
Tl,θl

i are identically distributed according to a Gaussian distribution 
.N(0, v2), where . v2 is unknown. Moreover, for all .i = 1, . . . , n, the random 
variables .εTl,θl

i and .ε
Tl' ,θl'
i are independent for .1 ≤ l < l' ≤ Li , as well as the  

random variables .ε
Tl,θl

i and .ε
Tl' ,θl'
j for .1 ≤ i < j ≤ n and .1 ≤ l ≤ Li, 1 ≤ l' ≤ Lj . 

Therefore, the vector .
)
An

i Y
T1,θ1 · · · An

i Y
TLi

,θLi

)'
which stacks up the observed 

noise-perturbed increments at time step i is Gaussian .N(Mi,Ei) with . Mi =
(Ml

i )1≤l≤Li
, .Ei = (Ell'

i )1≤l,l'≤Li
and: 

.

Ml
i = E

)
An

i Y
Tl,θl

)

= −1

2

NE

k=1

NE

k'=1

(
ρk,k'σkσk'ψh(αk, θl)ψh(αk' , θl)

× e−(αk+αk' )(Tl−ti )
1 − e−(αk+αk' )Ati

αk + αk'

)

(6)

1 In practice the number of observed prices may vary, even after removing the redundant products 
(e.g. a quarterly contract when all the corresponding monthly contracts are observed), see Sect. 4.1. 
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and 

. Ell'
i =Cov

)
An

i Y
Tl,θl ,An

i Y
Tl' ,θl'

)

=v21l=l' +
NE

k=1

NE

k'=1

(
ρk,k'σkσk'ψh(αk, θl)ψh(αk' , θl')

× e−αk(Tl−ti )e−αk' (Tl'−ti )
1 − e−(αk+αk' )Ati

αk + αk'

)
,

where .1l=l' = 1 if .l = l' and 0 otherwise. 
Let us introduce the auxiliary processes . Zk , for .k = 1, . . . , N , defined by . Zk

t0
=

0 and 

. dZk
t = −αkZ

k
t dt + σkdWk

t .

By integrating the above dynamics between dates .ti−1 and . ti , we have  

. Zk
ti

= Zk
ti−1

e−αkAti +
f ti

ti−1

σke
−αk(ti−t)dWk

t

so that we can rewrite Eq. (5) with the auxiliary processes . Zk as: 

.

An
i X

T,θ =
NE

k=1

ψh(αk, θ)e−αk(T −ti )
)
Zk

ti
− Zk

ti−1
e−αkAti

)

− 1

2

NE

k=1

NE

k'=1

(
ρk,k'σkσk'ψh(αk, θ)ψh(αk' , θ)

× e−(αk+αk' )(T −ti )
1 − e−(αk+αk' )Ati

αk + αk'

)
.

(7) 

Concerning the spot price, we use expression (2) and we write .-St = St

Ft0 (t)
for the 

seasonality adjusted spot price in order to obtain 

.

An
i X = log-Sti − log-Sti−1

=
NE

k=1

)
Zk

ti
− Zk

ti−1

)

− 1

2

NE

k=1

NE

k'=1

ρk,k'σkσk'e−(αk+αk' )(ti−1−t0)
1 − e−(αk+αk' )Ati

αk + αk'
.

(8)
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As for the dynamics of the futures prices, we consider a model (or measurement) 
error in the observed spot prices. We assume observing .An

i Y defined as 

. An
i Y = An

i X + εi ,

where the random variable . εi is distributed according to a Gaussian distribution 
.N(0, v2) and is independent of all random variables .εTl,θl

j , .j = 1, . . . , n, . l =
1, . . . , Lj . We may notice that .An

i X cannot be considered as a price “return” 
because the underlying is the spot price, which stands for a different delivery period 
each day. We propose to consider this element in the calibration process in order to 
work with differences in price logarithms for all observed (futures and spot) prices. 

3.2 State-Space System of Equations 

Having derived the distributions of price changes at each time step in the previous 
subsection, the multi-factor model can be written in a state-space model formula-
tion: let us denote 

. An
i Y =

⎛

⎜⎜⎜⎝

An
i Y

T1,θ1

...

An
i Y

TLi
,θLi

An
i Y

⎞

⎟⎟⎟⎠ , Zi =

⎛

⎜⎜⎜⎜⎜⎜⎝

Z1
ti

Z1
ti−1
...

ZN
ti

ZN
ti−1

⎞

⎟⎟⎟⎟⎟⎟⎠
.

The multi-factor model can be written as follows: 

.

An
i Y = Mi + FiZi + εi ,

Zi = AiZi−1 + ηi ,
(9) 

with elements . Mi , . Fi , . Ai and the covariance matrices of . εi and . ηi given in the 
upcoming subsections, in which we describe the components of the state-space 
system (9). 

3.2.1 Elements of the Space Equation

An 
i Y is a vector of size Li + 1, corresponding to the number of observed futures 

returns at date ti and the deseasonalized spot price change. The first Li components 
correspond to the futures prices returns and the last component corresponds to the 
spot. The mean vector Mi then has its Li first components defined by Eq. (6) and 
its last component defined, accordingly, by the last term in Eq. (7).
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Concerning the matrix Fi , we propose to write it as the stack of two different 
linear forms Fi = ((Ff 

i )
', (Fs 

i )
')' corresponding to the futures contracts and the 

spot, respectively. 
Using Eq. (7) we have 

. Ff
i = G

f
i H

f
i

with G f 
i a (Li × N)  matrix: 

. G
f
i =

⎡

⎢⎣
ψh(α1, θ1)e

−α1(T1−ti ) . . . ψh(αN, θ1)e
−αN (T1−ti )

... . . .
...

ψh(α1, θLi
)e−α1(TLi

−ti ) . . . ψh(αN, θLi
)e−αN (TLi

−ti )

⎤

⎥⎦

and H f 
i a (N × 2N)  matrix: 

. H
f
i =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 −e−α1Ati 0 . . . . . . . . . 0
0 0 1 −e−α2Ati 0 . . . 0
...

...
. . . 0 . . . . . .

...
...

...
...

. . .
. . . 0 0

0 . . . . . . . . . 0 1 −e−αNAti

⎤

⎥⎥⎥⎥⎥⎥⎦
.

The matrix H f 
i may not depend on time if the time step Ati is constant. However, 

G f 
i depends on time because of the maturity terms Tl − ti . 
Concerning the part Fs 

i dedicated to the spot prices, we can use the same 
decomposition using Eq. (8): 

. Fs
i = Gs

i H
s
i

with Gs 
i = 1'

N the transpose of a N -dimensional vector composed of ones, and Hs 
i 

a (N × 2N)  matrix: 

.Hs
i =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 −1 0 . . . . . . . . . 0
0 0 1 −1 0 . . . 0
...

...
. . . 0 . . . . . .

...
...

...
...

. . .
. . . 0 0

0 . . . . . . . . . 0 1 −1

⎤

⎥⎥⎥⎥⎥⎥⎦
.
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In the calibration tests, as we explained above, we assume that the variance of the 
model errors is identical for all observed contracts, i.e. 

. Qεi
= v2ILi+1

where Im is the m × m identity matrix. 

3.2.2 Elements of the State Equation 

Using the solution of the Ornstein-Uhlenbeck processes on the factors . Zk defined 
in Eq. (3), we get the block-diagonal matrix 

. Ai =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e−α1Ati 0 . . . . . . . . . . . . 0

1 0
. . . . . . . . . . . . 0

...
... e−α2Ati 0 . . . . . .

...
...

... 1 0 . . . . . .
...

...
...

...
. . .

. . . . . .
...

0 . . . . . . . . . 0 e−αNAti 0
0 . . . . . . . . . . . . 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If the time step . Ati is constant, then the matrix .Ai = A is also constant. 
The .(2N × 2N) covariance matrix .Qηi

is also deduced from the dynamics of the 
Ornstein-Uhlenbeck processes, and it is made from .2 × 2 blocks of which only the 
upper-left component is not zero. Precisely, for .1 ≤ k, k' ≤ N , 

.

Q2k−1,2k'−1
ηi

= ρk,k'σkσk'
1 − e−(αk+αk' )Ati

αk + αk'
,

Q2k−1,2k'
ηi

= Q2k,2k'−1
ηi

= Q2k,2k'
ηi

= 0 .

(10) 

3.3 Implementation of the Kalman Filter and Minimization 
Algorithm 

Now we explain how the Kalman filter is implemented and how the log-likelihood of 
the Kalman residuals is computed. Kalman filtering is named after Kalman [21] and 
is aimed at addressing problems in which one tries to get information about some 
state process that is shaded within noisy measurements. This is done by making, 
at each time step, some prediction of the next state and then updating the internal 
variables of the filter by using the comparison of this prediction to the realized state 
as a feedback. Namely, in the state-space equation (9), . Zi is the hidden state at
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step i and it is driven by the evolution of the stochastic factors on which one is 
willing to make inference. .An

i Y is the observation, it is made of combinations of the 
components of the hidden state vector . Zi , which is added to the noise vector . εi . 

Now we describe the filtering equations. At each time step .i = 1, . . . , n, we  
start with the a priori  variables .Zi|i−1 and .Pi|i−1, featuring the estimates of the 
mean and the variance of . Zi given the observations at time step i and prior to it. 
For the initialization at step 1, one needs initial values and we choose .Z1|0 = 0 and 
.P1|0 = Qη1 , which is defined by (10). Yet the choice of the initial conditions never 
precludes the convergence of the parameters. 

Then we compute the Kalman gain . Ki , given by 

. Ki = Pi|i−1F
'
i G

−1
i , Gi = FiPi|i−1F

'
i + v2ILi+1

where for any matrix M , . M ' denotes its transpose. The estimate of .An
i Y condition-

ally to the past is given by 

. An
i Y = Mi + FiZi|i−1 ,

then the Kalman residual . ri is given by .ri = An
i Y − An

i Y: this stands for the 
difference between the actual observed value and the expectation within the filter. 
Finally, one can compute the a posteriori variables 

. Zi = Zi|i−1 + Kiri ,

Pi = (
I2N − KiFi

)
Pi|i−1 .

And one can prepare the a priori variables of the next step .i + 1 by computing 

. Zi+1|i = Ai+1Zi ,

Pi+1|i = Ai+1PiA
'
i+1 + Qηi+1 .

It turns out that the Kalman residuals at two different steps are independent from 
each other, and that .ri ∼ N(0,Gi). After iterating over all time steps, one can 
compute the likelihood of the sample .(r1, . . . , rn) of residuals as 

. 

n| |

i=1

1

(2π)(Li+1)/2 det(Gi)1/2
exp

(
−1

2
r '
iG

−1
i ri

)
.

Therefore the negative log-likelihood is given by .Ln + c, where 

. Ln = 1

2

nE

i=1

log(det(Gi)) + r '
iG

−1
i ri

and c is a real number which does not depend on the parameters.
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As we are able to compute the negative log-likelihood for any set of parameters 
by going through the n filtering steps we described above, we use an optimization 
routine to minimize . Ln. However, leading the optimization over the pristine 
parameters v, .α1 < · · · < αN , .σ1 > 0, . . . , σN > 0 and .−1 < ρk,k' < 1 for 
.1 ≤ k, k' ≤ N that we have introduced in Sect. 2 is difficult as one has to handle 
constraints about the . α coefficients being ordered, the . σ coefficients being positive 
and the correlation ones being bounded above and below. Instead, we let 

. a1 = log(α1) and ak = log(αk − αk−1) for 2 ≤ k ≤ N ,

and also we introduce the lower triangular matrix .S = (sk,k')1≤k,k'≤N such that . SS'
is the Cholesky decomposition of the positive-definite matrix 

. 

⎛

⎜⎜⎜⎜⎝

σ 2
1 ρ1,2σ1σ2 . . . ρ1,Nσ1σN

ρ1,2σ1σ2 σ 2
2 . . .

...
...

...
. . .

...

ρ1,Nσ1σN . . . . . . σ 2
N

⎞

⎟⎟⎟⎟⎠
.

We thus run an unconstrained optimization algorithm over the real numbers v, 
.a1, . . . , aN and . sk,k' , .1 ≤ k' ≤ k ≤ N . While this problem still has dimension 
.
(N+1)(N+2)

2 , it is easier to solve numerically as it embeds no constraint at all. We use 
the method of Nelder and Mead [29], which is a standard simplex method without 
derivatives. 

3.4 Criteria: AIC and BIC 

The number of degrees of freedom (to account for in the AIC and BIC) is a function 
of the number N of factors in the model. For a definition and a discussion of AIC 
and BIC, we refer the reader to [6]. Given a fixed N , the parameters are as follows: 
N degrees of freedom corresponding to the parameters . ak , 1 degree of freedom 
corresponding to parameter v, and .

N(N+1)
2 degrees of freedom corresponding to the 

coefficients in the lower triangular matrix S. The total number of degrees of freedom 
is then .(N + 1)(N + 2)/2. Therefore, in the case of the factorial models described 
above, the AIC and BIC are given by: 

. AIC = (N + 1)(N + 2) + 2-Ln ,

BIC = 1

2
(N + 1)(N + 2) log(n) + 2-Ln ,

with . -Ln denoting the minimized negative log-likelihood of the Kalman residuals 
that one obtains when applying Kalman filtering to the state-space equation (9).
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4 Estimation Results 

4.1 Data and Preprocessing Description 

In this section, we describe the datasets that we used and we explain how we 
preprocessed them before running our estimation procedures. We also detail the 
process of seasonal adjustement of spot prices. 

4.1.1 Description of the Data 

We have used data of prices in several European power markets, namely Belgium, 
France, and Germany. Those prices are available on the websites https://eex.com 
(for the futures prices) and https://epexspot.com (for the spot prices). We collected 
the closing futures prices every business day, from 2018–01–01 to 2022–11–30, for 
various contracts, delivering 1 MWh of electricity over standardised periods. Those 
periods can be: 

• the nearest (or 2nd nearest, or 3rd nearest. . . )  week  (from  Monday to Sunday) 
that has not begun yet. The underlying contracts are named 1 week-ahead 
(hereafter 1WAH), 2WAH, 3WAH, . . . . ; 

• the nearest months that have not begun yet, corresponding to month-ahead 
contracts (hereafter MAH); 

• the nearest quarters (January–March, April–June, July–September, October– 
December) that have not begun yet, corresponding to quarter-ahead (QAH) 
contracts; 

• the nearest calendar years that have not begun yet, featuring year-ahead (YAH) 
contracts. 

For each of the previous time spans, a given number of contracts are traded. For 
every market we collected the following futures contracts: 1 to 4WAH, 1 to 6MAH, 
1 to 4QAH and 1 to 2YAH. This leads to 16 futures contracts considered for 
the estimation. Concerning spot prices, 24 prices are issued every day, related to 
deliveries of 1 MWh over each of the 24 hours of the day after. We computed the 
average of those 24 prices each day, featuring the price of the delivery of 1 MWh 
over the following day. In total we thus considered 17 daily prices for the estimation. 

We note that some data are missing, but the maximisation of the likelihood with 
the Kalman filter as described in Sect. 3.3 can easily deal with a set of missing data. 
Indeed, in both cases one only has to consider a varying vector size . Li of available 
prices at each date . ti .

https://eex.com
https://eex.com
https://eex.com
https://epexspot.com
https://epexspot.com
https://epexspot.com
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4.1.2 Preprocessing of Data 

As noticed in Sect. 3.1, we preprocess the data in order to remove all overlaps in the 
futures’ delivery periods. To do so, we use the structure of futures contracts in power 
markets and the no arbitrage principle: consider 2 futures contracts .Ft(T1, θ1) and 
.Ft(T2, θ2) oberved at date t such that .[T1, T1 + θ1] ∩ [T2, T2 + θ2] /= ∅ and .θ1 < θ2; 
we consider that futures contracts with shorter delivery periods give more precise 
information. In the case .T1 ≤ T2, we therefore replace .Ft(T2, θ2) by the futures 
contract .Ft(T1 + θ1, T2 + θ2 − T1 − θ1) whose delivery period is disjoint from 
.[T1, T1 + θ1] and whose value is obtained by no arbitrage: 

. 
T1 + θ1 − T2

θ2
Ft(T1, θ1) + T2 + θ2 − T1 − θ1

θ2
Ft(T1 + θ1, T2 + θ2 − T1 − θ1)

= Ft(T2, θ2) .

In the case .T1 > T2 we replace .Ft(T2, θ2) by two futures contracts . Ft(T2, T1 − T2)

and .Ft(T1+θ1, T2+θ2−T1−θ1) of same value deduced from the same no arbitrage 
principle. 

In particular, this preprocessing allows also to face some observed complete 
redundancy, as it happens that 

• three monthly contracts exactly cover a quarter contract; 
• four quarterly contracts exactly cover a calendar contract. 

The rule previously described removes the contract with longest delivery period 
(respectively, in the two previous cases, the quarter and the calendar contracts) on 
each of those days. 

Also, we computed the returns at dates of changing products, caring for the 
specific change. For example, at a date of a month change, e.g. 2018–02–01, we 
compute the returns between the .(n + 1)MAH and the nMAH, both corresponding 
to the same futures contract, namely March 2018 (.n = 1) to July 2018 (.n = 6). 
By doing so, we optimise the quantity of information available in the data, but we 
do not have the same number . Li of returns each day. As explained earlier, this is 
acknowledged and easily dealt with in the computation of the joint distribution of 
the price changes. 

4.1.3 Seasonal Adjustment of Spot Prices 

In order to use the estimation procedure described in Sect. 3.1, we have to remove 
the seasonality from spot prices. To do so, we assume that the daily spot price . St at 
time t is given by .St = -StFt0(t), where . -St is the residual that is modelled in Sect. 3.1 
and .Ft0(t) is the seasonality term, which we represent with dummy variables as 

.Ft0(t) = yyear(t)mmonth(t)dweekday(t) ,
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where .year(t) refers to the year to which t belongs, . month(t) ∈ {1, . . . , 12}
is the number of its month, .weekday(t) ∈ {1, . . . , 7} is the number of its day. 
Furthermore, we let 

. m12 = 12 −
11E

j=1

mj and d7 = 7 −
6E

j=1

dj ,

so that estimation bears only on the first 11 monthly dummies and on the first 6 daily 
dummies. All the coefficients are estimated with a Least Square procedure. The spot 
returns are then computed on the residual . -St . 

4.2 Results 

For each of the three markets (Belgium, France and Germany), we split the global 
set of data into three subsets: 2018–2019 (before the Covid crisis), 2020 (Covid 
period) and 2020–12–01 to 2022–11–30 (hereafter referred to as “2021–2022”, 
crisis period). For each of these nine datasets, we run the likelihood maximisation 
on power prices, as described in Sect. 3.1, starting with .N = 2 factors. Then we 
compute the AIC and BIC, and we keep increasing N until the AIC and the BIC 
start increasing, which means one has reached the balance between the number of 
parameters and the quality of representation of the prices. The estimation results 
are given in Appendix. Figures 1, 2 and 3 show the computed AIC and BIC as a 
function of the number of factors. Table 1 shows the optimal number N of factors 
and Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 
23, 24, 25, 26, 27, 28 show the estimated parameters (mean-reverting . αi’s, volatility 
. σi’s and correlations . ρij ’s. 

As a global remark on all three markets, we can observe that the BIC allows 
us to discriminate and find the optimal number of factors more easily than the AIC, 
which starts increasing quite later than the BIC due to the lower penalty it puts on the 
number of parameters in the model. Hereafter we will discuss the optimal number 
of factors according to the BIC, rather than the AIC, in order to stress the penalty 
linked to the number of parameters and enforce parsimony. In Table 1, in the second 
row, we show the optimal number of factors according to the BIC. This optimal 
number is very similar amongst all countries and historical periods, between 8 and 
9. In the third row of Table 1 we show the greatest number N of factors where all the 
correlations are not close to 1 or -1 (.|ρij | < 0.98, for all .i < j , .i = 1, . . . , N − 1). 
These N (between 2 and 4) are significantly smaller than the BIC-optimal ones, 
which suggests it is possible to derive some parsimonious, low dimensional models 
that account quite well for the behaviour of the prices. The additional factors only 
allow one to adjust the volatility function in order to compensate the difficulty of the 
factorial model (with only exponential volatility functions) to represent the observed 
volatility which may incorporate non-monotonic behaviours.
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Table 1 Optimal number N of factors according to the AIC (first row) or the BIC (second row) 
and greatest N for which all the correlations between two factors are smaller than 0.98 

Belgium France Germany 

18–19 20 21–22 18–19 20 21–22 18–19 20 21–22 

AIC-optimal N 9 10 9 10 9 9 10 9 10 

BIC-optimal N 8 9 8 9 8 8 9 8 8 

Greatest N , .max |ρkk' | < 0.98 3 2 3 3 3 4 2 3 3 

Within a given market and a given time period, the values taken by a given 
estimated parameter are rather stable over the number of factors; see for instance 
Table 3 and choose a given column i: the values of the estimator of . αi remain quite 
the same as soon as the number of factors in the estimation is greater than i. One  
can make the same observation with the estimates of the . σi . 

It also turns out that for a fixed time period, the values of the estimated parameters 
have quite the same order of magnitude from one country to another, especially for 
. α and at the BIC-optimal number of factors. 

Also, we can observe similar characteristics of the first factor (i.e. the factor with 
the smallest value of . α), mainly driving the long term volatility), for all countries. In 
particular, for N close to the BIC-optimal number of factors, one can observe quite 
stable and similar estimated values of . α1 (between 0.58 in Germany and 1.39 in 
France) and a slight increase for the period 2021–2022. The estimated value of . σ1 is, 
for all countries, around 30 and 40% for periods 2018–2019 and 2020, respectively, 
whereas it explodes for period 2021–2022, highlighting the impact of the European 
crisis in the energy markets and the fact that the markets are interconnected and 
share some fundamentals. 

Let us discuss a bit the correlation matrices. For all countries and periods, 
the correlation matrices seem stable along the number of factors. Also, they 
feature a first factor which is generally weakly correlated to the other factors. 
When one, for instance, looks at the first column in the correlation matrices in 
Tables 8, 9, 17, 18, 26 and 27, it appears that very few of the noninitial elements have 
an absolute value higher than .0.20 for periods 2019–2019 and 2020. Interestingly, 
we are meeting a different situation in 2021–2022: the first factor is highly anti-
correlated to the second factor, see .N = 8 in Belgium, in France or in Germany. We 
emphasize another very noticeable pattern, which is that most of the time (at least 
when .N > 5) factors with different parities would have a negative correlation, and 
have a positive one if they share the same parity. As an example, in Table 28, the  
cases .N = 5 and .N = 8 stand for perfect examples of this pattern, which the case 
.N = 7 is also quite close to doing so. 

We may compare our results to the ones available in the literature. A two-factor 
model has been calibrated to German option prices on futures contracts in [24] (from 
the year 2005). In [13] the calibration of the same two-factor model is done on 
marginal volatilities of futures contracts and on spot prices in the French and UK 
markets, using data from 2013 to 2015. In both articles the authors fixed . α1 and the 
correlation between the two factors to 0. The results obtained in the present paper


