Statistical Methods for Six Sigma

In R&D and Manufacturing

Anand M. Joglekar

A JOHN WILEY & SONS, INC., PUBLICATION

Statistical Methods for Six Sigma

Statistical Methods for Six Sigma

In R&D and Manufacturing

Anand M. Joglekar

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2003 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, e-mail: permreq@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representation or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Joglekar, Anand M. Statistical methods for six sigma / Anand M. Joglekar. p. cm. ISBN 0-471-20342-4 (Cloth) 1. Quality control—Statistical methods. 2. Process control—Statistical methods. I. Title. TS156.J64 2003 658.5"62—dc21 2003003583

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

To the memory of my parents and to Jaya, Nikhil, and Neha

Contents

Prefa	ace	xiii
-	1	
Int	roduction	1
2	2	
Bas	sic Statistics	13
2.1	Descriptive Statistics	15
	2.1.1 Measures of Central Tendency	15
	2.1.2 Measures of Variability	16
	2.1.3 Histogram	20
2.2	Statistical Distributions	23
	2.2.1 Normal Distribution	24
	2.2.2 Binomial Distribution	26
	2.2.3 Poisson Distribution	26

2.3	Confidence Intervals	29
	2.3.1 Confidence Interval for μ	29
	2.3.2 Confidence Interval for σ	34
	2.3.3 Confidence Interval for p and λ	35
2.4	Sample Size	37
	2.4.1 Sample Size to Estimate μ	37
	2.4.2 Sample Size to Estimate σ	38
	2.4.3 Sample Size to Estimate p and λ	39
2.5	Tolerance Intervals	40
2.6	Normality, Independence, and Homoscedasticity	42
	2.6.1 Normality	43
	2.6.2 Independence	46
	2.6.3 Homoscedasticity	46

Comparative Experiments and Regression Analysis			49	
3.1	Нуро	thesis Testing Framework	50	
3.2	Comp	paring Single Population	54	
	3.2.1	Comparing Mean (Variance Known)	54	
	3.2.2	Comparing Mean (Variance Unknown)	57	
	3.2.3	Comparing Standard Deviation	59	
	3.2.4	Comparing Proportion	60	
3.3	Com	paring Two Populations	62	
	3.3.1	Comparing Two Means (Variance Known)	62	
	3.3.2	Comparing Two Means (Variance Unknown but Equal)	64	
	3.3.3	Comparing Two Means (Variance Unknown and Unequal)	66	
	3.3.4	Comparing Two Means (Paired <i>t</i> -test)	68	
	3.3.5	Comparing Two Standard Deviations	69	
	3.3.6	Comparing Two Proportions	71	
3.4	Com	paring Multiple Populations	72	
	3.4.1	Completely Randomized Design	73	
	3.4.2	Randomized Block Design	75	
	3.4.3	Multiple Comparison Procedures	75	
	911	Comparing Multiple Standard Deviations	77	

	0.4.4	Comparing Multiple Standard Deviations	11
3.5	Corre	lation	78
	3.5.1	Scatter Diagram	78
	3.5.2	Correlation Coefficient	80

3.6	Regre	ession Analysis	83
	3.6.1	Fitting Equations to Data	83
	3.6.2	Accelerated Stability Tests	89

Control Charts		95
4.1	Role of Control Charts	95
4.2	Logic of Control Limits	101
4.3	 Variable Control Charts 4.3.1 Average and Range Charts 4.3.2 Average and Standard Deviation Charts 4.3.3 Individual and Moving Range Charts 	104 104 107 109
4.4	Attribute Control Charts4.4.1Fraction Defective (p) Chart4.4.2Defects per Product (u) Chart	113 114 118
4.5	Interpreting Control Charts4.5.1Tests for the Chart of Averages4.5.2Tests for Other Charts	121 121 125
4.6	Key Success Factors	126

5

Pro	ocess	S Capability	135
5.1	Capal	bility and Performance Indices	136
	5.1.1	C_p Index	136
	5.1.2	\hat{C}_{pk} Index	137
	5.1.3	P_p Index	138
	5.1.4	P_{pk} Index	139
	5.1.5	Relationships between C_p, C_{pk}, P_p , and P_{pk}	140
5.2	Estim	ating Capability and Performance Indices	141
	5.2.1	Point Estimates for Capability and Performance Indices	141
	5.2.2	Confidence Intervals for Capability and Performance Indices	143
	5.2.3	Connection with Tolerance Intervals	145
5.3	Six-Si	gma Goal	147
5.4	Plann	ing for Improvement	149

Otł	ner U	Jseful Charts	153
6.1	Risk-	based Control Charts	154
	6.1.1	Control Limits, Subgroup Size, and Risks	154
	6.1.2	Risk-Based \overline{X} Chart	156
	6.1.3	Risk-Based Attribute Charts	158
6.2	Modif	ied Control Limit \overline{X} Chart	159
	6.2.1	Chart Design	160
	6.2.2	Required Minimum C_{pk}	162
6.3	Movir	ng Average Control Chart	163
6.4	Short	-Run Control Charts	166
	6.4.1	Short-Run Individual and Moving Range Charts	168
	6.4.2	Short-Run Average and Range Charts	171
	6.4.3	Short-Run Attribute Charts	172
6.5	Chart	s for Nonnormal Distributions	172

7

Variance Components Analysis			177
7.1	X Cha 7.1.1 7.1.2	art (Random Factor) Nested Structure Estimating Variance Components	178 179 181
7.2	One-\	Nay Classification (Fixed Factor)	183
7.3	Struc 7.3.1	tured Studies and Variance Components Fixed and Random Factors	186 186
	$7.3.2 \\ 7.3.3 \\ 7.3.4 \\ 7.3.5$	One-Way Classification Nested Classification Crossed Classification	188 190 194 195

8

Quality Planning with201Variance Components

8.1 Typical Manufacturing Application 202

8.2	Economic Loss Functions 8.2.1 Classical Loss Function	209 209
	8.2.2 Quadratic Loss Function	212
	8.2.3 Variations of the Quadratic Loss Function	215
8.3	Planning for Quality Improvement	217
8.4	Application to Multilane Manufacturing Process	220
8.5	Variance Transmission Analysis	226
8.6	Application to a Factorial Design	229
8.7	Specifications and Variance Components	234

Me	asurement Systems Analysis	241
9.1	Statistical Properties of Measurement Systems	241
9.2	Acceptance Criteria9.2.1Acceptance Criteria for σ_m 9.2.2Acceptance Criteria for Bias9.2.3Acceptance Criteria for Measurement Units9.2.4Acceptance Criteria for Destructive Testing	245 245 250 251 252
9.3	Calibration Study	253
9.4	Stability and Bias Study	257
9.5	Repeatability and Reproducibility (R&R) Study	262
9.6	Robustness and Intermediate Precision Studies	267
9.7	Linearity Study	268
9.8	Method Transfer Study	270
9.9	Calculating Significant Figures	272

10

Wh	at Color Is Your Belt?	277
10.1	Test	278
10.2	Answers	290

Appendix A. Tail Area of Unit Normal Distribution	303
Appendix B. Probability Points of the <i>t</i> Distribution with <i>v</i> Degrees of Freedom	304
Appendix C. Probability Points of the χ^2 Distribution with ν Degrees of Freedom	305
Appendix D1. <i>k</i> Values for Two-Sided Normal Tolerance Limits	306
Appendix D2. <i>k</i> Values for One-Sided Normal Tolerance Limits	307
Appendix E1. Percentage Points of the <i>F</i> Distribution: Upper 5% Points	308
Appendix E2. Percentage Points of the <i>F</i> Distribution: Upper 2.5% Points	309
Appendix F. Critical Values of Hartley's Maximum <i>F</i> Ratio Test for Homogeneity of Variances	310
Appendix G. Table of Control Chart Constants	311
Glossary Of Symbols	313
References	317
Index	319

Preface

Over the past several years, in my attempts to implement statistical methods in industry, I have had the pleasure of working with a variety of people. Some were curious and asked penetrating questions about all the assumptions behind each statistical method. Others did not need the details and were satisfied with the recipe to solve specific design or analysis problems. Still others, at first blush, seemed not to care, but once convinced, became some of the best users of statistical methods. This book owes a lot to all these interactions.

When I first came to America, from IIT, in Mumbai, India, I was fortunate to be an engineering graduate student at the University of Wisconsin, Madison. There was a strong collaboration between the engineering and the statistics departments at Madison, which allowed us to learn how to apply statistical methods to engineering and scientific problems. Later, as an internal and external consultant, I collaborated with a large number of engineers, scientists, managers, and other technical people from a wide variety of industries. I started teaching statistical methods to industry participants. For a number of years, I have used earlier versions of this book to teach statistical methods to thousands of industry participants. The practical problems the participants raised and the questions they asked have helped shape the selection of topics, examples, and the depth and focus of the explanations in this book. I wish to thank the many collaborators and seminar participants.

This book on the applications of statistical methods is specifically