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Preface

The present volume is a record of the lectures given at the conference Truth,
Necessity and Provability, which was held in Leuven, Belgium, from 18 to
20 November 1999. Except for the paper by Shapiro, all papers included in
this volume are based on lectures given at the conference.

On the one hand, the concept of truth is a major research subject in analyt-
ical philosophy. On the other hand, mathematical logicians have developed
sophisticated logical theories of truth and the paradoxes. The aim of the
conference out of which the present volume grew was to bring together
prominent logicians and philosophers concerned with truth and the para-
doxes. Wewanted to promote a deeper interaction and collaboration between
them than existed so far. The leading motivation was that recent develop-
ments in logical theories of the semantical paradoxes are highly relevant for
philosophical research on the notion of truth and that, conversely, philo-
sophical guidance is necessary for the development of logical theories of
truth and the paradoxes.
The present volume is therefore intended both for analytical philoso-

phers working on truth and for logicians who concern themselves with the
paradoxes. The contributions in this volume present an overview of recent
work that has been done on the interface between these two domains.
The amount of knowledge of analytical philosophy and of mathematical

logic that is required for understanding the papers in this volume is of a
quite modest level. Nevertheless, in order to make the contributions as
accessible as possible both to analytical philosophers (graduate students
and professional philosophers) and to logicians, the collection of papers is
preceded by an extended introductory historical overview of the main results
and tenets in philosophical and logical research on truth since the 1930s.
The papers have been grouped into three parts. We have opted for one

cumulative bibliography at the end of the book.
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Volker Halbach and Leon Horsten

Contemporary Methods
for Investigating the Concept of Truth
An Introduction

Truth as a logico-mathematical concept
Truth is ubiquitous in traditional philosophy as a venerable and deep notion.
Most traditional accounts of truth and modern substantialist theories of
truth hold that truth is a philosophical notion that needs to be explained in
philosophical terms such as correspondence, utility, coherence. It therefore
comes as no surprise that truth is exactly the kind of notion that logical
empiricism tried to ban from philosophy altogether. Yet today, truth is one
of the important research topics in analytic philosophy. Whence the change?
In the early thirties Tarski rehabilitated truth as a respectable notion

in his famous work �The Concept of Truth in Formalized Languages�
(1935). He gave a de�nition of truth for a formal language in purely logical
and mathematical terms. Tarski's method is fairly general. This suggested
that truth is a logico-mathematical notion, and not an irreducible, prop-
erly philosophical notion as traditional philosophy would have it. Like all
other logico-mathematical concepts, truth is most naturally investigated in
formal settings, in the context of other logical and mathematical notions.
Attempts should be made to analyze truth in these formal contexts, and
the resulting de�nitions, statements and theorems ought to be regarded as
logico-mathematical truths.
Tarski's contemporary heirs are the de�ationists. There exists a variety of

mutually incompatible theories of truth nowadays that are called de�ationary.
De�ationism with respect to truth therefore is a somewhat vague or at
least underdetermined notion. Moreover, all such accounts differ in several
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respects fromTarski's own views on truth. Wewill see, for example, thatmost
de�ationary theories of today incorporate an axiomatization of truth rather
than a de�nition. Nevertheless de�ationists side with Tarski in his insistence
that truth is a logico-mathematical concept, and the axiomatic approach and
Tarski's de�nitional one are intimately connected, as will become obvious
below.
On the formal side, logicians have investigated Tarski's theory and its vari-

ants using the methods of proof- and recursion theory. Moreover, Tarski's
work on truth in the thirties was the start of modern model theory. Some
of these results are relevant also to the de�ationary theories. For instance,
recently certain proof- and model-theoretic results on conservativeness have
proven to be important in the discussion on de�ationism.
Most formal work of the last quarter century focused on type-free the-

ories. In these theories the truth predicate can be applied to sentences that
contain the same truth predicate themselves.
In the following we browse through some important varieties of logico-

mathematical theories. They include Tarski's theory, the relatively vague
family of de�ationist theories, as well as formal axiomatic and semantical
theories of truth.

Tarski's theory of truth
Tarski's theory is the point of departure for most, if not all, recent work on
truth. Rather than giving a historically precise account of Tarski's theory we
elaborate those features that are most important for later developments. At
some points we mention results and tools not known or available to Tarski,
but which turn out to be important for Tarski's account.
We choose a setting that is different from Tarski's original framework but

which is more suitable for our present concerns. This allows us, for instance,
to de�ne truth directly, while Tarski had to take the detour via a satisfaction
predicate. Avoiding this detour is only possible in certain special cases.
Tarski's truth predicate pertains to a speci�c formal language, the so-

called object language. We choose the language LPA of arithmetic in order
to illustrate Tarski's approach. Besides the usual vocabulary of �rst-order
predicate logic with identity, it has a constant symbol 0 for zero, a function
symbol S for the successor function, and the binary function symbols+ and ·
for the operations of addition and multiplication, respectively. We do not
presuppose that the object language is interpreted in any way or that a
deductive system for it is given. We only need to know what the well-formed
expressions of LPA are.
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The truth predicate does not belong to the object language LPA. It forms
part of the metalanguage LM. In the simplest case the object language is
a sublanguage of the metalanguage, i. e., all formulas of the object language
are also formulas of the metalanguage. If the metalanguage does not include
the object language, then a translation of the object- into the metalanguage is
required. Whether a translation is correct depends of course on the meaning
of the sentences of the object language, whatever �meaning� is. Thus the
need for a translation has caused many worries. We stick to the simple case
and assume that LPA is a sublanguage of the metalanguage LM.
Tarski develops his theory at �rst in natural language enriched by some

mathematical symbols. However, Tarski is aware of the requirement for a
precisely de�ned metalanguage that allows for strict formal proofs in it.
For the metalanguage LM Tarski needs some rules governing the use

of the expressions of the object language. Tarski assumed that we have
axioms and rules in the language LM that allow for derivations within the
metalanguage. He called the resulting theory �Metawissenschaft�, which
is usually translated as �metatheory�. Tarski stated some conditions that
should be satis�ed by the metatheory. It is a deductive system with axioms
and rules for LM. This theory contains the theory of the object language (if
there is any) and allows to prove certain facts about expressions.
In order to distinguish the metatheory from the pure uninterpreted and

unaxiomatized metalanguage, we denote the former by MT and the latter
by LM.
Tarski assumed that the metalanguage LM has a name for each sentence

of the object language. However, not any kind of name will do. It must
be possible to read off the form of the sentence from its name. For this
purpose Tarski introduced his structural-descriptive names. We do not discuss
Tarski's original approach but we present two examples of naming systems
that comply with the requirement that one must be able to recover the shape
of an expression from its name.
In natural language the quotational name of a sentence satis�es the con-

dition that the name has to reveal the structure of the sentence: the singular
term

�Snow is white�

designates the sentence within the quotation marks and thus the name dis-
plays the exact shape of the sentence.
For mathematical languages, codings are used. A coding (or Gödel num-

bering) associates with any expression e of, say, LPA a natural number peq in
an effective way. The details of a typical coding are given, e.g., by Smory«ski
1985. For the number peq we have a name in the language LPA: for any
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number n, the expression

S(S(. . . S(︸ ︷︷ ︸
n times

0) . . .))︸ ︷︷ ︸
n

is its numeral n. For instance, the numeral 3 of the number 3 is the LPA-
expression S(S(S(0))). Via the coding we obtain names for sentences in the
language LPA: we employ the numeral pAq of the code pAq as a name for any
sentence A of LPA.
Since the metalanguage LM contains the object language LPA and there-

fore also all numerals, LM has names for all sentences of the object lan-
guage LPA.
Tarski aimed at a de�nition of truth. A (potential) de�nition of truth

in the metalanguage LM plus the symbol T is a de�nition of the primitive
predicate symbol T in the metalanguage LM which takes the following form:

∀x
(
Tx↔ TDef (x)

)
, (1)

where TDef (x) is a complex formula in the metalanguage LM, containing
one free variable (x). The resulting theory is a de�nitional extension of
the theory MT. We are sloppy and call the formula TDef (x) itself a truth
de�nition.
Of course, the sentence (1) is the general pattern for introducing new

unary predicates by an explicit de�nition. Thus, obviously, not just any
choice of TDef (x) is acceptable as a de�nition of truth. However, there may
be different acceptable choices. What are the distinguishing features of an
adequate de�nition of truth?
Tarski's answer to this question is his material adequacy condition.

Whether a de�nition is materially adequate depends on the metatheory MT.
The metatheory must prove certain things about the predicate TDef (x) that
is supposed to de�ne truth.
In the terms of our present setup involving LPA as object language and a

metalanguage including LPA, Tarski's condition can be rephrased as follows:

A de�nition of truth is adequate if and only if the sentence

TDef (pAq) ↔ A

is provable in MT for every sentence A of LPA.

The sentences TDef (pAq)↔A are Tarski's famous T-sentences; together
they form the T-scheme. Tarski (1935) requires for the adequacy also that
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MT proves that only sentences (or their codes) are true; we neglect this
additional restriction, which is also not essential according to Tarski.
Whether there is a materially adequate truth de�nition patently depends

on the metatheory. One obvious choice does not work: if MT is a theory
in the language LPA extending the theory R of arithmetic (Robinson's arith-
metic), then it can contain no adequate de�nition of truth. This observation
is a slight variant of Tarski's famous theorem on the unde�nability of truth
for LM.
Robinson's arithmetic R is an extremely weak theory. It is much weaker

than the better-known theory Peano arithmetic (PA). Thus the theorem on
unde�nability tells us that the metalanguage LM must properly extend the
object language LPA, if there is to be an adequate truth de�nition. Moreover,
the metatheory MT must feature axioms and/or rules for this additional
vocabulary that allow to derive all T-sentences.
In order to de�ne truth, Tarski �rst de�ned the notion of satisfaction,

and from this he de�ned truth. As pointed out above, we can avoid this
detour and de�ne truth directly by induction on the complexity of sentences:

1. If s and t are closed terms of LPA with the same value, then s= t is
true.

2. If the sentence A is not true, then ¬A is true.

3. If A and B are true, so is A ∧B.

4. If all sentences A(n) are true, so is ∀xA(x).

Here A and B are sentences of LPA. In the last clause it is assumed that
bound variables are renamed in the case of a variable collision.
This recursive de�nition of truth can be formalized in a suf�ciently strong

subtheory of second-order arithmetic. The theory ACA (not used by Tarski)
that features a comprehension scheme for arithmetical sets and an induction
scheme for all second-order formulas suf�ces for proving the existence of
a set of formulas satisfying the above clauses. Thus one can construct a
formula True(x) in the language of second-order arithmetic such that the
theory ACA proves the following equivalence for all sentences of LPA:

True(pAq) ↔ A.

Therefore True(x) (or rather the result of substituting True(x) for TDef (x)
in Formula 1 on the facing page) is a materially adequate de�nition of truth.

ACA is not the weakest subsystem of second-order arithmetic that allows
for a materially adequate de�nition of truth in Tarski's sense. Tarski was
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aware of the fact that different metatheories can provide materially adequate
theories. Later logicians like Mostowski (1950) gave a more detailed analysis
of what exactly is needed in the metatheory, though the latter worked in a
set-theoretic context.
This rough sketch of Tarski's theory and its later developments concludes

our exposition of the (type-free) semantical theory of truth. Tarski's paper
also contained a few tentative remarks on axiomatic theories.
Tarski tried to dispel the neopositivist distrust of truth by providing a

de�nition of truth, at least for certain restricted areas of application. But
in his article �The Concept of Truth in Formalized Languages� he already
considered axiomatic approaches, which he �nally rejected. For instance,
Tarski considered the option of taking the T-sentences as axioms.
One may speculate that he was sceptical of such approaches and opted

for a reduction of the concept of truth by de�nition because it was not
fashionable in neopositivism to take truth as a primitive unde�ned symbol.
Tarski's of�cial arguments against axiomatic approaches, however, are

different. According to Tarski, the T-sentences do not prove certain impor-
tant principles. For instance, they do not prove the universal sentence saying
that for any sentence the sentence itself or its negation is true. Furthermore
Tarski suggests that any strengthening of the T-sentences will remain incom-
plete and leave out other important principles (see also Halbach 2000a). He
apparently did not suspect that �nice� axiomatizations of truth would be
found. This topic recurs today in the discussion of de�ationism, as we shall
show below.

De�ationism
Unlike Tarski, most de�ationists today do not attempt to de�ne truth. Two
factors have played a role here. First, Tarski's theory diminished the distrust
in the notion of truth. His work was taken to have shown that truth is a
safe concept. Second, as time went by, a shift in attitude toward second-
order logic gradually took place. Until the thirties, second-order logic was
regarded as relatively unproblematic, and even as a part of logic according
to logicism. Second-order logic was used without reservations by Russell
and Whitehead, for instance. But from the �fties onwards, second-order
logic was regarded with mounting suspicion. It became increasingly clear
that systems of second-order logic are quite powerful. From a philosophical
point of view, Quine insisted that second-order logic is really set theory
in disguise, and therefore is not without ontological commitments. Thus
second-order logic and axiomatized systems of second-order logic slowly
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came to be regarded with apprehension. But if a de�nition of truth is
considered unattainable because of such a de�nition's entanglement with
second-order logic, why not take truth to be a primitive notion?
In the following we will explore the main varieties of axiomatic theories

of truth. Fortunately de�ationists can build on the work of logicians, in
particular proof theorists, who have worked on axiomatic theories of truth.
Their aim was not to provide foundations for de�ationism. Rather they
mostly focused on the role of truth in the foundations of mathematics,
where truth turned out to be as useful as certain kinds of second-order
quanti�cation. However, their work comes in handy for the de�ationist.

Typed axiomatic theories of truth
By typed theories we mean deductive systems that do not prove the truth of
any sentence containing the truth predicate T. Typed systems cannot prove

T pT p0 = 0qq,

for instance. They are opposed to type-free systems, which are also known
as theories of self-referential truth.
We shall start to sketch simple and deductively weak truth theories and

then proceed to the stronger and more sophisticated theories (see Sheard
1994 and Halbach 2000b for more extensive overviews). The reader less
interested in the technical elaborations may skip this section.
Suppose we want to construct an axiomatic theory of truth for LPA.

By employing the T-sentences as the sole axioms for truth, one obtains a
minimal theory of truth, for every materially adequate theory of truth must
contain the T-sentences as theorems. Thus a theory of truth based only on
the T-sentences is materially adequate and contains no super�uous additional
commitments.
Formally, this theory is formulated in the expanded languageLT, which is

the language LPAof arithmetic plus an additional unary predicate symbol T.
The theory is the closure under �rst-order logic of PA plus the in�nite
collection of all sentences of the form

T pAq ↔ A,

with A any sentence of LPA. Let us call this theory the Disquotational Theory
of Truth (DT) for LPA.
There are a couple of remaining issues to be settled here. First, one may

wonder whether in instances of the induction scheme of DT, occurrences of
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the truth predicateT are allowed. Call the theory which is just like PA, except
that T may occur in instances of the induction scheme, PAT. Obviously DT,
which is based on PA, is weaker than the corresponding system based on PAT.
One may also wonder whether in the biconditionals, A can be allowed to
contain free variables. The problem, of course, is how to bind free variables
in pAq. In arithmetic this can be achieved. For instance, if x is free in A
then one says formally that the result of substituting the numeral x for the
variable x in A is true. This way, one can quantify into the �Gödel corners�.
We indicate that A may contain free variables that can be bound from

outside by using the bracket notation �[A]�. Thus one may look at the
universal closure of the following sentences, where A is a formula of LPA

with arbitrary free variables:

T[A] ↔ A.

Augmenting PA by these stronger axioms yields a theory proving more
sentences. But again it does not prove more arithmetical sentences than PA
or DT (see Halbach 1999a).

DT and its variants are attractive for de�ationists: the axioms are simple,
truly de�ationary, and they rely on the �disquotational feature� of truth.
This �ts many de�ationary accounts of truth where truth is described as
nothing more than a device of disquotation. Furthermore, DT and the
variants mentioned do not really have substantial consequences in a sense to
be explained below. The deductive weakness, however, is also the Achilles'
heel of de�ationary accounts of truth based on the T-sentences as the only
axioms.
This became clear when opponents of de�ationism, e.g., Gupta (1993a),

attacked de�ationist accounts like Horwich's (1998b) minimalism because
they seem to rely on axioms akin to the T-sentences. Nevertheless, it is
important to bear in mind that in his contribution to this volume, Horwich
emphasizes that his aim was, and is, not to construct a theory of truth, in the
sense of a set of fundamental theoretical postulates on the basis of which all
other facts about truth can be explained. Rather, as he puts it, his approach
purports to specify which of the nonsemantic facts about the word `true'
is responsible for its meaning what it does. And his suggestion is that our
allegiance to the T-sentences is the key here.
In order to illustrate the deductive weakness of DT, we employ a further

notational convention for the bracket notation: if a sentence A occurs only
within the brackets �[ . . . ]� within another formula, then A is treated like a
free variable. For instance, in T[¬A]→¬T[A] we may quantify over A. If
we pre�x a quanti�er ranging over (codes of ) sentences A of LPA then we
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obtain the sentence saying that for all sentences A, if ¬A is true then A itself
is not true. We refer the reader to the literature for an exact account.

DT is deductively weak because it does not prove certain general prin-
ciples that may be expected to be provable in a good theory of truth.
This observation, as well as the following example, is due to Tarski (1935).
DT does not prove the following sentence pre�xed by a universal quanti�er
ranging over all sentences A of LPA:

T[A] ∨ T[¬A]; (2)

DT only proves the corresponding scheme, i. e., DT only proves

T pAq ∨ T p¬Aq

for all sentences A of LPA, but not the universal principle. This deductive
limitation holds also for the stronger variant of DT considered above, which
is based on PAT and in which the T-sentences take the form of universal
closures.
Already Tarski (1935) rejected theories that are based on the T-sentences

as the only axioms for truth. If the T-sentences are the only acceptable truth
axioms for the de�ationist, then, epigrammatically speaking, Tarski refuted
de�ationism prior to its birth.
If one wants one's truth theory to prove such general principles like the

above law of excluded third, then one has to add further axioms. Conse-
quently de�ationists tried to overcome this de�ciency by opting for stronger
theories. For instance, Field (1994a), Tennant (2002) and McGrath (1997)
(building on Sosa 1993) have proposed theories that prove more than just
the T-sentences or similar principles. These theories overcome the deductive
weakness of the truth theories that have been used by de�ationists previously.
By Gödel's incompleteness theorems all theories extending DT are in-

complete. Thus a sound theory can never be complete in the sense that it
decides all sentences formulated in LT. However, one can still hope to arrive
at a complete theory in the sense that the theory proves all truth-theoretic
principles we may ever think of. Such a theory would not prove certain
sentences, because of the �rst incompleteness theorem. However, we do
not expect a good theory of truth to decide those sentences. For there is no
good truth-theoretic axiom for the truth predicate of LPA that settles these
sentences, or so one might argue.
In fact, the theory PA(S) which we are going to describe now may have

such a status. It does not decide all sentences of LPA, let alone all sentences
of LT. The examples of such undecided sentences fall into two categories:
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either they are Gödel sentences, consistency statements, etc., or they are
strong combinatorial principles. We should not expect that these sentences
can be decided by invoking a truth predicate for LPA. All known proofs of
them rely on a truth predicate for more inclusive languages like LT, or on
further assumptions like strong second-order axioms.
We now turn to the formulation of the theory PA(S). Aside from Tarski's

material adequacy condition, another core intuition concerning truth is that
the truth predicate distributes over the logical connectives and the quanti�ers.
That is, for instance, a sentence A∧B is true if and only if both A and B are
true. This intuition lies behind Tarski's inductive de�nition of truth sketched
on page 15.
The theory PA(S) is obtained by turning the clauses for every connective

and quanti�er into axioms. For simplicity we assume that LPA has only ¬, ∧
and ∀ as its logical symbols. Like DT, the theory PA(S) is again a typed
theory, that is, it is a theory of truth for the language LPA.

PA(S) is formulated in LT. It is the �rst-order closure of PA with
induction in LT plus the axioms obtained by closing the following formulas
with quanti�ers restricted to sentences (and formulas with at most one free
variable, in the last clause) of LPA:

1. T[A] ↔ A, if A is an atomic formula of LPA,

2. T[A∧B] ↔ T[A] ∧ T[B],

3. T[¬A] ↔ ¬T[A],

4. T[∀xA] ↔ ∀yT
[
A(y/x)

]
.

The last axiom says that a universally quanti�ed formula is true if and only if
all its instances are true. If x occurs in A in the scope of a quanti�er ∀y, then
we rename the variable y before y is �nally substituted for x. Of course,
A(y/x) then is the result of this substitution.1

PA(S) is also called the Compositional Theory of Truth. The axioms reduce
the truth of complex sentences to the truth of less complex sentences.
Since the axioms of PA(S) prove all T-sentences, DT is a subtheory

of PA(S). The theory PA(S) is much stronger than DT. For instance,
1[This note is intended for the technically-inclined reader, and can be skipped by others

without loss of continuity.] One might wonder why a new variable y is needed and why one
does not employ T[∀xA] ↔ ∀xT[A] as an axiom instead. The difference may be seen by
looking at nonstandard models. In Axiom 4, xmay be a nonstandard variable because it occurs
only within the brackets �[ . . . ]�, while y has to be standard. Consequently, Axiom 4 tells us
that any sentence ∀xA is true (for any, possibly nonstandard, variable x) if and only if all its
numerical instances are true. In contrast, the alternative formulation says this only for standard
variables.
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Axiom 3 proves the principle of excluded third (Formula 2 on page 19),
which is not provable in DT.

Conservativeness
Variants of DT, and, to a lesser extent, PA(S), are the theories of truth of
choice for de�ationists, at least if one sticks to typed theories.
We have already mentioned some obvious proof-theoretic properties

of DT, its variants, and PA(S). In the recent discussion on de�ationism,
further proof-theoretic observations have been used.
Some de�ationists even claim that truth is a purely logical device. De�a-

tionists generally do not use mathematical tools for setting up their theory.
They axiomatize truth, and thus they do not need mathematics for de�ning
it. But this alone does not establish that their concept of truth is purely
logical. If truth actually is purely logical, then it should be �neutral�. It
should not decide �substantial� nonlogical matters; the theory should not
yield consequences underivable by pure logic (or perhaps a little bit more).
In technical terms, these philosophers claim that their theories of truth are
conservative.
Clearly, the weaker the theory, the more likely it is to be conservative.

Thus the T-sentences are the de�ationist's best bet with respect to conser-
vativeness.
However, the T-sentences themselves already prove �something about

theworld�: they prove that there are at least two different objects, because the
codes of a tautology and of a contradiction must be different (see Halbach
2001b). In other words, the T-sentences are nonconservative over the
underlying �rst-order logic. In the light of this trivial observation it is highly
implausible to say that truth is a logical concept. For even disquotational
truth is not ontologically neutral, as one might expect from a logical notion.
The ontological commitment of the T-sentences is very small: they do not

prove the existence of further objects, i. e., the T-sentences do not exclude
that all true sentences are identical (and the same for all false sentences).
Now, even �rst-order predicate logic is not completely neutral; for it already
proves that at least one thing exists.2 In the light of this, we should not
be concerned too much because our theory of truth proves the existence
of a further object. This becomes plausible if we agree with Tarski that
a theory of truth without an underlying theory of the objects which may

2For this reason many philosophers claim that free logic, which does not prove the existence
of anything, is more adequate as pure logic.
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be true does not make much sense. Tarski wanted such a theory to form
part of his metatheory. Thus a de�ationist could still try to save a kind of
conservativeness by claiming that a notion of truth should be conservative
over the underlying arithmetical theory, Peano arithmetic.
Somehow, the minimal ontological commitment of the T-sentences has

to be tolerated by all de�ationists. However, as the contributions to this
volume bear out, there is disagreement in the de�ationist camp whether an
acceptable theory of truth ought to be conservative over the arithmetical
theory to which it is added. If it were conservative then truth would be
neutral at least in the context of a certain presupposed theory. At least in
the context of PA truth would be like a logical notion because it would not
allow for new mathematical insights. In this respect truth would be free of
mathematical commitments.
The theory DT is successful in this respect: DT is conservative over PA,

that is, DT does not prove any sentence that is not already a consequence
of PA. As we have seen, however, DT is hardly suf�cient as a theory of truth
because it is deductively too weak.
Thus we turn to PA(S). This theory proves new arithmetical truths that

are not provable in PA, whence it is not arithmetically conservative over PA.
In fact PA(S) is proof-theoretically strong: it does not only prove the
consistency of PA, but many more and stronger arithmetical truths (see, e.g.,
Feferman 1991). In this sense, it appears that truth yields new �substantial�
insights.
Ketland (1999) and Shapiro (1998) have attacked de�ationism on these

grounds: How can a theory of truth be �de�ationary� if it proves mathe-
matically substantial theorems? The commitments of the theory PA(S) are
the same as those of the second-order theory ACA mentioned earlier (see
again Feferman 1991). Hence the truth predicate of PA(S) is surely not
de�ationary with respect to its mathematical consequences.
In response, Field (1999) maintains that de�ationism implies only that

PA(S) without the induction axioms involving truth has to be conservative
over PA. However, it must be kept in mind here that although this theory is
indeed conservative over PA, this fact is far from obvious. Kotlarski, Krajew-
ski, and Lachlan (1981) employed an ingenious model-theoretic argument in
order to prove that PA(S) with arithmetical induction only is conservative
over PA.3 That the proof cannot be trivial follows from a deep theorem

3In the �rst edition we erroneously wrote that PA(S) is conservative over PA, where we
should have written that PA(S) with induction restricted to the arithmetical language is conser-
vative. The mistake was pointed out by Gabriel Uzquiano in his review in the Notre Dame
Philosophical Reviews published at http://ndpr.icaap.org/content/archives/2003/4/uzquiano-
halbach.html.
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proved by Lachlan (1981), according to which only very special models of PA
can be expanded to models of PA(S). Recently, proof-theoretic arguments
for the conservativeness of PA(S) (with arithmetical induction only) over PA
have also become available (Halbach 1999a).
Some de�ationists, however, explicitly distance themselves from the com-

mitment that an acceptable theory of truth must be arithmetically conserva-
tive. It seems that in this context, the distinction between considering truth
to be a logical notion and considering truth to be a logico-mathematical notion
really makes a difference.
Even the truth predicate of PA(S) is de�ationary in the sense that it is

mathematical. I.e., the theory is independent of the physical world and does
not depend on any contingent features.

Semantic theories of type-free truth
Tarski's inductive de�nition of truth is a semantic theory. The axiomatic
counterpart is the theory PA(S) because PA(S) has the inductive clauses
as axioms. The recursion-theoretic properties of the semantic construction
and the proof-theoretic properties of the corresponding typed theories are
fairly well understood.
Logicians sought new challenges by studying type-free theories of truth.

Many different theories have been developed and in this introduction we
cannot even attempt to sketch all of the most important ones. The reader
may turn to the monographs Brendel 1992, McGee 1991, Gupta and Belnap
1993, Cantini 1996, and Halbach 1996.
Here, we restrict ourselves to a particularly successful semantical theory

and its axiomatizations, namely Kripke's theory of truth. Several logicians
experimented with partial logic, supervaluations and trans�nite inductive
de�nitions in order to set up type-free theories of truth. Kripke (1975) took
up these developments, uni�ed them in a very general setting, and found
phenomena that had gone unnoticed. Moreover, he availed himself of the
theory of positive inductive de�nitions that had been studied in detail and in
generality shortly before by Moschovakis (1974) and others.
Kripke exploited the fact that Tarski's theorem on the unde�nability of

truth does not apply in an unquali�ed manner to partially interpreted lan-
guages. He constructed partial models for LPA of which it can be said
in a somewhat weakened sense that they make the unrestricted Tarski-
biconditional sentences true. His models are formed in stages, indexed
by ordinals. The simplest of Kripke's models, the so-called least-�xed-point
model of the strong Kleene scheme, is constructed along the following lines.
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One wants to build a model for the language LT. The arithmetical
vocabulary is interpreted throughout as in the standard model N; the truth
predicate T will be the only partially interpreted symbol: it will receive, at
each ordinal stage, an extension E and an anti-extensionA. The union E ∪A
does not exhaust the domain; otherwise T would be a total predicate. The
extension E of T is the collection of (codes of ) sentences which are (at the
given stage) determinately true; the anti-extension A of T is the collection
of (codes of ) sentences which are (at the given stage) determinately false.
A partial model M for LT can then be identi�ed with the ordered pair
(E ,A). In general, the union of the extension and the anti-extension will
not exhaust the collection of all sentences: some sentences will at each
ordinal stage retain their indeterminate status. An example of an eternally
indeterminate sentence is the Liar sentence L such that

PA ` L↔ ¬T pLq.

The intuition that the Liar argument tells us that the Liar sentence L cannot
have a determinate truth-value is the basic motivation for constructing a
theory of truth in which T is treated as a partial predicate.
At stage 0, one lets the extension E0 and the anti-extension A0 be empty.

This yields a partial model, M0 = (E0,A0) = (∅, ∅). Next, one uses a
popular evaluation scheme for partial logic, the so-called strong Kleene scheme.
The strong Kleene evaluation scheme �sk is de�ned as follows:

1. For any atomic formula Fx1 . . . xn: M �sk Fx1 . . . xn (resp.,M �sk

¬Fx1 . . . xn) iff the n-tuple (o1, . . . , on), where oi is assigned to xi for
i = 1, . . . , n, belongs to the extension (anti-extension) of F .

2. For all formulas A, B:

• M �sk A ∧B iff M �sk A andM �sk B;
• M �sk ¬(A ∧B) iff eitherM �sk ¬A orM �sk ¬B (or both);
• M �sk ∀xA iff for all n, M �sk A(n/x);
• M �sk ¬∀xA iff for at least one n, M �sk ¬A(n/x).

One now uses this strong Kleene scheme to determine the collection E1

of sentences of LT that are made true by M0, and the collection A1 of
sentences of LT the negation of which is made true byM0. Thus a new
partial modelM1 = (E1,A1) is obtained. UsingM1, a new extension E2

and a new anti-extension A2 are then determined on the basis ofM1, and
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so on. In general, for any ordinal α,

Eα+1 ≡
{
A ∈ LT

∣∣ Mα �sk A
}

and
Aα+1 ≡

{
A ∈ LT

∣∣ Mα �sk ¬A
}
.

For limit stages λ, we set

Eλ ≡
⋃
κ<λ

Eκ

and
Aλ ≡

⋃
κ<λ

Aκ.

This process eventually (after trans�nitely many stages) comes to a
stage ∞ where no new sentences enter the extension of T or the anti-
extension of T. The partial modelM∞ = (E∞,A∞) is called the least �xed
point of the strong Kleene hierarchy of partial models. For every sentence A
of LT,

• A is true inM∞ under the strong Kleene scheme if and only if T pAq
is true inM∞;

• ¬A is true inM∞ if and only if ¬T pAq is true inM∞;

• A is undetermined byM∞ if and only ifT pAq is undetermined byM∞.

In this precise sense, M∞ makes a weak form of the T-sentences true.
The Liar sentence L remains undetermined inM∞, as it should be, on the
underlying motivation of Kripke's approach.
There are alternatives to using the strong Kleene scheme in Kripke's con-

struction. Kripke himself emphasized that one could also use van Fraassen's
supervaluation scheme. The supervaluation scheme is de�ned as follows. For
all partial models M, N, say that M ⊆ N (�N extends M�) if for every
predicate F of the language, the extension (anti-extension) of F according
to M is a subset of the extension (anti-extension) of F according to N.
Then the supervaluation evaluation scheme �sv is obtained by changing the
inductive clause in the de�nition of the strong Kleene scheme into

2′. For any formulas A, B:

• M �sv A∧B iff for every total extension N ofM: N �A and
N �B;


