
Lecture Notes in Computational Vision and Biomechanics 25

Jude Hemanth
Valentina Emilia Balas    Editors 

Biologically 
Rationalized 
Computing Techniques 
For Image Processing 
Applications



Lecture Notes in Computational Vision
and Biomechanics

Volume 25

Series editors

João Manuel R.S. Tavares, Porto, Portugal
Renato Natal Jorge, Porto, Portugal

Editorial Advisory Board

Alejandro Frangi, Sheffield, UK
Chandrajit Bajaj, Austin, USA
Eugenio Oñate, Barcelona, Spain
Francisco Perales, Palma de Mallorca, Spain
Gerhard A. Holzapfel, Graz University of Technology, Graz, Austria
J. Paulo Vilas-Boas, Porto, Portugal
Jeffrey A. Weiss, Salt Lake City, USA
John Middleton, Cardiff, UK
Jose M. García Aznar, Zaragoza, Spain
Perumal Nithiarasu, Swansea, UK
Kumar K. Tamma, Minneapolis, USA
Laurent Cohen, Paris, France
Manuel Doblaré, Zaragoza, Spain
Patrick J. Prendergast, Dublin, Ireland
Rainald Löhner, Fairfax, USA
Roger Kamm, Cambridge, USA
Shuo Li, London, Canada
Thomas J.R. Hughes, Austin, USA
Yongjie Zhang, Pittsburgh, USA



The research related to the analysis of living structures (Biomechanics) has been a source of
recent research in several distinct areas of science, for example, Mathematics, Mechanical
Engineering, Physics, Informatics, Medicine and Sport. However, for its successful
achievement, numerous research topics should be considered, such as image processing
and analysis, geometric and numerical modelling, biomechanics, experimental analysis,
mechanobiology and enhanced visualization, and their application to real cases must be
developed and more investigation is needed. Additionally, enhanced hardware solutions and
less invasive devices are demanded.

On the other hand, Image Analysis (Computational Vision) is used for the extraction of
high level information from static images or dynamic image sequences. Examples of
applications involving image analysis can be the study of motion of structures from image
sequences, shape reconstruction from images, and medical diagnosis. As a multidisciplinary
area, Computational Vision considers techniques and methods from other disciplines, such as
Artificial Intelligence, Signal Processing, Mathematics, Physics and Informatics. Despite the
many research projects in this area, more robust and efficient methods of Computational
Imaging are still demanded in many application domains in Medicine, and their validation in
real scenarios is matter of urgency.

These two important and predominant branches of Science are increasingly considered to be
strongly connected and related. Hence, the main goal of the LNCV&B book series consists
of the provision of a comprehensive forum for discussion on the current state-of-the-art in these
fields by emphasizing their connection. The book series covers (but is not limited to):

• Applications of Computational Vision and
Biomechanics

• Biometrics and Biomedical Pattern Analysis
• Cellular Imaging and Cellular Mechanics
• Clinical Biomechanics
• Computational Bioimaging and Visualization
• Computational Biology in Biomedical Imaging
• Development of Biomechanical Devices
• Device and Technique Development for

Biomedical Imaging
• Digital Geometry Algorithms for Computa-

tional Vision and Visualization
• Experimental Biomechanics
• Gait & Posture Mechanics
• Multiscale Analysis in Biomechanics
• Neuromuscular Biomechanics
• Numerical Methods for Living Tissues
• Numerical Simulation
• Software Development on Computational

Vision and Biomechanics

• Grid and High Performance Computing for
Computational Vision and Biomechanics

• Image-based Geometric Modeling and Mesh
Generation

• Image Processing and Analysis
• ImageProcessing andVisualization inBiofluids
• Image Understanding
• Material Models
• Mechanobiology
• Medical Image Analysis
• Molecular Mechanics
• Multi-Modal Image Systems
• Multiscale Biosensors in Biomedical Imaging
• Multiscale Devices and Biomems for

Biomedical Imaging
• Musculoskeletal Biomechanics
• Sport Biomechanics
• Virtual Reality in Biomechanics
• Vision Systems

More information about this series at http://www.springer.com/series/8910
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Artificial Bee Colony Algorithm
for Classification of Semi-urban LU/LC
Features Using High-Resolution
Satellite Data

J. Jayanth, T. Ashok Kumar, Shivaprakash Koliwad and V.S. Shalini

Abstract Attempts to classify high-resolution satellite data with conventional
classifier show limited success since the traditional-per-pixel classifiers examine
only the spectral variance ignoring the spatial distribution of the pixels corre-
sponding to the land use/land cover classes. The work is carried out in two stages
on panchromatic sharpened IRS P-6 LISS-IV (2.5 m) multispectral (MS) imagery
of the year 2014 of Mangalore coastal zone along the west coast of Karnataka state
of India. In the first stage, in order to overcome the limitations experienced in the
parametric and nonparametric classifications, the swarm intelligence optimisation
technique based on Artificial Bee Colony (ABC) algorithm has been studied for
twelve land cover classes that are mapped. In the second stage, to bring out a greater
separability between the spectrally overlapping classes, a texture-based image
classification approach has been introduced and a methodology is developed to
determine the optimal window size, interpixel distance and the best combinations of
texture bands in multispectral data. The five texture measures, viz. entropy (ENT),
angular second moment (ASM), contrast (CON), MEAN and homogeneity
(Hmg) derived from the grey-level co-occurrence matrix (GLCM), are investigated
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in the study. The major observations and contributions of this work are as follows:
in the first stage, the image classifier employing the ABC algorithm exhibits higher
classification accuracy when compared with maximum likelihood classifier. In the
second stage, the results show that combining textural features and spectral bands in
classification approach has proven very useful in delineating the spectrally over-
lapping classes, particularly at higher class hierarchy level.

Keywords Artificial Bee Colony � MLC � GLCM � Texture

1 Introduction

In recent years, remote sensing data classification became attractive due to its
technical, economic and environmental benefits. Basically, this process is difficult
because regions of a landscape are frequently not properly segregated which may
lead to overlap in the specified region of interest. Precisely, for each pixel,
grey-level values are allocated depending on the mediocre reflectance of different
land cover classes on the given study area. Supervised, unsupervised and
semi-supervised are the three popular learning techniques for land cover classifi-
cation [1–3]. Classification of Remotely Sensed (RS) data has been carried out by
several authors through computational artificial intelligence techniques such as
fuzzy logic [4], neural network [5], support vector machine [6], K-means [7].
Metaheuristics have been also widely used for remote sensing data classification,
for example particle swarm optimisation [8], ant colony optimisation [9], bee
colony [10], artificial immune system [11] and genetic algorithm [12].

RS data classification for specified boundaries of classes with overlapping regions
has been a challenging task for the research communities [13, 14]. This provides a
reason to develop a classification model, which takes concern of this issue. Literature
survey also indicates that texture information [5, 6, 8, 9, 15], surface temperature [6],
digital elevation model (DEM) [12] have been studied as ancillary data in the RS
data classification which is captured by different sensors. Among the several types of
ancillary data, the grey-level co-occurrence matrix (GLCM)-based texture statistics
derived from the image data are reported to be performing satisfactorily in RS
classification [11]. Ultimate goal in all classification techniques is to best utilise the
spectral, spatial and temporal resolutions and polarisation signature of the data and
other inherent characteristics associated with it, and devise classification techniques
which show improvements in accuracy, stability and speed. The motivation behind
this work is to provide a faultless classifier, which can furnish accurate information
about various land use/land cover (LU/LC) which is a prerequisite and indispensable
issue in the efficient monitoring and management of natural resources and quick
delivery of the end products. But it seems that the present traditional approach of
classification fails to make the best use of the rich data obtained through the modern
sensor and cripples in taking advantage of the capabilities of today’s high-speed
computational machines. In the above context, the current research work is primarily

2 J. Jayanth et al.



aimed at developing an efficient and reliable classification strategy by integrating
advanced image processing techniques through swarm intelligence to facilitate
improving classification accuracy of high spatial resolution of RS data over
semi-urban LU/LC features. In this regard, ABC algorithm is used to classify data
and image texture analysis is used for characterising the spatial variations for
extracting the information from the data.

2 Maximum Likelihood Classifiers

The maximum likelihood classifier (MLC) is one of the most commonly used
algorithms for supervised classifications in RS data analysis [5–8]. Classification
error is been reduced in MLC algorithm, assuming that the spectral data in the
content has been distributed normally. Due to this impression, analyst chooses the
most homogenous training sites by picking up many smaller training sites rather
than few larger training sites. Due to this assumption, distribution of classes is been
categorised depending on the pattern which is entirely outlined by the MEAN vector
and the covariance matrix [6]. Hence, MLC needs a training data set that contains a
relationship between the multivariate object properties and known classes. Jayanth J
et al. [8] mentioned that MLC algorithm provides less accurate results for various
land cover classes. MLC algorithm provides an accurate result when compared with
parallelepiped classifier, but computational time is more [9]. However, one of the
major drawbacks in MLC is the complexity involved due to multimodal distribution
in the classes which may lead to poor classified results [7]. Hence, MLC method
itself cannot solve the problem of spectral confusion in RS classification.

3 Artificial Bee Colony

In 2005, Dervis Karaboga defined Artificial Bee Colony (ABC) algorithm, which
has been inspired by the intelligent behaviour of honey bees. Bees choose their food
source in search space by flying in different aspects through waggle dance or
randomly without using experience. When the bees are updated with their new
nectar value, it is compared with old nectar content which is stored in the memory
and updates with the highest nectar value. To manage the balance exploration and
exploitation process, local search and global search methods are combined to
validate and test the instance.

• Pixels (DN values) in the image are represented by bee.
• LC classes, such as pool, grass dry, are the food sources.

The four essential elements in the proposed algorithm are: initialising a set of
features, fitness function, local search strategy and prediction strategy.

Classification procedure of ABC algorithm is shown in Fig. 1.

Artificial Bee Colony Algorithm for Classification … 3



Fig. 1 Flow chart for Artificial Bee Colony algorithm classifier
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3.1 Advantages of ABC

The principal advantage of ABC classifier over the traditional classifiers is as
follows: bees being very optimal well-defined workers, they distribute the workload
among themselves and their dancing behaviour helps in optimal design.

• ABC obeys proximity principle which responds to quality factor of the class.
• ABC can handle high-dimensional data and represents the acquired knowledge

from waggle dance which is easy to intuit and assimilate.
• Simple and able to handle noisy data by creating a lower bound and upper

bound for all the attributes.

3.2 Factors Affecting the Performance
of the Artificial Bee Colony

Only the most commonly affecting issues are dealt with the following:

• Since bees do not depend on prior assumption about the data, it interrupts the
performance of training data at the end of the list while assigning task to the
agent, and may affect the performance of the classifier.

• ABC uses sequential covering algorithm, and hence, a small variation in data
can make classification unstable and cause overfitting inside the data.

• Since each task has been selected by agents, the updating of agents from new
task and its resource allocated to its agents can consume classification time.

4 Extraction of Textural Features

Texture represents the pixel relationship between spatial values and their grey-level
properties which carries useful information for feature discrimination purpose in
images. There is no single, unambiguous, widely accepted definition of texture in
the literature. Analysis of texture in an image is referred to a mathematical model
which shows differences in spatial characteristics of the image as a means of
information extraction as shown in Table 1.

Since the first principal component (PC-1) contains the information which is
common to all bands and accounts for maximum variance by removing the
redundancy of information [16], the PC-1 image was extracted from the Linear
Image Sensing Sensor (LISS)-IV data of 2.5 m spatial resolution to obtain GLCM
and derive textural features thereof. All the textural features were extracted in

Artificial Bee Colony Algorithm for Classification … 5



Geomatica V 10.0 at grey level (quantization levels) 16. We observed that the
higher the grey level, the darker the image is and no marked difference is seen [7].
In the first phase of the work, five texture features (ENT, ASM, CON, MEAN and
Hmg) [8] were computed from the GLCM at window sizes (W): 5 � 5, 7 � 7,
11 � 11, 17 � 17, 25 � 25, 35 � 35 and 51 � 51 at h = 0° (assuming texture to
be isotropic) keeping interpixel distance (D) unity. The above five features were
also extracted at D: 3 and 7 keeping W: 25 � 25 for ENT, ASM, CON and Hmg,
and 35 � 35 for MEAN.

Despite the fact that textural features exhibit non-Gaussian distribution of data,
and Jeffries–Matusita distance performs better as a feature selection criterion for
multivariate normal (Gaussian) classes [12], we employed the transformed diver-
gence (TD) and Jeffries–Matusita (JM) distance measure as feature selection cri-
terion for determining the best combination of multispectral bands and textural
features. The JM distance varies between 0 and 1414, where 0 signifies no sepa-
rability and the upper bound 1414 indicates high separability. Both the TD and JM
distance measures are based on the measure of the statistical separation between
pairs of class signatures [2], and the same has been adopted by [1–4].

5 Materials

5.1 Data Products Used

Indian Remote Sensor (IRS)-P6 LISS-IV satellite data captured on 16 April 2004
and 26 December 2007 consisting of three multispectral (MS, 5.8 m spatial reso-
lution) bands recorded at green (0.52–0.59 lm), red (0.62–0.68 lm) and infrared
(0.77–0.86 lm) wavelengths, and a panchromatic imagery of CARTOSAT-1
captured on 7 January 2008 (2.5 m spatial resolution); Census Data from
Mangalore Urban Development Authority have been used in this study. All the
satellite data are geo-referenced and projected with reference to global positioning
system (GPS) readings.

Table 1 Definitions of the texture measures based on GLCM

Entropy ¼ PG�1

i¼0

PG�1

j¼0
pði; jÞ log2½pði; jÞ� Mean :

PG�1

i¼0

PG�1

j¼0
ipði; jÞ

Energy ASMð Þ ¼ PG�1

i¼0

PG�1

j¼0
½pði; jÞ�

2

Homogenity IDMð Þ : P
G�1

i¼0

PG�1

j¼0

½Pði;jÞ�2
1þði�jÞ2

Contrast Inertiað Þ : P
G�1

i¼0

PG�1

j¼0
ði� jÞ2pði; jÞ

ENT Entropy; ASM Angular second moment; CON Contrast; MEAN; Hmg Homogeneity
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5.2 Study Area

The area under investigation is the Mangalore coastal region on the coastal belt of
Karnataka state, India, between 12º 51′ 32″–12º 57′ 44″ N latitudes and 74º 51′
30″–74º 48′01″ E longitudes. The image dimension of the study area is
1664 � 2065 pixels in MS data.

6 Results and Discussion

The objective of the behavioural study is to investigate the response of the Artificial
Bee Colony (ABC) algorithm for classification on hierarchy level I and II over a
semi-urban LU/LC area (coastal region of mangalore district) is shown in Table 2.
The secondary objective of this analysis is to investigate the effectiveness of
integrating GLCM-derived texture measures, viz. ENT, ASM, CON, MEAN and
Hmg in classifying the panchromatic sharpened data of 2.5 m resolution at class
hierarchy level-I and level-II, and to determine the optimal window size (W) and
interpixel distance (D) for the texture measures under investigation.

6.1 Performance of ABC at Class Hierarchy Level-I
and Level-II

The study was extended to compare the performance of both the classifiers at class
hierarchy level-I and level-II. Hence, the training data sets, correspondingly the

Table 2 LU/LC classification hierarchy levels and details of the training and validation sites

Level-I Level-II Training sites Validation sites

MLC Strata

Built-up RCC and asbestos sheet-roofing (RCC_sheet) 1032 11 239

Clay tiled roofing (tiled_roof) 441 11 42

Roads National highway (NH) 355 4 68

Interior tar roads (int_rd) 490 5 147

Wastelands Open ground/playgrounds (open_gnd) 1080 4 34

Beach sand (sand) 270 2 21

Water Pool water (pool) 93 1 18

Sea water (sea) 884 2 19

Veg Veg_mixa (veg_mix) 1848 6 178

Acacia tree clusters (acacia) 1661 5 43

Grass dry Grass dry (dry_grass) 424 3 66

Total: 8578 54 875
aThick leaf/fruit yielding trees such as mango, jack fruit, coconut, banyan

Artificial Bee Colony Algorithm for Classification … 7



validation sets, were merged into 6 classes from 11. The classification results are
tabulated in Tables 3 and 4.

At CHL-I, ABC shows an improvement of 3% OCA when compared with MLC
algorithm (ABC 83.44% and MLC 81.42%). At class hierarchy level-I (CHL-I),
ABC shows an improvement of 15.2% in producer’s accuracy (PA) (88.55%) and
8.77% in user accuracy (UA) (65.91%) over MLC (PA 73.28% and UA 57.14%)
for urban class road. Further, for class built-up, the ABC shows an improvement of
12.3% in PA over MLC. For the class wasteland, ABC shows 2.2 and 1.2% lesser
PA and UA when compared with MLC. The class veg (vegetation) has experienced
a trade-off in its UA and PA between both the classifiers. Hence, in both the class
hierarchy levels, the ABC is able to maintain approximately 2% higher OCA
(2.02 and 2.15% CHL-I and level-II, respectively) over MLC. It would also a

Table 3 Classwise comparison of the accuracy of MLC and ABC at class hierarchy level-I

Producer’s accuracy (%) User’s accuracy (%)

Class name Classifier type

MLC ABC MLC ABC

Grass_dry 72.18 73.68 93.20 91.59

Wasteland 91.11 88.89 96.47 95.24

Road 73.28 88.55 57.14 65.91

Built-up 70.05 82.35 77.51 77.39

Veg 94.58 81.28 87.67 92.70

Water 100 100 100 100

OCA (%) 81.42 83.44

Table 4 Classwise comparison of the accuracy of MLC and ABC at hierarchy level-II

Producer’s accuracy (%) User’s accuracy (%)

Class name Classifier type

MLC ABC MLC ABC

Grass_dry 75.94 69.92 90.99 92.08

Open_gnd 83.02 86.79 89.80 93.88

Rd_interior 83.70 83.70 60.63 62.10

Roof_RCC 85.00 83.75 79.07 83.75

Roof_Sheet 81.08 89.19 76.92 70.21

Roof_tiled 82.86 71.43 50.00 60.98

Sand 89.19 89.19 100 97.06

Veg_acacia 52.00 74.40 89.04 79.49

Veg-Mix 76.92 80.77 84.51 87.50

Water_Pool 100 100 93.75 100

Water_Sea 100 100 100 100

OCA (%) 77.88 80.03

8 J. Jayanth et al.



noteworthy observation that as the class hierarchy level is increased from 6 classes
to 11 classes, the OCAs of both the classifiers are found to be decreasing by an
amount of 3–3.5% (Fig. 2).

Based on the classification results, ABC algorithm has been selected as the best
candidate for classification and evaluation of textural features at class hierarchy
level-I and level-II.

6.2 Texture: Selection of Optimal Window Size
and Interpixel Distance

The aim of this work was to determine the optimal window size (W) and interpixel
distance (D) for all the five textural measures. The extracted textural bands with five
features (ENT, ASM, CON, MEAN and Hmg) at 9 different window sizes keeping
h = 0° were combined (stacked) separately with the three bands of the multispectral
(MS) data. The supervised classification based on ABC algorithm, trained with
8578 locations, was carried out on the above data sets and one MS data set at
CHL-II. Thereafter, a 3 � 3 majority filter was passed on all the classified images
as a post-classification smoothing requirement. Finally, the accuracy assessment
was carried out on the classified images using a validation data set comprising of
875 test points (details are in Table 2). The overall classification accuracy
(OCA) and the kappa coefficients were computed and tabulated in Tables 5 and 6.

Fig. 2 Land cover classification in the area of Mangalore using a MLC and b ABC

Artificial Bee Colony Algorithm for Classification … 9



From Table 5; Fig. 3, the optimal window size for each of the five textural mea-
sures was determined from the band combination which provided the highest OCA,
and the same is assumed to be the effect of the contribution of integrating the
respective textural feature on MS band. Thereafter, the five textural features were
extracted for D: 3 and 7 keeping W: 25 � 25 for features: ENT, ASM, CON and
Hmg, and 35 � 35 for MEAN, and combined with MS bands creating an additional
set of 10 data sets.

Further, Table 6; Fig. 4 show the classification accuracy obtained for the com-
binations of ENT (W: 25), ASM (W: 25), CON (W: 25), MEAN (W: 35) and Hmg
(W: 25) at optimal window sizes (indicated within the brackets) at interpixel dis-
tance of 1, 3 and 7, keeping h = 0°. The difference in the magnitude of OCA is
1.71, 1.3, 0.46, 0.46 and 1.8% for ENT, ASM, CON, MEAN and Hmg, respec-
tively, between D: 1 and 3. Only the texture measure Hmg shows some significant
increase in OCA by an amount of 1.8% from D: 1 to 3. Also, Fig. 4 visualises that

Fig. 3 Plot of OCA for five textural measures at seven different window sizes (W)

Table 5 OCA for five textural measures at seven different window sizes (W)

Window size (W): 5 � 5 7 � 7 11 � 11 17 � 17 25 � 25 35 � 35 51 � 51

Entropy (ENT) 64.11 65.83 67.89 75.09 78.17 77.6 76.34

Energy (ASM) 64.23 63.43 65.71 70.17 74.63 72.34 69.26

Contrast (CON) 66.29 67.43 67.66 71.43 76 76 73.71

MEAN 62.63 67.2 68.69 67.77 68.34 69.37 68.34

Homogeneity (Hmg) 64.46 65.14 67.87 70.51 72.69 71.09 72.69

10 J. Jayanth et al.



two of the features, viz. ENT, ASM, are moving downwards and the remaining
three features, viz. CON, MEAN and Hmg, are moving upwards on OCA for
change in D from 1 to 3. But among them, MEAN is not showing any significant
difference in its OCA for variable D. Above D: 3, all the features exhibit a downfall
in their performance. Therefore, an interpixel distance in the range of 1–3 exhibits
satisfactory performance for all the texture features under investigation.

6.3 Effectiveness of Texture Feature Combinations

The objective of this experiment is to understand how a single and combinations of
more than one GLCM texture measures perform with MS bands in MS data clas-
sification. The classification was carried out by employing MLC. The results of the
classification using multiple texture features are provided in Table 7. A single

Fig. 4 Plot of OCA for five textural measures at three different interpixel distances (D) at optimal
window size (W)

Table 6 OCA for five textural measures at three different interpixel distances (D) at optimal
window size (W)

Interpixel distance (D): 1 3 7

Entropy (ENT) (W: 25) 78.17 76.46 73.37

Energy (ASM) (W: 25) 74.63 73.26 70.97

Contrast (CON) (W: 25) 76 76.46 72.8

MEAN (W: 35) 69.37 69.83 69.03

Homogeneity (Hmg) (W: 25) 72.69 74.51 66.63

Artificial Bee Colony Algorithm for Classification … 11



texture at a time is able to provide a complete all-class classified image and hence
treated as a valid classification. Still, the combinations of two textures together have
shown a satisfactory performance by maintaining accuracy level approximately
higher than 75% (e.g. ENT+CON, MEAN+Hmg, ASM+CON, CON+MEAN, ENT
+Hmg and ENT+MEAN band combinations in Table 7). It is interesting to note
that bands MEAN and Hmg alone have produced an OCA of 69.37 and 74.51%,
respectively; however, when they are combined together, the OCA is increased to
just 75.31%. Contrary to this observation, bands ENT and CON have produced an
OCA of 78.17 and 76.46%, respectively, when used separately, but when combined
together (MS+ENT+CON), the accuracy still stands at 76.57% leaving no hope of
any reasonable improvement in accuracy for combination of two textures. Instead,
the combination has degraded the single texture accuracy of the ENT from 78.17 to
76.57% with no appreciable increase in accuracy from 76.46 to 76.57% in respect
of CON. Likewise, a simultaneous combination of three, four and five textures in
MS has merged a large number of classes together, leaving as small as only two
classes in the classified images as illustrated in Fig. 5. Thus, greater number of
texture bands in MS has made the classification unreliable and produced invalid
classified images. Therefore, it is difficult to generalise which band combination of
two or more than two texture features together is most efficient in classification. It is
also apparent from the above that particularly in the present classifier MLC, an
increase in the number of texture features need not necessarily contribute to the
improvement in accuracy; instead, such combinations degrade the classifier’s
performance.

Table 7 Overall classification accuracy (OCA) and Kappa coefficient for data sets having
combination of multispectral and texture bands at CHL-II

Sl. No. Band ID No. Band combinations OCA (%) Kappa statistics

1 1 MS 62.63 0.5721

2 2 1 78.17 0.7406

3 3 2 74.63 0.7007

7 1 + 2a

8 7 1 + 3 76.57 0.7217

13 2 + 5a

17 1 + 2 + 3a 75.09

20 15 1 + 3 + 4 73.83 0.6867

21 16 1 + 3 + 5 76 0.7144

22 17 1 + 4 + 5 72.57 0.677

23 18 2 + 3 + 4 73.26 0.6802

MS Multispectral band, 1 Entropy, 2 ASM, 3 Contrast, 4 MEAN, 5 Homogeneity, aBand
combinations excluded from further analysis as the combinations resulted in total misclassification
of one or more classes, ID No Identification number provided only to the band combinations which
resulted in valid classified images

12 J. Jayanth et al.



(a) Multi-spectral (MS) only (b) MS+ENT

(c) MS+ENT+ CON                   (d) MS+ENT+ASM+CON+MEAN+Hmg         

Fig. 5 Subset of classified images at CHL-II

Artificial Bee Colony Algorithm for Classification … 13



Nevertheless, the results indicate that incorporation of texture measures into
classification improves the overall classification accuracy. The discussion would be
more complete if a quantitative study is made on the confusion matrices to
understand the effect of the texture features on individual LU/LC classes. Hence,
only two confusion matrices corresponding to MS band and MS+ENT bands are
presented here in Tables 8 and 9, respectively, as the latter provides the highest
accuracy in the whole study carried under CHL-II. The confusion matrices corre-
sponding to Fig. 5c and d are not able to classify due to misclassification by the
ABC classifier. So in the following discussion, the MS band and MS+ENT band
combinations are referred to as case-1 and case-2, respectively.

The PA and UA for classes pool water and sea water are 100% in both the cases
(Tables 8 and 9) since they are spectrally distinct and spatially homogeneous. The
next two spatially homogeneous classes are sand and open_gnd. The PA for sand
remains the same (71.43%) in both the cases, but the UA attained 100% in case-2
from the 88.24% of case-1. It is obvious because classes such as pool water, sea
water and sand exhibit the highest TD of 2000 which indicates total separability
when paired with other classes. However, even though the class open_gnd is
spatially homogeneous, it is not spectrally distinct. The TD between the open_gnd
and rd_interior is not satisfactory (1897.97). Hence, 10 validation points of class
rd_interior, 4 each of sand and RCC_sheet, have been misclassified as open_gnd
and reduced the UA of open_gnd to 64.71% in case-1, whereas these misclassifi-
cations are markedly lessened in case-2 and a UA of 88.57% is achieved for
open_gnd. This also results in an improvement in Kappa value from 0.63 to 0.881
in comparison with case-1.

The class roof_tiled represents individual houses of approximately 15 m � 15 m
in area located amidst of thick vegetation (veg_mix) along the sides of interior road.
The major source of misclassification of roof_tiled, as seen in case-1, is from veg
mix and RCC_sheet. In case-2, texture could make the UA and Kappa see a small
improvement of 3.69% and 0.039, respectively, over MS band, but no difference in
PA (92.86%). Hence, texture did not make a notable improvement on class
roof_tiled which is distributed as relatively small individual entities over the study
area. For class RCC_sheet (RCC and asbestos sheet-roofing), the most of the
misclassification has come from the interior road, and a major portion of the vali-
dation sites has also been misclassified to rd-NH, rd_interior road and roof_tiled in
MS data. But inclusion of feature ENT has significantly reduced the misclassifi-
cation of RCC_sheet to rd_NH, grass_dry and roof_tiled, resulting in an
improvement in PA from 53.14 to 76.99% and Kappa value from 0.64 to 0.724
when compared with MS band. This in turn has greatly benefited rd_NH, and
hence, class NH has experienced an improvement in its UA from 48.33 to 82.35%
and Kappa from 0.43 to 0.808 in MS+ENT band. The above analysis draws
attention to the fact that texture has no effect on spatially homogeneous and
spectrally distinct classes such as water bodies and sand. However, texture has
shown an appreciable performance on spatially homogeneous but spectrally over-
lapping classes such as open ground, RCC, NH and interior roads.

14 J. Jayanth et al.
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Another major spectrally overlapping classes are the mixed vegetation (veg_mix)
and acacia forest (veg_acacia), which exhibit the lowest TD measure of 434.44.
The confusion matrix corresponding to MS shows that out of the given 178 vali-
dation sites to veg mix, 101 have been misclassified as veg_acacia, 14 as roof_tiled
and 1 site to RCC_sheet. However, there is no serious misclassification from other
classes. Hence, even though it has produced the lowest PA of 34.83%, it could
maintain a reasonably high UA of 83.78%. On the contrary, the same MS band has
produced a relatively higher PA of 88.37% for acacia, but has made a fall in UA to
a very low value of 27.34%, since 101 sites of veg_mix are misclassified as
veg_acacia. A trade-off is seen between the PA and UA of these two classes. But
the addition of texture band on MS could raise the PA of veg_mix from 34.83% to
74.16% with no appreciable improvement in the UA and Kappa. Contrary to this,
texture has made a greater contribution to the UA (27.34–48.15%) of class acacia at
the cost of a fall in PA from 88.37 to 60.47%, but without losing in Kappa. The
Kappa, in turn, is improved from 0.23 to 0.454, approximately double that of the
MS band. Finally, the class grass_dry is also benefited by texture as it could record
an increase in Kappa from 0.72 to 0.864 in comparison with case-1. Hence, it is
evident from above that addition of texture in MS band has the potential to improve
the accuracy even for those classes which are spectrally overlapping and spatially
non-homogeneous. For all the 11 classes, texture has maintained higher Kappa
value over the MS band.

Finally, it is quite evident from the two classified images shown in Fig. 5b, c that
the data set having texture feature entropy (ENT) integrated with MS is fairly free
from the salt-and-pepper noise, which is very common and annoying in classified
images (Fig. 5a). This improvement is also seen in other classified images too
which employ the texture and MS bands together. Besides, since linear structures
such as roads and buildings are seen more distinct, the shape information is found to
be greatly pronounced in a texture-embedded classified image.

6.4 Investigation of Texture at Class Hierarchy
Level-I and Level-II

The purpose of this phase of investigation is to examine the effect of the texture
features at classification hierarchy level-I, in comparison with level-II. Results of
the work have been tabulated in Table 10. The corresponding plot is also available
in Fig. 6. Here, 6 data sets having texture measures with optimal W and D in
combination with MS bands, but one feature at a time, were investigated. At class
hierarchy level-I, the OCA obtained for all data sets is remarkably higher than
level-II. It is also obvious from Fig. 6 that the MS band has gained an improvement
of 18.17% in OCA (from 62.63 to 80.80%) when CHL is decreased from level-II to
level-I without any texture integrated in it. The incorporation of texture at CHL-I
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has improved the OCA in the range of 0.57% (with ASM: 81.37%) to 6.74% (with
CON: 87.54%) in comparison with MS band of CHL-I (80.80%). Whereas, even
though, the OCA (62.63%) is small for MS band at CHL-II, the difference in
improvement seen upon adding texture ranges from 6.74% (with MEAN: 69.83%)
to as high as 15.54% (with ENT: 78.17%). Hence, texture is found to be very
effective in improving the classification accuracy at classification hierarchy level-II
than level-I.

In summary, it is seen that texture feature ENT (W: 25 � 25, D: 1) not only
produced the highest accuracy of 78.17% in class hierarchy level-II, but also
maintained higher accuracy over its counterparts at all window sizes greater than
W: 11 � 11 and at all interpixel distances. In contrast to the above, it is apparent
from the plot in Fig. 6 that in CHL-I, the highest accuracy of 87.54% is obtained for
the texture feature CON at W: 25 � 25, D: 1. The ENT and CON have also
occupied the first and the second positions, respectively, in performance at CHL-II
when investigated one texture at a time with MS. But the combination MS+ENT
+CON, which is expected to perform better than ENT, stood second in accuracy
(OCA: 76.57%) among all the band combinations with MS. Meanwhile, in CHL-II,
the lowest OCA (69.37%) is recorded for texture band MEAN at W: 35 � 35, D: 1,
but shows a steady performance for a wide range of W and D. Hence, it is difficult
to ascertain which combination of the texture features of more than one band is

Fig. 6 Plot of OCA versus various combinations of spectral and texture measures one at a time at
class hierarchy level-I and level-II (6 and 11 classes, respectively)

Table 10 OCA (%) and Kappa for various combinations of spectral and texture measures one at a
time at CHL-I and CHL-II (6 and 11 classes, respectively)

Band combinations: MS ENT ASM CON MEAN Hmg

Class hierarchy level-I OCA % 80.80 8.23 81.37 87.54 84.69 85.49

Kappa 0.749 0.791 0.753 0.835 0.798 0.808

Class hierarchy level-II OCA % 62.63 78.17 74.63 76.46 69.83 74.51

Kappa 0.572 0.740 0.700 0.720 0.650 0.699
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important in improving the overall classification accuracy. In the course of the
analysis, one of the principal findings is that the urban or semi-urban LU/LC classes
such as RCC and sheet-roofing, roads and open grounds have been substantially
benefited by integrating texture features in the classification of multispectral bands.

7 Conclusion

The study demonstrated the effect of integration of spectral and textural features in
classification of semi-urban Lu/LC features on LISS-IV data of 2.5 m spatial res-
olution at CHL-I and CHL-II. Textural measures, viz. entropy, energy, contrast,
MEAN and homogeneity, were investigated with multispectral bands and various
texture feature combinations. The following conclusions were drawn from the
present study:

1. This work has presented a new method for classifying RS data using Artificial
Bee Colony algorithm. As a result, ABC algorithm has provided high-quality
result on the study area. OCA for ABC method shows an improvement of 3% in
comparison with MLC.

2. Combining textural and spectral features in high-resolution satellite data has
proven to be effective in improving the classification accuracy of spectrally
overlapping but spatially homogenous urban land use/land cover features such
as RCC roofing, asbestos sheet-roofing, interior road, NH and open grounds
(playground). Texture combinations have not made marked difference over
spectrally distinct and spatially homogeneous classes such as sand and water
bodies in comparison with multispectral bands. Integration of texture greatly
reduced the ‘salt-and-pepper’ noise in the classified images.

3. Literature survey indicates that there is no unique textural window size
describing a land cover class as it depends on the spatial resolution of the data,
the land cover spread which varies from one geographical area to another, and
human cultural habitation; hence, it is solely problem dependent [16–18].
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Saliency-Based Image Compression Using
Walsh–Hadamard Transform (WHT)

A. Diana Andrushia and R. Thangarjan

Abstract Owing to the development of multimedia technology, it is mandatory to
perform image compression, while transferring an image from one end to another.
The proposed method directly highlights the salient region in WHT domain, which
results in the saliency map with lesser computation. The WHT-based saliency map
is directly used to guide the image compression. Initially, the important and less
important regions are identified using WHT-based visual saliency model. It sig-
nificantly reduces the entropy and also reserves perceptual fidelity. The main aim of
the proposed method is to produce the high-quality compressed images with lesser
computational effort and thereby achieving high compression ratio. Due to the
simplicity and high speed of WHT, the proposed visual saliency-based image
compression method is producing reliable results, in terms of peak signal-to-noise
ratio (PSNR), compression ratio, and structural similarity (SSIM), compared to the
state-of-the-art methods.

Keywords Saliency detection � Image compression � Walsh–Hadamard
transform � PSNR

1 Introduction

Salient region detection drastically attracts the attention toward many of the com-
puter vision and pattern recognition tasks such as image compression, object
recognition, content-based image retrieval, image collection browsing, image
editing, visual tracking, and human–robot interaction. It aims to detect the salient
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region of an image under biological plausibility. In this paper, Walsh–Hadamard
transform (WHT)-based visual saliency detection is used for the image compression
application.

Demand on data compression is increasing rapidly as the modern technologies
are growing high. High storage capacity is required for uncompressed images.
Many images are having the common characteristics as their neighboring pixels are
highly correlated with redundant information [1]. Image compression-based tech-
niques are aiming to reduce the redundant information by eliminating the spectral
and spatial redundancies. It results in the reduction of consumption of expensive
resources in the form of transmission bandwidth and hard disk space. Image
compression techniques are generally classified into two types. One is spatial
coding and another one is transform coding. In the transform coding type, discrete
cosine transform (DCT), discrete Fourier transform (DFT), Walsh–Hadamard
transform (WHT), etc., are used to perform natural image compression. Each
transform is having its own advantages and disadvantages in the compression
domain. Transform type coding is used in the proposed method.

WHT-based visual saliency detection and WHT-based image compression based
on saliency map are the two main phases of this proposed method. The proposed
WHT-based visual saliency detection is transform domain approach. So the fre-
quency domain approaches are only considered for the performance comparison. As
the WHT-based compression also transform domain approach so frequency domain
methods only considered for fair performance comparisons in the compression
phase.

The proposed work is experimented through MIT dataset. It is one of the
benchmark datasets for visual saliency detection which consists of the indoor,
outdoor images. The performance metric of receiver operating characteristics
(ROC), area under the curve (AUC), precision, recall, and F-measure is obtained to
analyze the proposed visual saliency detection. Peak signal-to-noise ratio (PSNR),
structural similarity (SSIM), and compression ratio are obtained for saliency-based
image compression. The performance metrics are yielding significant results while
comparing with state-of-the-art methods.

WHT is used in the saliency detection as well as image compression. WHT is
chosen because the number of computations in this transform is significantly less
compared to the other transforms, and WHT is the key transform to provide energy
compactness. Finding the salient information in image/audio/video will reduce the
number of computations and lesser hardware in the compression techniques. The
proposed visual saliency-based compression method achieves 90% compression
ratio. It is due to the lesser computations of WHT transform. This is the most added
advantage of the proposed method compared to the state-of-the-art methods.

The reminder part of this chapter constructed as follows: Sect. 2 clearly explains
about the backgrounds of visual saliency detection, saliency-based image com-
pression. Section 3 elaborates the proposed methodology. Section 4 explains the
experimental results with the performance metrics. Finally, the conclusion of the
chapter is given in the last section.

22 A. Diana Andrushia and R. Thangarjan



2 Backgrounds

2.1 Saliency Detection

The world is full of visual data. Humans selectively perceive the visual information
that is getting in through their eyes. Visual attention is the process of selecting
particular information from the plenty of raw data perceived. For example, while
sincerely watching a cricket match in the play ground, a sudden change in the action
of the umpire with red shirt picks the attention of the spectators in the gallery
despite the colossal load of visual inputs such as actions of the batsmen, bowlers,
and fielders is there. The eyes of the spectators gaze the umpire momentarily before
shifting to other events in the visual scene. The phenomenon of drawing the focus
of attention to certain regions in a given scene or image is called visual attention [2].
In the jargon of computer vision, these regions are known as salient regions.

Detection of salient regions finds application in a wide spectrum of processes
such as automatic object detection, image retrieval, remote sensing, automatic target
detection, image and video segmentation, robotics, scene understanding, computer–
human interaction, driver assistance, action recognition, background subtraction,
image and video compression, video summarization, medical imaging, and auto-
matic cropping. The cognitive process that directs human to select highly relevant
data from a scene/image is named as visual attention.

Recently, a number of computational models have been developed to highlight
salient regions. As far as computational models are concerned, there are two types
of models in the literature, namely bottom-up and top-down approaches. Bottom-up
approach works from the low-level visual features and moves up to construct a
saliency map. The top-down approach is goal-driven, and it uses prior knowledge to
achieve the goal such as target detection, scene classification, and object recogni-
tion [3]. The top-down approach starts from a particular visual processing task.

The computational models of visual attention either bottom–up or top–down can
be constructed in spatial domain or in frequency domain, in order to highlight the
salient regions as saliency map. Spatial domain methods require more computation
time to obtain the features compared to the frequency domain methods [4]. The
computational complexities of these models are very high, and these models are not
performed with multi-scale spatial and frequency analysis. Many models which
come under frequency domain approaches have used only local features to identify
the salient regions.

The very first method of saliency detection is developed by Itti et al. [5]. Local
contrast information is used to develop the method. The local features are only used
by Ma et al. [6], Harel et al. [7], and Goferman et al. [8] to obtain the visual saliency
detection. The global features are considered in [9–12] to construct the visual
saliency model. However, the accurate identification of salient regions should also
involve the global features. In recent years, many researchers have shown more
interest to build computational visual models in the transform domain. Mainly
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Fourier transform (FT) and wavelet transform (WT) have also been extensively
used to highlight the salient regions in the transform domain. Every approach has its
own pros and cons.

FT gives promising results for applications involving only stationary signals.
The amplitude and phase spectrum of Fourier transform is used in [13]. Guo et al.
[12] used the phase spectrum of quaternion Fourier transform (PQFT) to highlight
the saliency, and it is also applied for efficient video compression. Hou et al. [14]
used Fourier transform and log spectrum to construct the spectral residual approach
for the saliency detection.
WT has the capacity to provide multi-scale spatial and frequency analysis because it
codes the signal at different bands and bandwidths. WT can represent singularities
in a much better manner than FT can. And moreover, WT can be applied for
nonstationary signals also [15]. WT is used in [16] to find the salient object.
WT-based orientation feature maps are obtained in different scale. The order map is
also found by using Fourier analysis. The local, global information are used in the
WT-based salient point detection [17]. WT-based salient detection is used in
multi-scale image retrieval problem.

Wavelets are very good to represent point singularities, but when it comes to
directional features they fall short [18]. The main reason is that wavelets are gen-
erated by isotropic elements. The quantity of decomposition level should be very
large when approximating a curve using WT. The disadvantages of WT have been
overcome by using multi-directional and multi-scale transforms.

The higher directional wavelet transforms of ridgelet, curvelet, shearlet are also
used for the visual saliency detection. The directional features are captured effec-
tively, and the potential salient regions are identified. Bao et al. [19] proposed
visual saliency detection based on shearlet transform, in which the local and global
contrasts are used to obtain local and global saliency map. Initially, the potential
salient regions are identified in order to update the feature maps in shearlet domain.

Even though the transform based saliency detection methods are producing
reliable results, suffered highly from computation complexity. Larger computations
are required for these methods.

In general, the transform domain visual saliency detection methods are using the
following steps.

• Transform the input image into transform domain,
• Obtain the feature maps for various features,
• Combine the various feature maps,
• Use the top-down features if required for particular application,
• Apply inverse transforms to get the saliency map.

The saliency map is the topographical map which shows the visual saliency in
the visual scene. So the visual saliency detection methods are showing the outputs
as visual saliency map. Saliency-based image segmentation, image compression,
and image retrieval are the popular areas of research.
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The Walsh–Hadamard transform (WHT) has lesser computations and extremely
fast transform. It is computed only by addition and subtraction. Lesser hardware is
required for the practical implementation [20]. The highly correlated pixels are
captured by the WHT in the visual space. Hence, in this chapter WHT is used to
detect the salient regions in transform domain.

2.2 Visual Saliency-Based Image Compression

Usually, the important regions of an image may be small and highly degraded at
low bitrates. The standards of compression such as JPEG/JPEG-2000, MPEG 4 are
not handling the salient regions well. Guo et al. [21] and Hadi et al. [22] investi-
gated saliency-based compression techniques. To adhere the saliency values, the
transmitted coefficients are modified. These methods cannot handle salient regions
well and also suffer from complicated computations. Barua et al. [23] developed
wavelet-based image compression technique for images and videos. The algorithm
is designed to obtain the saliency values in wavelet domain and then corresponding
image/video coefficients are transmitted. It preserves the important region of an
image/video.

Nabil Ouerhani et al. [24] proposed adaptive color image compression based on
biologically inspired visual attention. The initial stage perceptual salient regions of
interest are identified automatically. The adaptive coding scheme allocates higher
number of bits for the salient regions. The results are compatible with the JPEG
standards.

Li et al. [25] performed video compression based on computational models of
visual attention. The salient regions are encoded with higher quality compared with
non-salient regions. The salient regions are awarded with higher priority rather than
others. But it may generate visible artifacts in the non-salient part where the quality
of image is poorer. The artifacts also sometimes draw the end-user’s attention. In
several cases, the high level of artifacts becomes salient and captures the viewer’s
attention. But the notable artifacts are not to be salient.

Hadizadeh [26] dissertation reveals the visual saliency methods for video
compression and transmission. Saliency-based video coding is investigated. The
main concept is that high salient regions are having higher ability to percept than
lesser salient regions. The quality of image/video is handled toward the user most
attended regions. This method effectively performs video coding expect in two
major cases. If any region is richly salient, then its saliency will be increased after
the compression, provided the quality of the image/video remains high. The reason
is that the users are noticing the high salient regions in the scene. If the region is
lesser salient, then its saliency will be decreasing after the compression task,
because the lower saliency regions are ended with lesser quality.
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Ho-Phuoc et al. [27] proposed the visual saliency-based data compression for
image sensors. The adaptive image compression is presented in each block. First the
saliency value is obtained, and then the Haar wavelet transform is applied for the
compression. This framework gives lesser memory and compact operators. The data
stored in the image sensors are very much reduced, and image quality is not altered.

Zundy et al. [28] proposed the content-based image compression using visual
saliency methods. Initially, the saliency map is obtained from the video, automat-
ically or by user input. The salient regions are performed with nonlinear image
scaling. Salient image regions are given higher pixel count, and non-salient regions
are given lesser pixel count. Existing compression techniques are utilized to
compress the nonlinearly down-scaled images, and in the receiver end it is
up-scaled. This method supports for anti-aliasing effect which reduces the aliasing
in highly scaled regions.

In order to reduce redundant information in the dynamic scenes, the visual
saliency in videos is proposed by Tu et al. [29]. Based on the video visual saliency
map, the redundant information is removed. In this paper, video visual saliency is
the catalyst of video compression technique. DCT is utilized to perform the video
compression, and this technique is adopted for MPEG-1, MPEG-4, and
H.265/HEVC standards.

Yu et al. [30] used visual saliency to guide image compression. At individual
scales, the saliency is measured through Laplacian pyramid. The proposed com-
pression algorithm decreases the entropy of the image with respect to the saliency
map in each scale. Dhavale et al. [31] proposed visual computational model-based
image compression. It successfully locates the regions of interest of the human and
thereby applies for image compression.

Duan et al. [32] proposed the image compression technique based on saliency
detection and independent component analysis. The input image is transformed first
using ICA. The transformed coefficients are numbered with set zero coefficient
percentage. The sparse nature of independent component analysis is used in this
method. It is compared with DCT-based compression method.

Many of the state-of-the-art methods are failed to show the energy compactness.
In the field of image compression, energy compactness is the key point and these
methods also suffer from higher computational complexity. In order to revoke the
key points, the WHT is used in the proposed image compression method. The
redundant pixels are captured by the WHT with lesser computations.

2.3 Walsh–Hadamard Transform (WHT)

Discrete Fourier transform (DFT), discrete cosine transform (DCT), and Walsh–
Hadamard transform (WHT) are widely used in the image processing applications.
These linear image transforms are chosen in the image processing application
because of their flexibility, energy compaction, and robustness. These transforms
effectively extract the edges and also provide energy compaction in the
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state-of-the-art methods. Among all these transforms, WHT is very gorgeous one
because of its simplicity and its computational efficiency. The major properties of
WHT are same as that of other image transforms. The basis vector components of
WHT are orthogonal, and it is having binary values (±1) only.

WHT is orthogonal, non-sinusoidal transform which is used in image filtering,
speech processing, and medical signal analysis. To be more specific the lunar
images/signals are well processed, coded, and filtered by WHT. It is known well
because of its simplicity and fast computation. WHT is the substitute of Fourier
transform. It is computationally simpler because it requires no multiplication or
division operations. Every computation is performed by simple addition and sub-
traction operation. WHT is one of the very fast transforms which can be imple-
mented in O(Nlog2N) additions and subtractions. So the hardware implementation
of WHT-based applications is also so simpler [20].

So it is beneficial in terms of energy consumption and lesser computation. WHT
is real, orthogonal, and symmetric H = H* = HT = H−1. Walsh–Hadamard trans-
form is represented in terms of Walsh–Hadamard transform matrix (WHTM).

It consists of set of N rows denoted by Hj for j = 0, 1, 2… N − 1. The properties
of WHT matrix are:

i. Hj takes values as +1 and −1,
ii. The size of WHT matrix is usually the power of 2,
iii. Hj [0] = 1 for all j.

The size of the WHTM is generally the power of two. The second-order

Hadamard matrix is given by, H ¼ 1 1
1 �1

� �
.

The WHTM with the order of 4 is

1 1 1 1
1 1 �1 �1
1 �1 �1 1
1 �1 1 �1

0
BB@

1
CCA.

Each row in the matrix is called as basis vector of WHTM [33]. Generally, the
basis vectors are orthonormal and orthogonal. Orthonormal means dot product of
each basis vector themself is one. Orthogonal means dot product of any two basis
vectors is zero.

The computation of WHT involves very simple step only, when the image is
projected into basis images, each pixel is multiplied by ±1, whereas the FFT
needed complex multiplication. So WHT is more efficient than FFT in terms of
computation complexity.

Consider the image C of size N � N with the pixels of c(x, y), the 2D WHT is
defined as

H u; vð Þ ¼
XN�1

x¼0

XN�1

y¼0

c x; yð Þg x; y; u; vð Þ ð1Þ
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