[image: Cover Page]

Table of Contents

	Cover

	Title Page

	Introduction

	PART I: The C# Language

	1 Introducing C#

	WHAT IS THE .NET FRAMEWORK?

	WHAT IS C#?

	VISUAL STUDIO 2017

	2 Writing a C# Program

	THE VISUAL STUDIO 2017 DEVELOPMENT ENVIRONMENT

	CONSOLE APPLICATIONS

	DESKTOP APPLICATIONS

	3 Variables and Expressions

	BASIC C# SYNTAX

	BASIC C# CONSOLE APPLICATION STRUCTURE

	VARIABLES

	EXPRESSIONS

	4 Flow Control

	BOOLEAN LOGIC

	BRANCHING

	LOOPING

	5 More about Variables

	TYPE CONVERSION

	COMPLEX VARIABLE TYPES

	STRING MANIPULATION

	6 Functions

	DEFINING AND USING FUNCTIONS

	VARIABLE SCOPE

	THE MAIN() FUNCTION

	STRUCT FUNCTIONS

	OVERLOADING FUNCTIONS

	USING DELEGATES

	7 Debugging and Error Handling

	DEBUGGING IN VISUAL STUDIO

	ERROR HANDLING

	8 Introduction to Object‐Oriented Programming

	WHAT IS OBJECT‐ORIENTED PROGRAMMING?

	OOP TECHNIQUES

	OOP IN DESKTOP APPLICATIONS

	9 Defining Classes

	CLASS DEFINITIONS IN C#

	SYSTEM.OBJECT

	CONSTRUCTORS AND DESTRUCTORS

	OOP TOOLS IN VISUAL STUDIO

	CLASS LIBRARY PROJECTS

	INTERFACES VERSUS ABSTRACT CLASSES

	STRUCT TYPES

	SHALLOW COPYING VERSUS DEEP COPYING

	10 Defining Class Members

	MEMBER DEFINITIONS

	ADDITIONAL CLASS MEMBER TOPICS

	INTERFACE IMPLEMENTATION

	PARTIAL CLASS DEFINITIONS

	PARTIAL METHOD DEFINITIONS

	EXAMPLE APPLICATION

	THE CALL HIERARCHY WINDOW

	11 Collections, Comparisons, and Conversions

	COLLECTIONS

	COMPARISONS

	CONVERSIONS

	12 Generics

	WHAT ARE GENERICS?

	USING GENERICS

	DEFINING GENERIC TYPES

	VARIANCE

	13 Additional C# Techniques

	THE :: OPERATOR AND THE GLOBAL NAMESPACE QUALIFIER

	CUSTOM EXCEPTIONS

	EVENTS

	EXPANDING AND USING CARDLIB

	ATTRIBUTES

	INITIALIZERS

	TYPE INFERENCE

	ANONYMOUS TYPES

	DYNAMIC LOOKUP

	ADVANCED METHOD PARAMETERS

	LAMBDA EXPRESSIONS

	PART II: Windows Programming

	14 Basic Desktop Programming

	XAML

	THE PLAYGROUND

	CONTROL LAYOUT

	THE GAME CLIENT

	15 Advanced Desktop Programming

	CREATING AND STYLING CONTROLS

	WPF USER CONTROLS

	THE MAIN WINDOW

	PUTTING IT ALL TOGETHER

	PART III: Cloud and Cross‐Platform Programming

	16 Basic Cloud Programming

	THE CLOUD, CLOUD COMPUTING, AND THE CLOUD OPTIMIZED STACK

	CLOUD PATTERNS AND BEST PRACTICES

	USING MICROSOFT AZURE C# LIBRARIES TO CREATE A STORAGE CONTAINER

	CREATING AN ASP.NET 4.7 WEB SITE THAT USES THE STORAGE CONTAINER

	17 Advanced Cloud Programming and Deployment

	CREATING AN ASP.NET WEB API

	DEPLOYING AND CONSUMING AN ASP.NET WEB API ON MICROSOFT AZURE

	SCALING AN ASP.NET WEB API ON MICROSOFT AZURE

	18 .NET Standard and .NET Core

	CROSS‐PLATFORM BASICS AND KEY “MUST KNOW” TERMS

	WHAT IS .NET STANDARD, AND WHY IS IT NEEDED?

	REFERENCING AND TARGETING FRAMEWORKS

	WHAT IS .NET CORE?

	BUILDING AND PACKAGING A .NET STANDARD LIBRARY

	BUILDING A .NET CORE APPLICATION WITH VISUAL STUDIO

	PORTING FROM .NET FRAMEWORK TO .NET CORE

	19 ASP.NET and ASP.NET Core

	OVERVIEW OF WEB APPLICATIONS

	WHICH ASP.NET TO USE AND WHY

	USING ASP.NET WEB FORMS

	CREATING ASP.NET CORE WEB APPLICATIONS

	PART IV: Data Access

	20 Files

	FILE CLASSES FOR INPUT AND OUTPUT

	STREAMS

	MONITORING THE FILE SYSTEM

	21 XML and JSON

	XML BASICS

	JSON BASICS

	XML SCHEMAS

	XML DOCUMENT OBJECT MODEL

	CONVERTING XML TO JSON

	SEARCHING XML WITH XPATH

	22 LINQ

	LINQ TO XML

	LINQ PROVIDERS

	LINQ QUERY SYNTAX

	LINQ METHOD SYNTAX

	ORDERING QUERY RESULTS

	UNDERSTANDING THE ORDERBY CLAUSE

	QUERYING A LARGE DATA SET

	USING AGGREGATE OPERATORS

	USING THE SELECT DISTINCT QUERY

	ORDERING BY MULTIPLE LEVELS

	USING GROUP QUERIES

	USING JOINS

	23 Databases

	USING DATABASES

	INSTALLING SQL SERVER EXPRESS

	ENTITY FRAMEWORK

	A CODE FIRST DATABASE

	BUT WHERE IS MY DATABASE?

	NAVIGATING DATABASE RELATIONSHIPS

	HANDLING MIGRATIONS

	CREATING AND QUERYING XML FROM AN EXISTING DATABASE

	PART V: Additional Techniques

	24 Windows Communication Foundation

	WHAT IS WCF?

	WCF CONCEPTS

	WCF PROGRAMMING

	25 Universal Apps

	GETTING STARTED

	WINDOWS UNIVERSAL APPS

	APP CONCEPTS AND DESIGN

	APP DEVELOPMENT

	COMMON ELEMENTS OF WINDOWS STORE APPS

	THE WINDOWS STORE

	Appendix: Exercise Solutions

	CHAPTER 3 SOLUTIONS

	CHAPTER 4 SOLUTIONS

	CHAPTER 5 SOLUTIONS

	CHAPTER 6 SOLUTIONS

	CHAPTER 7 SOLUTIONS

	CHAPTER 8 SOLUTIONS

	CHAPTER 9 SOLUTIONS

	CHAPTER 10 SOLUTIONS

	CHAPTER 11 SOLUTIONS

	CHAPTER 12 SOLUTIONS

	CHAPTER 13 SOLUTIONS

	CHAPTER 14 SOLUTIONS

	CHAPTER 15 SOLUTIONS

	CHAPTER 16 SOLUTIONS

	CHAPTER 17 SOLUTIONS

	CHAPTER 20 SOLUTIONS

	CHAPTER 21 SOLUTIONS

	CHAPTER 22 SOLUTIONS

	CHAPTER 23 SOLUTIONS

	CHAPTER 24 SOLUTIONS

	CHAPTER 25 SOLUTIONS

	End User License Agreement

List of Tables

	
Chapter 3

	TABLE 3‐1: Integer Types

	TABLE 3‐2: Floating‐Point Types

	TABLE 3‐3: Text and Boolean Types

	TABLE 3‐4: Literal Values

	TABLE 3‐5: Escape Sequences for String Literals

	TABLE 3‐6: Simple Mathematical Operators

	TABLE 3‐7: The String Concatenation Operator

	TABLE 3‐8: Increment and Decrement Operators

	TABLE 3‐9: Assignment Operators

	TABLE 3‐10: Operator Precedence

	
Chapter 4

	TABLE 4‐1: Boolean Comparison Operators

	TABLE 4‐2: Conditional Boolean Operators

	TABLE 4‐3: Boolean Assignment Operators

	TABLE 4‐4: Operator Precedence (Updated)

	
Chapter 5

	TABLE 5‐1: Implicit Numeric Conversions

	
Chapter 9

	TABLE 9-1: Access Modifiers for Class Definitions

	TABLE 9-2: Methods of System.Object

	TABLE 9-3: Class View Icons

	TABLE 9-4: Additional Class View Icons

	
Chapter 12

	TABLE 12-1: Generic Collection Type

	TABLE 12-2: Sorting with Generic Types

	TABLE 12-3: Generic Type Constraints

	
Chapter 14

	TABLE 14‐1: Common Control Events

	TABLE 14‐2: Common Layout Panels

	TABLE 14‐3: Image Control Properties

	TABLE 14‐4: TextBox Properties

	TABLE 14‐5: CheckBox Properties

	TABLE 14‐6: RadioButton Properties

	TABLE 14‐7: IsReadOnly and IsEditable Combinations

	TABLE 14‐8: Other ComboBox Properties

	TABLE 14‐9: Interesting ListBox Properties

	TABLE 14‐10: The Name Property

	
Chapter 15

	TABLE 15‐1: The Register() Method's Parameters

	TABLE 15‐2: Overloads for the FrameworkPropertyMetadata Constructor

	TABLE 15‐3: Displaying MenuItem Properties

	TABLE 15‐4: Property and Field Names

	TABLE 15‐5: Cards in Hand Dependency Properties

	TABLE 15‐6: Game Decks Dependency Properties

	
Chapter 18

	TABLE 18‐1: Cross‐Platform Key Terms

	TABLE 18‐2: Summary of .NET Standard 2.0 Namespace and API Count

	TABLE 18‐3: Summary of .NET Standard Supported Version

	TABLE 18‐4: .NET Core Performance Improvements versus .NET Framework

	
Chapter 19

	TABLE 19-1: Baseline ASP.NET Core on Kestrel performance

	TABLE 19-2: Differences between Projects and Web Sites

	TABLE 19-3: Examples of ASP.NET Server Controls

	TABLE 19-4: Examples of ASP.NET Validation Controls

	TABLE 19-5: ASP.NET Web Forms State Management Techniques

	TABLE 19-6: Examples of Razor HtmlHelper methods

	TABLE 19-7: Examples of ASP.NET Core Validation Attributes

	TABLE 19-8: ASP.NET Core State Management Techniques

	
Chapter 20

	TABLE 20‐1: File System Access Classes

	TABLE 20‐2: Static Methods of the File Class

	TABLE 20‐3: Static Methods of the Directory Class

	TABLE 20‐4: FileSystemInfo Properties

	TABLE 20‐5: FileInfo Properties

	TABLE 20‐6: Properties Unique to the DirectoryInfo Class

	TABLE 20‐7: Stream Classes

	TABLE 20‐8: FileAccess Enumeration Members

	TABLE 20‐9: FileMode Enumeration Members

	TABLE 20‐10: FileSystemWatcher Properties

	
Chapter 21

	TABLE 21-1: Common DOM Classes

	TABLE 21-2: XmlElement Properties

	TABLE 21-3: Three Ways to Get the Value of a Node

	TABLE 21-4: Methods for Creating Nodes

	TABLE 21-5: Methods for Inserting Nodes

	TABLE 21-6: Methods for Removing Nodes

	TABLE 21-7: Methods for Selecting Nodes

	TABLE 21-8: Common XPath Operations

	
Chapter 22

	TABLE 22‐1: Aggregate Operators for Numeric Results

	
Chapter 24

	TABLE 24‐1: Binding Types

	TABLE 24‐2: NET Default Bindings

	TABLE 24‐3: DataContractAttribute Properties

	TABLE 24‐4: DataMemberAttribute Properties

	TABLE 24‐5: ServiceContractAttribute Properties

	TABLE 24‐6: OperationContractAttribute Properties

List of Illustrations

	
Chapter 1

	FIGURE 1‐1

	FIGURE 1‐2

	FIGURE 1‐3

	FIGURE 1‐4

	
Chapter 2

	FIGURE 2‐1

	FIGURE 2‐2

	FIGURE 2‐3

	FIGURE 2‐4

	FIGURE 2‐5

	FIGURE 2‐6

	FIGURE 2‐7

	FIGURE 2‐8

	FIGURE 2‐9

	FIGURE 2‐10

	FIGURE 2‐11

	FIGURE 2‐12

	FIGURE 2‐13

	FIGURE 2‐14

	
Chapter 3

	FIGURE 3‐1

	FIGURE 3‐2

	FIGURE 3‐3

	FIGURE 3‐4

	
Chapter 4

	FIGURE 4‐1

	FIGURE 4‐2

	FIGURE 4‐3

	FIGURE 4‐4

	FIGURE 4‐5

	FIGURE 4‐6

	FIGURE 4‐7

	
Chapter 5

	FIGURE 5‐1

	FIGURE 5‐2

	FIGURE 5‐3

	FIGURE 5‐4

	FIGURE 5‐5

	FIGURE 5‐6

	FIGURE 5‐7

	FIGURE 5‐8

	FIGURE 5‐9

	FIGURE 5‐10

	FIGURE 5‐11

	FIGURE 5‐12

	FIGURE 5‐13

	FIGURE 5‐14

	FIGURE 5‐15

	
Chapter 6

	FIGURE 6‐1

	FIGURE 6‐2

	FIGURE 6‐3

	FIGURE 6‐4

	FIGURE 6‐5

	FIGURE 6‐6

	FIGURE 6‐7

	FIGURE 6‐8

	FIGURE 6‐9

	FIGURE 6‐10

	FIGURE 6‐11

	FIGURE 6‐12

	
Chapter 7

	FIGURE 7‐1

	FIGURE 7‐2

	FIGURE 7‐3

	FIGURE 7‐4

	FIGURE 7‐5

	FIGURE 7‐6

	FIGURE 7‐7

	FIGURE 7‐8

	FIGURE 7‐9

	FIGURE 7‐10

	FIGURE 7‐11

	FIGURE 7‐12

	FIGURE 7‐13

	FIGURE 7‐14

	FIGURE 7‐15

	FIGURE 7‐16

	FIGURE 7‐17

	FIGURE 7‐18

	FIGURE 7‐19

	FIGURE 7‐20

	
Chapter 8

	FIGURE 8‐1

	FIGURE 8‐2

	FIGURE 8‐3

	FIGURE 8‐4

	FIGURE 8‐5

	FIGURE 8‐6

	FIGURE 8‐7

	FIGURE 8‐8

	FIGURE 8‐9

	FIGURE 8‐10

	FIGURE 8‐11

	FIGURE 8‐12

	FIGURE 8‐13

	FIGURE 8‐14

	FIGURE 8‐15

	
Chapter 9

	FIGURE 9‐1

	FIGURE 9‐2

	FIGURE 9‐3

	FIGURE 9‐4

	FIGURE 9‐5

	FIGURE 9‐6

	FIGURE 9‐7

	FIGURE 9‐8

	FIGURE 9‐9

	FIGURE 9‐10

	FIGURE 9‐11

	FIGURE 9‐12

	FIGURE 9‐13

	FIGURE 9‐14

	
Chapter 10

	FIGURE 10‐1

	FIGURE 10‐2

	FIGURE 10‐3

	FIGURE 10‐4

	FIGURE 10‐5

	FIGURE 10‐6

	FIGURE 10‐7

	FIGURE 10‐8

	FIGURE 10‐9

	FIGURE 10‐10

	FIGURE 10‐11

	FIGURE 10‐12

	FIGURE 10‐13

	FIGURE 10‐14

	
Chapter 11

	FIGURE 11‐1

	FIGURE 11‐2

	FIGURE 11‐3

	FIGURE 11‐4

	FIGURE 11‐5

	FIGURE 11‐6

	FIGURE 11‐7

	FIGURE 11‐8

	
Chapter 12

	FIGURE 12‐1

	FIGURE 12‐2

	FIGURE 12‐3

	FIGURE 12‐4

	FIGURE 12‐5

	
Chapter 13

	FIGURE 13‐1

	FIGURE 13‐2

	FIGURE 13‐3

	FIGURE 13‐4

	FIGURE 13‐5

	FIGURE 13‐6

	FIGURE 13‐7

	FIGURE 13‐8

	FIGURE 13‐9

	FIGURE 13‐10

	FIGURE 13‐11

	FIGURE 13‐12

	FIGURE 13‐13

	FIGURE 13‐14

	FIGURE 13‐15

	FIGURE 13‐16

	FIGURE 13‐17

	FIGURE 13‐18

	FIGURE 13‐19

	FIGURE 13‐20

	FIGURE 13‐21

	
Chapter 14

	FIGURE 14‐1

	FIGURE 14‐2

	FIGURE 14‐3

	FIGURE 14‐4

	FIGURE 14‐5

	FIGURE 14‐6

	FIGURE 14‐7

	FIGURE 14‐8

	FIGURE 14‐9

	FIGURE 14‐10

	FIGURE 14‐11

	FIGURE 14‐12

	FIGURE 14‐13

	
Chapter 15

	FIGURE 15‐1

	FIGURE 15‐2

	FIGURE 15‐3

	FIGURE 15‐4

	FIGURE 15‐5

	
Chapter 16

	FIGURE 16‐1

	FIGURE 16‐2

	FIGURE 16‐3

	FIGURE 16‐4

	FIGURE 16‐5

	FIGURE 16‐6

	FIGURE 16‐7

	FIGURE 16‐8

	FIGURE 16‐9

	FIGURE 16‐10

	FIGURE 16‐11

	FIGURE 16‐12

	FIGURE 16‐13

	FIGURE 16‐14

	FIGURE 16‐15

	
Chapter 17

	FIGURE 17‐1

	FIGURE 17‐2

	FIGURE 17‐3

	FIGURE 17‐4

	FIGURE 17‐5

	FIGURE 17‐6

	FIGURE 17‐7

	FIGURE 17‐8

	FIGURE 17‐9

	FIGURE 17‐10

	FIGURE 17‐11

	FIGURE 17‐12

	
Chapter 18

	FIGURE 18‐1

	FIGURE 18‐2

	FIGURE 18‐3

	FIGURE 18‐4

	FIGURE 18‐5

	FIGURE 18‐6

	FIGURE 18‐7

	FIGURE 18‐8

	FIGURE 18‐9

	FIGURE 18‐10

	FIGURE 18‐11

	FIGURE 18‐12

	FIGURE 18‐13

	
Chapter 19

	FIGURE 19‐1

	FIGURE 19‐2

	FIGURE 19‐3

	FIGURE 19‐4

	FIGURE 19‐5

	FIGURE 19‐6

	FIGURE 19‐7

	FIGURE 19‐8

	FIGURE 19‐9

	FIGURE 19‐10

	FIGURE 19‐11

	
Chapter 20

	FIGURE 20‐1

	FIGURE 20‐2

	FIGURE 20‐3

	FIGURE 20‐4

	FIGURE 20‐5

	FIGURE 20‐6

	FIGURE 20‐7

	FIGURE 20‐8

	
Chapter 21

	FIGURE 21‐1

	FIGURE 21‐2

	FIGURE 21‐3

	FIGURE 21‐4

	FIGURE 21‐5

	FIGURE 21‐6

	FIGURE 21‐7

	FIGURE 21‐8

	
Chapter 23

	FIGURE 23‐1

	FIGURE 23‐2

	FIGURE 23‐3

	FIGURE 23‐4

	FIGURE 23‐5

	FIGURE 23‐6

	FIGURE 23‐7

	FIGURE 23‐8

	FIGURE 23‐9

	FIGURE 23‐10

	FIGURE 23‐11

	FIGURE 23‐12

	FIGURE 23‐13

	FIGURE 23‐14

	FIGURE 23‐15

	FIGURE 23‐16

	FIGURE 23‐17

	FIGURE 23‐18

	FIGURE 23‐19

	FIGURE 23‐20

	
Chapter 24

	FIGURE 24‐1

	FIGURE 24‐2

	FIGURE 24‐3

	FIGURE 24‐4

	FIGURE 24‐5

	
Chapter 25

	FIGURE 25‐1

	FIGURE 25‐2

Guide

	
Cover

	
Table of Contents

	
Begin Reading

Pages

	i

	xxi

	xxii

	xxiii

	xxiv

	xxv

	xxvi

	xxvii

	xxvii

	1

	3

	4

	5

	6

	7

	8

	9

	10

	11

	12

	15

	16

	17

	18

	19

	20

	21

	22

	23

	24

	25

	26

	27

	28

	29

	30

	31

	33

	34

	35

	36

	37

	38

	39

	40

	41

	42

	43

	44

	45

	46

	47

	48

	49

	50

	51

	52

	53

	54

	55

	56

	59

	60

	61

	62

	63

	64

	65

	66

	67

	68

	69

	70

	71

	72

	73

	74

	75

	76

	77

	78

	79

	80

	83

	84

	85

	86

	87

	88

	89

	90

	91

	92

	93

	94

	95

	96

	97

	98

	99

	100

	101

	102

	103

	104

	105

	106

	107

	108

	109

	110

	111

	112

	113

	114

	115

	117

	118

	119

	120

	121

	122

	123

	124

	125

	126

	127

	128

	129

	130

	131

	132

	133

	134

	135

	136

	137

	138

	139

	140

	141

	142

	143

	144

	145

	146

	147

	148

	149

	150

	151

	152

	153

	154

	155

	156

	157

	158

	159

	160

	161

	162

	163

	164

	165

	166

	167

	168

	169

	170

	171

	172

	173

	174

	175

	176

	177

	179

	180

	181

	182

	183

	184

	185

	186

	187

	188

	189

	190

	191

	192

	193

	194

	195

	196

	197

	198

	199

	200

	201

	203

	204

	205

	206

	207

	208

	209

	210

	211

	212

	213

	214

	215

	216

	217

	218

	219

	220

	221

	222

	223

	224

	225

	226

	227

	228

	229

	230

	231

	232

	233

	234

	235

	236

	237

	238

	239

	240

	241

	242

	243

	244

	245

	246

	247

	248

	249

	250

	251

	252

	253

	254

	255

	256

	257

	258

	259

	260

	261

	262

	263

	264

	265

	266

	269

	270

	271

	272

	273

	274

	275

	276

	277

	278

	279

	280

	281

	282

	283

	284

	285

	286

	287

	288

	289

	290

	291

	292

	293

	294

	295

	296

	297

	298

	299

	300

	301

	302

	303

	304

	305

	306

	307

	308

	309

	310

	311

	312

	313

	314

	315

	316

	317

	319

	320

	321

	322

	323

	324

	325

	326

	327

	328

	329

	330

	331

	332

	333

	334

	335

	336

	337

	338

	339

	340

	341

	342

	343

	344

	345

	346

	347

	348

	349

	350

	351

	352

	353

	354

	355

	356

	359

	360

	361

	362

	363

	364

	365

	366

	367

	368

	369

	370

	371

	372

	373

	374

	375

	376

	377

	378

	379

	380

	381

	382

	383

	384

	385

	386

	387

	388

	389

	390

	391

	392

	393

	394

	395

	396

	397

	398

	399

	400

	401

	402

	403

	404

	405

	406

	407

	408

	409

	410

	411

	412

	413

	414

	415

	416

	417

	418

	419

	420

	421

	422

	423

	425

	426

	427

	428

	429

	430

	431

	432

	433

	434

	435

	436

	437

	438

	439

	440

	441

	442

	443

	444

	445

	446

	447

	448

	449

	450

	451

	452

	453

	454

	455

	456

	457

	458

	459

	460

	461

	462

	463

	464

	465

	466

	467

	468

	469

	470

	471

	472

	473

	474

	475

	476

	477

	478

	479

	480

	481

	482

	483

	484

	485

	486

	487

	488

	489

	490

	491

	492

	493

	494

	495

	496

	497

	498

	499

	500

	501

	502

	503

	504

	505

	506

	507

	508

	509

	510

	511

	512

	513

	514

	515

	516

	517

	518

	519

	520

	521

	522

	523

	524

	525

	526

	527

	528

	529

	531

	533

	534

	535

	536

	537

	538

	539

	540

	541

	542

	543

	544

	545

	546

	547

	548

	549

	550

	551

	552

	553

	554

	555

	556

	557

	559

	560

	561

	562

	563

	564

	565

	566

	567

	568

	569

	570

	571

	572

	573

	574

	575

	576

	577

	579

	580

	581

	582

	583

	584

	585

	586

	587

	588

	589

	590

	591

	592

	593

	594

	595

	596

	597

	598

	599

	600

	601

	602

	603

	604

	605

	606

	607

	609

	610

	611

	612

	613

	614

	615

	616

	617

	618

	619

	620

	621

	622

	623

	624

	625

	626

	627

	628

	629

	630

	631

	632

	633

	634

	635

	636

	637

	638

	639

	641

	642

	643

	644

	645

	646

	647

	648

	649

	650

	651

	652

	653

	654

	655

	656

	657

	658

	659

	660

	661

	662

	663

	664

	665

	666

	667

	668

	669

	670

	671

	673

	674

	675

	676

	677

	678

	679

	680

	681

	682

	683

	684

	685

	686

	687

	688

	689

	690

	691

	692

	693

	694

	695

	696

	697

	698

	699

	700

	701

	702

	703

	704

	705

	706

	707

	708

	709

	710

	711

	712

	713

	714

	715

	716

	717

	718

	719

	720

	721

	722

	723

	724

	725

	726

	727

	728

	729

	731

	732

	733

	734

	735

	736

	737

	738

	739

	740

	741

	742

	743

	744

	745

	746

	747

	748

	749

	750

	751

	752

	753

	754

	755

	756

	757

	759

	761

	762

	763

	764

	765

	766

	767

	768

	769

	770

	771

	772

	773

	774

	775

	776

	777

	778

	779

	780

	781

	782

	783

	784

	785

	786

	787

	788

	789

	790

	791

	792

	793

	794

	795

	796

	797

	798

	799

	800

	801

	802

	803

	804

	805

	806

	807

	808

	809

	810

	811

	812

	813

	814

	815

	816

	817

	818

	819

	820

	ii

	iii

	iv

	v

BEGINNING C# 7 Programming with Visual Studio® 2017

Benjamin Perkins
Jacob Vibe Hammer
Jon D. Reid

[image: Wiley Logo]

INTRODUCTION
THE C# LANGUAGE WAS UNVEILED TO THE WORLD when Microsoft announced the first version of its .NET Framework in July 2000. Since then its popularity has rocketed, and it has arguably become the language of choice for desktop, web, cloud, and cross‐platform developers who use the .NET Framework. Part of the appeal of C# comes from its clear syntax, which derives from C/C++ but simplifies some things that have previously discouraged some programmers. Despite this simplification, C# has retained the power of C++, and there is now no reason not to move into C#. The language is not difficult and it's a great one to learn elementary programming techniques with. This ease of learning, combined with the capabilities of the .NET Framework, make C# an excellent way to start your programming career.

The latest release of C# is C# 7 (included with version 4.7 of the .NET Framework), which builds on the existing successes and adds even more attractive features. The latest release of Visual Studio (Visual Studio 2017) and the Visual Studio Code 2017 line of development tools also bring many tweaks and improvements to make your life easier and to dramatically increase your productivity.

This book is intended to teach you about all aspects of C# programming, including the language itself, desktop, cloud, and cross‐platform programming, making use of data sources, and some new and advanced techniques. You'll also learn about the capabilities of Visual Studio 2017 and all the ways that this product can aid your application development.

The book is written in a friendly, mentor‐style fashion, with each chapter building on previous ones, and every effort is made to ease you into advanced techniques painlessly. At no point will technical terms appear from nowhere to discourage you from continuing; every concept is introduced and discussed as required. Technical jargon is kept to a minimum, but where it is necessary, it, too, is properly defined and laid out in context.

The authors of this book are all experts in their field and are all enthusiastic in their passion for both the C# language and the .NET Framework. Nowhere will you find a group of people better qualified to take you under their collective wing and nurture your understanding of C# from first principles to advanced techniques. Along with the fundamental knowledge it provides, this book is packed full of helpful hints, tips, exercises, and full‐fledged example code (available for download on this book's web page at www.wrox.com and at https://github.com/benperk/BeginningCSharp7) that you will find yourself returning to repeatedly as your career progresses.

We pass this knowledge on without begrudging it and hope that you will be able to use it to become the best programmer you can be. Good luck, and all the best!

WHO THIS BOOK IS FOR

This book is for everyone who wants to learn how to program in C# using the .NET Framework. It is for absolute beginners who want to give programming a try by learning a clean, modern, elegant programming language. But it is also for people familiar with other programming languages who want to explore the .NET platform, as well as for existing .NET developers who want to give Microsoft's .NET flagship language a try.

WHAT THIS BOOK COVERS

The early chapters cover the language itself, assuming no prior programming experience. If you have programmed in other languages before, much of the material in these chapters will be familiar. Many aspects of C# syntax are shared with other languages, and many structures are common to practically all programming languages (such as looping and branching structures). However, even if you are an experienced programmer, you will benefit from looking through these chapters to learn the specifics of how these techniques apply to C#.

If you are new to programming, you should start from the beginning, where you will learn basic programming concepts and become acquainted with both C# and the .NET platform that underpins it. If you are new to the .NET Framework but know how to program, you should read Chapter 1 and then skim through the next few chapters before continuing with the application of the C# language. If you know how to program but haven't encountered an object‐oriented programming language before, you should read the chapters from Chapter 8 onward.

Alternatively, if you already know the C# language, you might want to concentrate on the chapters dealing with the most recent .NET Framework and C# language developments, specifically the chapters on collections, generics, and C# language enhancements (Chapters 11 and 12).

The chapters in this book have been written with a dual purpose in mind: They can be read sequentially to provide a complete tutorial in the C# language, and they can be dipped into as required reference material.

In addition to the core material, starting with Chapter 3 most chapters also include a selection of exercises at the end, which you can work through to ensure that you have understood the material. The exercises range from simple multiple choice or true/false questions to more complex exercises that require you to modify or build applications. The answers to all the exercises are provided in the Appendix. You can also find these exercises as part of the wrox.com code downloads on this book's page at www.wrox.com.

This book also gives plenty of love and attention to coincide with the release of C# 7 and .NET 4.7. Every chapter received an overhaul, with less relevant material removed, and new material added. All of the code has been tested against the latest version of the development tools used, and all of the screenshots have been retaken in Windows 10 to provide the most current windows and dialog boxes. New highlights of this edition include the following:

	Additional and improved code examples for you to try out

	Coverage of everything that's new in C# 7 and .NET 4.7

	Examples of programming .NET Core and ASP.NET Core for running cross‐platform

	Examples of programming cloud applications and using Azure SDK to create and access cloud resources

HOW THIS BOOK IS STRUCTURED
This book is divided into six sections:

	Introduction—Purpose and general outline of the book's contents

	The C# Language—Covers all aspects of the C# language, from the fundamentals to object‐oriented techniques

	Windows Programming—How to write and deploy desktop applications with the Windows Presentation Foundation library (WPF)

	Cloud and Cross‐Platform Programming—Cloud and cross‐platform application development and deployment, including the creation and consumption of a Web API

	Data Access—How to use data in your applications, including data stored in files on your hard disk, data stored in XML format, and data in databases

	Additional Techniques—An examination of some extra ways to use C# and the .NET Framework, including Windows Communication Foundation (WCF) and Universal Windows Applications

The following sections describe the chapters in the five major parts of this book.
The C# Language (Chapters 1– 13
)
Chapter 1 introduces you to C# and how it fits into the .NET landscape. You'll learn the fundamentals of programming in this environment and how Visual Studio 2017 (VS) fits in.

Chapter 2 starts you off with writing C# applications. You'll look at the syntax of C# and put the language to use with sample command‐line and Windows applications. These examples demonstrate just how quick and easy it can be to get up and running, and along the way you'll be introduced to the Visual Studio development environment and the basic windows and tools that you'll be using throughout the book.

Next, you'll learn more about the basics of the C# language. You'll learn what variables are and how to manipulate them in Chapter 3. You'll enhance the structure of your applications with flow control (looping and branching) in Chapter 4, and you'll see some more advanced variable types such as arrays in Chapter 5. In Chapter 6 you'll start to encapsulate your code in the form of functions, which makes it much easier to perform repetitive operations and makes your code much more readable.

By the beginning of Chapter 7 you'll have a handle on the fundamentals of the C# language, and you will focus on debugging your applications. This involves looking at outputting trace information as your applications are executed, and at how Visual Studio can be used to trap errors and lead you to solutions for them with its powerful debugging environment.

From Chapter 8 onward you'll learn about object‐oriented programming (OOP), starting with a look at what this term means and an answer to the eternal question, “What is an object?” OOP can seem quite difficult at first. The whole of Chapter 8 is devoted to demystifying it and explaining what makes it so great, and you won't actually deal with much C# code until the very end of the chapter.

Everything changes in Chapter 9, when you put theory into practice and start using OOP in your C# applications. This is where the true power of C# lies. You'll start by looking at how to define classes and interfaces, and then move on to class members (including fields, properties, and methods) in Chapter 10. At the end of that chapter you'll start to assemble a card game application, which is developed over several chapters and will help to illustrate OOP.

Once you've learned how OOP works in C#, Chapter 11 moves on to look at common OOP scenarios, including dealing with collections of objects, and comparing and converting objects. Chapter 12 takes a look at a very useful feature of C# that was introduced in .NET 2.0: generics, which enable you to create very flexible classes. Next, Chapter 13 continues the discussion of the C# language and OOP with some additional techniques, notably events, which become very important in, for example, Windows programming. Chapter 13 wraps up the fundamentals by focusing on C# language features that were introduced with versions 3.0, 4, 5, and 6 of the language.
Windows Programming (Chapters 14– 15
)
Chapter 14 starts by introducing you to what is meant by Windows programming and looks at how this is achieved in Visual Studio. It focuses on WPF as a tool that enables you to build desktop applications in a graphical way and assemble advanced applications with the minimum of effort and time. You'll start with the basics of WPF programming and build up your knowledge in both this chapter and Chapter 15, which demonstrates how you can use the wealth of controls supplied by the .NET Framework in your applications.
Cloud and Cross‐Platform Programming (Chapters 16– 19
)
Chapter 16 starts by describing what cloud programming is and discusses the cloud‐optimized stack. The cloud environment is not identical to the way programs have been traditionally coded, so a few cloud programming patterns are discussed and defined. To complete this chapter, you require an Azure account, which is free, so that you can create an App Service Web App. Then, using the Azure SDK with C#, you create and access a storage account from an ASP.NET 4.7 web application.

In Chapter 17, you learn how to create and deploy an ASP.NET Web API to the cloud and then consume the Web API from a similar ASP.NET 4.7 web application. The chapter ends discussing two of the most valuable features in the cloud, scaling and the optimal utilization of hardware resources.

Chapter 18 introduces .NET Standard and .NET Core, which are tools used for targeting any application type—for example WPF, Windows, and ASP.NET. An emerging application is one that can run cross‐platform such as on Linux or MacOS. The chapter provides instructions for installing .NET Core 2.0 and creating and implementing a .NET Standard library.

Chapter 19 describes ASP.NET and its many different types (e.g., ASP.NET Webforms, ASP.NET MVC, and ASP.NET Core). The exercises in this chapter utilize the .NET Standard library created in Chapter 18 from both an ASP.NET Webpage and an ASP.NET Core application.
Data Access (Chapters 20– 23
)
Chapter 20 looks at how your applications can save and retrieve data to disk, both as simple text files and as more complex representations of data. You'll also learn how to compress data and how to monitor and act on file system changes.

In Chapter 21 you'll learn about the de facto standard for data exchange—namely XML—and a rapidly emerging format called JSON. By this point in the book, you'll have touched on XML several times in preceding chapters, but this chapter lays out the ground rules and shows you what all the excitement is about.

The remainder of this part looks at LINQ, which is a query language built in to the latest versions of the .NET Framework. You start in Chapter 22 with a general introduction to LINQ, and then you will use LINQ to access a database and other data in Chapter 23.
Additional Techniques (Chapters 24– 25
)
Chapter 24 is an introduction to Windows Communication Foundation (WCF), which provides you with the tools you need for enterprise‐level programmatic access to information and capabilities across local networks and the Internet. You will see how you can use WCF to expose complex data and functionality to web and desktop applications in a platform‐independent way.

Chapter 25 shows you how you can create Universal Windows Apps, which are new to Windows. This chapter builds on the foundation of Chapters 14 and 15 to show you how to create Windows Apps that can run on all windows platforms.

WHAT YOU NEED TO USE THIS BOOK

The code and descriptions of C# and the .NET Framework in this book apply to C# 7 and .NET 4.7. You don't need anything other than the Framework to understand this aspect of the book, but many of the examples require a development tool. This book uses Visual Studio Community 2017 as its primary development tool. Use Visual Studio Community 2017 to create Windows, cloud, and cross‐platform applications as well as SQL Server Express for applications that access databases. Some functionality is available only in Visual Studio 2017, but this won't stop you from working through any of the examples in this book.

The source code for the samples is available for download from this book's page on www.wrox.com and at https://github.com/benperk/BeginningCSharp7.

CONVENTIONS

To help you get the most from the text and keep track of what's happening, we've used a number of conventions throughout the book.

TRY IT OUT
The Try It Out is an exercise you should work through, following the text in the book.

	These exercises usually consist of a set of steps.

	Each step has a number.

	Follow the steps through with your copy of the database.

How It Works
After each Try It Out, the code you've typed will be explained in detail.

WARNING

Warnings hold important, not‐to‐be‐forgotten information that is directly relevant to the surrounding text.

NOTE

Shaded boxes like this hold notes, tips, hints, tricks, or asides to the current discussion.

As for styles in the text:

	We italicize new terms and important words when we introduce them.

	We show keyboard strokes like this: Ctrl+A.

	We show file names, URLs, and code within the text like so: persistence.properties

We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use bold to emphasize code that is particularly important in the present
context or to show changes from a previous code snippet.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code manually, or to use the source code files that accompany the book. All the source code used in this book is available for download on this book's page at www.wrox.com and at https://github.com/benperk/BeginningCSharp7.

You can also search for the book at www.wrox.com by ISBN (the ISBN for this book is 978‐1‐119‐45868‐5) to find the code. A complete list of code downloads for all current Wrox books is available at www.wrox.com/dynamic/books/download.aspx.

Most of the code on www.wrox.com is compressed in a .ZIP, .RAR archive, or similar archive format appropriate to the platform. Once you download the code, just decompress it with an appropriate compression tool.

NOTE

Because many books have similar titles, you may find it easiest to search by ISBN; this book's ISBN is 978‐1‐119‐45868‐5.

Alternatively, as just mentioned, you can also go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may save another reader hours of frustration, and at the same time, you will be helping us provide even higher quality information.

To find the errata page for this book, go to this book's page at www.wrox.com and click the Errata link. On this page you can view all errata that has been submitted for this book and posted by Wrox editors.

If you don't spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport.shtml and complete the form there to send us the error you have found. We'll check the information and, if appropriate, post a message to the book's errata page and fix the problem in subsequent editions of the book.
PART I
The C# Language

	CHAPTER 1: Introducing C#

	CHAPTER 2: Writing a C# Program

	CHAPTER 3: Variables and Expressions

	CHAPTER 4: Flow Control

	CHAPTER 5: More about Variables

	CHAPTER 6: Functions

	CHAPTER 7: Debugging and Error Handling

	CHAPTER 8: Introduction to Object-Oriented Programming

	CHAPTER 9: Defining Classes

	CHAPTER 10: Defining Class Members

	CHAPTER 11: Collections, Comparisons, and Conversions

	CHAPTER 12: Generics

	CHAPTER 13: Additional C# Techniques

1
Introducing C#

WHAT YOU WILL LEARN IN THIS CHAPTER

	What the .NET Framework is

	What C# is

	Explore Visual Studio 2017

Welcome to the first chapter of the first section of this book. This section provides you with the basic knowledge you need to get up and running with the most recent version of C#. Specifically, this chapter provides an overview of the .NET Framework and C#, including what these technologies are, the motivation for using them, and how they relate to each other.

It begins with a general discussion of the .NET Framework. This technology contains many concepts that are tricky to come to grips with initially. This means that the discussion, by necessity, covers many concepts in a short amount of space. However, a quick look at the basics is essential to understanding how to program in C#. Later in the book, you revisit many of the topics covered here, exploring them in more detail.

After that general introduction, the chapter provides a basic description of C# itself, including its origins and similarities to C++. Finally, you look at the primary tool used throughout this book: Visual Studio (VS). Visual Studio 2017 is the latest in a long line of development environments that Microsoft has produced, and it includes all sorts of features (including full support for Windows Store, Azure, and cross‐platform applications) that you will learn about throughout this book.

WHAT IS THE .NET FRAMEWORK?
The .NET Framework (now at version 4.7) is a revolutionary platform created by Microsoft for developing applications. The most interesting thing about this statement is how vague and limited it is—but there are good reasons for this. To begin with, note that it doesn't actually “develop applications only on the Windows operating system.” Although the Microsoft release of the .NET Framework runs on the Windows and Windows Mobile operating systems, it is possible to find alternative versions that will work on other systems. One example of this is Mono, an open source version of the .NET Framework (including a C# compiler) that runs on several operating systems, including various ‐flavors of Linux and Mac OS; you can read more about it at http://www.mono‐project.com.

Mono is a very important part of the .NET ecosystem, especially for creating client‐side applications with Xamarin. Microsoft has also created a cross platform open source library called .NET Core (https://github.com/dotnet/core) which they hope will have a positive impact on both the Mono and .NET Core frameworks. Programmers in both ecosystems can use examples from each other's libraries to improve performance, security, and the breadth of language feature offerings—collaboration is a key characteristic in the open source community.

In addition, the definition of the .NET Framework includes no restriction on the type of applications that are possible. The .NET Framework enables the creation of desktop applications, Windows Store (UWP) applications, cloud/web applications, Web APIs, and pretty much anything else you can think of. Also, it's worth noting that web, cloud, and Web API applications are, by definition, multi‐platform applications, since any system with a web browser can access them.

The .NET Framework has been designed so that it can be used from any language, including C# (the subject of this book) as well as C++, F#, JScript, Visual Basic, and even older languages such as COBOL. For this to work, .NET‐specific versions of these languages have also appeared, and more are being released all the time. For a list of languages, see https://msdn.microsoft.com/en‐us/library/ee822860(v=vs.100).aspx. Not only do these languages have access to the .NET Framework, but they can also communicate with each other. It is possible for C# developers to make use of code written by Visual Basic programmers, and vice versa.

All of this provides an extremely high level of versatility and is part of what makes using the .NET Framework such an attractive prospect.
What's in the .NET Framework?
The .NET Framework consists primarily of a gigantic library of code that you use from your client‐ or server‐side languages (such as C#) using object‐oriented programming (OOP) techniques. This library is categorized into different modules—you use portions of it depending on the results you want to achieve. For example, one module contains the building blocks for Windows applications, another for network programming, and another for web development. Some modules are divided into more specific submodules, such as a module for building web services within the module for web development.

The intention is for different operating systems to support some or all of these modules, depending on their characteristics. A smartphone, for example, includes support for all the base .NET functionality, but is unlikely to require some of the more esoteric modules.

Part of the .NET Framework library defines some basic types. A type is a representation of data, and specifying some of the most fundamental of these (such as “a 32‐bit signed integer”) facilitates interoperability between languages using the .NET Framework. This is called the Common Type System (CTS).

As well as supplying this library, the .NET Framework also includes the .NET Common Language Runtime (CLR), which is responsible for the execution of all applications developed using the.NET library.
.NET Standard and .NET Core
When the .NET Framework was originally created, although it was designed for running on multiple platforms, there was no industry accepted open‐source forking concept. These days, usually on GitHub, a project can be forked and then customized to run on multiple platforms. For example, the .NET Compact Framework and the .NET Micro Framework are forks of the .NET Framework, like .NET Core, which was created as the most optimal solution for cross‐platform code development. Each of those .NET Framework “flavors” or “verticals” had a specific set of requirements and objectives that triggered the need to make that fork.

Included in the .NET Framework is a set of Base Class Libraries (BCL) that contain APIs for basic actions most developers need a program to do. These actions include, for example, file access, string manipulation, managing streams, storing data in collections, security attributes, and many others. These fundamental capabilities are often implemented differently within each of the .NET Framework flavors. This requires a developer to learn, develop, and manage multiple BCLs for each fork or flavor of their application based on the platform it runs. This is the problem that the .NET Standard has solved.

The expectation is that shortly, this forking concept will result in many more flavors of the .NET Framework. This increase will necessitate a standard set of basic programming APIs that works with each fork and flavor. Without this cross platform base library, the development and support complexities would prevent the speedy adoption of the forked version. In short, .NET Standard is a class library that exposes APIs that support any fork or flavor of application using the .NET Platform.
Writing Applications Using the .NET Framework and .NET Core
Writing an application using either the .NET Framework or .NET Core means writing code (using any of the languages that support the Framework) using the .NET code library. In this book you use Visual Studio for your development. Visual Studio is a powerful, integrated development environment that supports C# (as well as managed and unmanaged C++, Visual Basic, and some others). The advantage of this environment is the ease with which .NET features can be integrated into your code. The code that you create will be entirely C# but use the .NET Framework throughout, and you'll make use of the additional tools in Visual Studio where necessary.

In order for C# code to execute, it must be converted into a language that the target operating ‐system understands, known as native code. This conversion is called compiling code, an act that is performed by a compiler. Under the .NET Framework and .NET Core, this is a two‐stage process.
CIL and JIT
When you compile code that uses either the .NET Framework or .NET Core library, you don't immediately create operating system–specific native code. Instead, you compile your code into Common Intermediate Language (CIL) code. This code isn't specific to any operating system (OS) and isn't specific to C#. Other .NET languages—Visual Basic .NET or F#, for example—also compile to this language as a first stage. This compilation step is carried out by Visual Studio when you develop C# applications.

Obviously, more work is necessary to execute an application. That is the job of a just‐in‐time (JIT) compiler, which compiles CIL into native code that is specific to the OS and machine architecture being targeted. Only at this point can the OS execute the application. The just‐in‐time part of the name reflects the fact that CIL code is compiled only when it is needed. This compilation can happen on the fly while your application is running, although luckily this isn't something that you normally need to worry about as a developer. Unless you are writing extremely advanced code where performance is critical, it's enough to know that this compilation process will churn along merrily in the background, without interfering.

In the past, it was often necessary to compile your code into several applications, each of which targeted a specific operating system and CPU architecture. Typically, this was a form of optimization (to get code to run faster on an AMD chipset, for example), but at times it was critical (for applications to work in both Win9x and WinNT/2000 environments, for example). This is now unnecessary because JIT compilers (as their name suggests) use CIL code, which is independent of the machine, operating system, and CPU. Several JIT compilers exist, each targeting a different architecture, and the CLR/CoreCLR uses the appropriate one to create the native code required.
The beauty of all this is that it requires a lot less work on your part—in fact, you can forget about system‐dependent details and concentrate on the more interesting functionality of your code.

NOTE
As you learn about .NET you might come across references to Microsoft Intermediate Language (MSIL). MSIL was the original name for CIL, and many developers still use this terminology today. See https://en.wikipedia.org/wiki/Common_Intermediate_Language for more information about CIL.

Assemblies
When you compile an application, the CIL code is stored in an assembly. Assemblies include both executable application files that you can run directly from Windows without the need for any other programs (these have an .exe file extension) and libraries (which have a .dll extension) for use by other applications.

In addition to containing CIL, assemblies also include meta information (that is, information about the information contained in the assembly, also known as metadata) and optional resources (additional data used by the CIL, such as sound files and pictures). The meta information enables assemblies to be fully self‐descriptive. You need no other information to use an assembly, meaning you avoid situations such as failing to add required data to the system registry and so on, which was often a problem when developing with other platforms.

This means that deploying applications is often as simple as copying the files into a directory on a remote computer. Because no additional information is required on the target systems, you can just run an executable file from this directory and, assuming the .NET CLR is installed for .NET Framework targeted applications, you're good to go. For .NET Core targeted applications, all modules required to run the program are included in the deployment package and therefore no additional configurations are required.

From a .NET Framework perspective, you won't necessarily want to include everything required to run an application in one place. You might write some code that performs tasks required by multiple applications. In situations like that, it is often useful to place the reusable code in a place accessible to all applications. In the .NET Framework, this is the global assembly cache (GAC). Placing code in the GAC is simple—you just place the assembly containing the code in the directory containing this cache.
Managed Code
The role of the CLR/CoreCLR doesn't end after you have compiled your code to CIL and a JIT compiler has compiled that to native code. Code written using the .NET Framework and .NET Core are managed when it is executed (a stage usually referred to as runtime). This means that the CLR/CoreCLR looks after your applications by managing memory, handling security, allowing cross‐language debugging, and so on. By contrast, applications that do not run under the control of the CLR/CoreCLR are said to be unmanaged, and certain languages such as C++ can be used to write such applications, which, for example, access low‐level functions of the operating system. However, in C# you can write only code that runs in a managed environment. You will make use of the managed features of the CLR/CoreCLR and allow .NET itself to handle any interaction with the operating system.
Garbage Collection
One of the most important features of managed code is the concept of garbage collection. This is the .NET method of making sure that the memory used by an application is freed up completely when the application is no longer in use. Prior to .NET this was mostly the responsibility of programmers, and a few simple errors in code could result in large blocks of memory mysteriously disappearing as a result of being allocated to the wrong place in memory. That usually meant a progressive slowdown of your computer, followed by a system crash.

.NET garbage collection works by periodically inspecting the memory of your computer and removing anything from it that is no longer needed. There is no set time frame for this; it might happen thousands of times a second, once every few seconds, or whenever, but you can rest assured that it will happen.

There are some implications for programmers here. Because this work is done for you at an unpredictable time, applications have to be designed with this in mind. Code that requires a lot of memory to run should tidy itself up, rather than wait for garbage collection to happen, but that isn't as tricky as it sounds.
Fitting It Together
Before moving on, let's summarize the steps required to create a .NET application as discussed previously:

	Application code is written using a .NET‐compatible language such as C# (see Figure 1‐1).

	That code is compiled into CIL, which is stored in an assembly (see Figure 1‐2).

	When this code is executed (either in its own right if it is an executable or when it is used from other code), it must first be compiled into native code using a JIT compiler (see Figure 1‐3).

	The native code is executed in the context of the managed CLR/CoreCLR, along with any other running applications or processes, as shown in Figure 1‐4.

[image: Diagrammatic illustration of an application code written using a .NET-compatible language such as C#.]FIGURE 1‐1

[image: Diagrammatic illustration of C# application code compiled into CIL, which is stored in an assembly.]FIGURE 1‐2

[image: Diagrammatic illustration of a code which is compiled into native code using a JIT compilation.]FIGURE 1‐3

[image: Diagrammatic illustration of a native code executed in the context of a managed CLR/CoreCLR (common language runtime).]FIGURE 1‐4

Linking
Note one additional point concerning this process. The C# code that compiles into CIL in step 2 needn't be contained in a single file. It's possible to split application code across multiple source‐code files, which are then compiled together into a single assembly. This extremely useful process is known as linking. It is required because it is far easier to work with several smaller files than one enormous one. You can separate logically related code into an individual file so that it can be worked on independently and then practically forgotten about when completed. This also makes it easy to locate specific pieces of code when you need them and enables teams of developers to divide the programming burden into manageable chunks, whereby individuals can “check out” pieces of code to work on without risking damage to otherwise satisfactory sections or sections other people are working on.
WHAT IS C#?
C#, as mentioned earlier, is one of the languages you can use to create applications that will run in the .NET CLR/CoreCLR. It is an evolution of the C and C++ languages and has been created by Microsoft specifically to work with the .NET platform. The C# language has been designed to incorporate many of the best features from other languages, while clearing up their problems.

Developing applications using C# is simpler than using C++ because the language syntax is simpler. Still, C# is a powerful language, and there is little you might want to do in C++ that you can't do in C#. Having said that, those features of C# that parallel the more advanced features of C++, such as directly accessing and manipulating system memory, can be carried out only by using code marked as unsafe. This advanced programmatic technique is potentially dangerous (hence its name) because it is possible to overwrite system‐critical blocks of memory with potentially catastrophic results. For this reason, and others, this book does not cover that topic.

At times, C# code is slightly more verbose than C++. This is a consequence of C# being a typesafe language (unlike C++). In layperson's terms, this means that once some data has been assigned to a type, it cannot subsequently transform itself into another unrelated type. Consequently, strict rules must be adhered to when converting between types, which means you will often need to write more code to carry out the same task in C# than you might write in C++. However, there are benefits to this—the code is more robust, debugging is simpler, and .NET can always track the type of a piece of data at any time. In C#, you therefore might not be able to do things such as “take the region of memory 4 bytes into this data and 10 bytes long and interpret it as X,” but that's not necessarily a bad thing.

C# is just one of the languages available for .NET development, but it is certainly the best. It has the advantage of being the only language designed from the ground up for the .NET Framework and is the principal language used in versions of .NET that are ported to other operating systems. To keep languages such as the .NET version of Visual Basic as similar as possible to their predecessors yet compliant with the CLR/CoreCLR, certain features of the .NET code library are not fully supported, or at least require unusual syntax.

By contrast, C# can make use of every feature that the .NET Framework code library has to offer, but not all features have been ported to .NET Core. Also, each new version of .NET has included additions to the C# language, partly in response to requests from developers, making it even more powerful.
Applications You Can Write with C#
The .NET Framework has no restrictions on the types of applications that are possible, as discussed earlier. C# uses the framework and therefore has no restrictions on possible applications. (However, currently it is possible to write only Console and ASP.NET applications using .NET Core.) However, here are a few of the more common application types:

	Desktop applications—Applications, such as Microsoft Office, that have a familiar Windows look and feel about them. This is made simple by using the Windows Presentation Foundation (WPF) module of the .NET Framework, which is a library of controls (such as buttons, toolbars, menus, and so on) that you can use to build a Windows user interface (UI).

	Windows Store applications—Windows 8 introduced a new type of application, known as a Windows Store application. This type of application is designed primarily for touch devices, and it is usually run full‐screen, with a minimum of clutter, and an emphasis on simplicity. You can create these applications in several ways, including using WPF.

	Cloud/Web applications—The .NET Framework and .NET Core include a powerful system named ASP.NET, for generating web content dynamically, enabling personalization, security, and much more. Additionally, these applications can be hosted and accessed in the Cloud, for example on the Microsoft Azure platform.

	Web APIs—An ideal framework for building RESTful HTTP services that support a broad variety of clients, including mobile devices and browsers.

	WCF services—A way to create versatile distributed applications. Using WCF you can exchange virtually any data over local networks or the Internet, using the same simple syntax regardless of the language used to create a service or the system on which it resides.

Any of these types might also require some form of database access, which can be achieved using the ADO.NET (Active Data Objects .NET) section of the .NET Framework, through the Entity Framework, or through the LINQ (Language Integrated Query) capabilities of C#. For .NET Core applications requiring database access you would use the Entity Framework Core library. Many other resources can be drawn on, such as tools for creating networking components, outputting graphics, performing complex mathematical tasks, and so on.
C# in this Book
The first part of this book deals with the syntax and usage of the C# language without too much emphasis on the .NET Framework or .NET Core. This is necessary because you can't use either the .NET Framework or .NET Core at all without a firm grounding in C# programming. You'll start off even simpler, in fact, and leave the more involved topic of OOP until you've covered the basics. These are taught from first principles, assuming no programming knowledge at all.

After that, you'll be ready to move on to developing more complex (but more useful) applications. Part II tackles Windows programming, Part III explores cloud and cross‐platform programming, and Part IV examines data access (for ORM database concepts, filesystem, and XML data) and LINQ. Part V of this book looks at WCF and Windows Store application programming.
VISUAL STUDIO 2017
In this book, you use the Visual Studio 2017 development tool for all of your C# programming, from simple command‐line applications to more complex project types. A development tool, or integrated development environment (IDE), such as Visual Studio isn't essential for developing C# applications, but it makes things much easier. You can (if you want to) manipulate C# source code files in a basic text editor, such as the ubiquitous Notepad application, and compile code into assemblies using the command‐line compiler that is part of the .NET Framework and .NET Core. However, why do this when you have the power of an IDE to help you?
Visual Studio 2017 Products
Microsoft supplies several versions of Visual Studio, for example:

	Visual Studio Code

	Visual Studio Community

	Visual Studio Professional

	Visual Studio Enterprise

Visual Studio Code and Community are freely available at https://www.visualstudio.com/en‐us/downloads/download‐visual‐studio‐vs. The Professional and Enterprise version have additional capabilities, which carry a cost.

The various Visual Studio products enable you to create almost any C# application you might need. Visual Studio Code is a simple yet robust code editor that runs on Windows, Linux, and iOS. Visual Studio Community, unlike Visual Studio Code, retains the same look and feel as Visual Studio Professional and Enterprise. Microsoft offers many of the same features in Visual Studio Community as exist in the Professional and Enterprise version; however, some notable features are absent, like deep debugging capabilities and code optimization tools. However, not so many features are absent that you can't use Community to work through the chapters of this book. Visual Studio Community 2017 is the version of the IDE used to work the examples in this book.
Solutions
When you use Visual Studio to develop applications, you do so by creating solutions. A solution, in Visual Studio terms, is more than just an application. Solutions contain projects, which might be WPF projects, Cloud/Web Application projects, ASP.NET Core projects, and so on. Because solutions can contain multiple projects, you can group together related code in one place, even if it will eventually compile to multiple assemblies in various places on your hard disk.

This is very useful because it enables you to work on shared code (which might be placed in the GAC) at the same time as applications that use this code. Debugging code is a lot easier when only one development environment is used because you can step through instructions in multiple code modules.
[image: image] WHAT YOU LEARNED IN THIS CHAPTER

	TOPIC
	KEY CONCEPTS

	.NET Framework and .NET Core fundamentals
	The .NET Framework is Microsoft's latest development platform, and is currently in version 4.7. It includes a common type system (CTS) and common language runtime (CLR/CoreCLR). Both .NET Framework and .NET Core applications are written using object‐oriented programming (OOP) methodology, and usually contain managed code. Memory management of managed code is handled by the .NET runtime; this includes garbage collection.

	.NET Framework applications
	Applications written using the .NET Framework are first compiled into CIL. When an application is executed, the CLR uses a JIT to compile this CIL into native code as required. Applications are compiled, and different parts are linked together into assemblies that contain the CIL.

	.NET Core applications
	.NET Core applications work similar to .NET Framework applications; however, instead of using the CLR it uses CoreCLR.

	.NET Standard
	.NET Standard provides a unified class library which can be targeted from multiple .NET platforms like the .NET Framework, .NET Core, and Xamarin.

	C# basics
	C# is one of the languages included in the .NET Framework. It is an evolution of previous languages such as C++, and can be used to write any number of applications, including web, cross‐platform, and desktop applications.

	Integrated Development Environments (IDEs)
	You can use Visual Studio 2017 to write any type of .NET application using C#. You can also use the free, but less powerful, Community product to create .NET applications in C#. This IDE works with solutions, which can consist of multiple projects.

2
Writing a C# Program

WHAT YOU WILL LEARN IN THIS CHAPTER

	Understanding Visual Studio 2017 basics

	Writing a simple console application

	Writing a simple desktop application

WROX.COM CODE DOWNLOADS FOR THIS CHAPTERS
The wrox.com code downloads for this chapter are found on this book's webpage on Wrox.com on the Download Code tab. The code can also be found at http://github.com/benperk/BeginningCSharp7. The code is in the Chapter02 folder and individually named according to the names throughout the chapter.

Now that you've spent some time learning what C# is and how it fits into the .NET Framework, it's time to get your hands dirty and write some code. You use Visual Studio Community 2017 (VS) throughout this book, so the first thing to do is have a look at some of the basics of this development environment.

Visual Studio is an enormous and complicated product, and it can be daunting to first‐time users, but using it to create basic applications can be surprisingly simple. As you start to use Visual Studio in this chapter, you will see that you don't need to know a huge amount about it to begin playing with C# code. Later in the book you'll see some of the more complicated operations that Visual Studio can perform, but for now a basic working knowledge is all that is required.

After you've looked at the IDE, you put together two simple applications. You don't need to worry too much about the code in these applications for now; you just want to prove that things work. By working through the application‐creation procedures in these early examples, they will become second nature before too long.

You will learn how to create two basic types of applications in this chapter: a console application and a desktop application.

The first application you create is a simple console application. Console applications don't use the graphical windows environment, so you won't have to worry about buttons, menus, interaction with the mouse pointer, and so on. Instead, you run the application in a command prompt window and interact with it in a much simpler way.

The second application is a desktop application, which you create using Windows Presentation Foundation (WPF). The look and feel of a desktop application is very familiar to Windows users, and (surprisingly) the application doesn't require much more effort to create. However, the syntax of the code required is more complicated, even though in many cases you don't have to worry about details.

You use both types of application in Part II, Part III, and Part IV of the book, with more emphasis on console applications at the beginning. The additional flexibility of desktop applications isn't necessary when you are learning the C# language, while the simplicity of console applications enables you to concentrate on learning the syntax without worrying about the look and feel of the application.

THE VISUAL STUDIO 2017 DEVELOPMENT ENVIRONMENT
When you begin the installation of Visual Studio Community 2017 you are prompted with a window similar to Figure 2‐1. It provides a list of Workloads, Individual components, and Language packs to install along with the core editor.
Install the following Workloads and click the Install button.

	Windows—Universal Windows Platform development

	Windows—.Net desktop development
	.NET Framework 4.7 development tools

	Web & Cloud—ASP.NET and web development

	Web & Cloud—Azure development

	Other Toolsets—.NET Core cross‐platform development

After installation is complete, when Visual Studio is first loaded, it immediately presents you with the option to Sign in to Visual Studio using your Microsoft Account. By doing this, your Visual Studio settings are synced between devices so that you do not have to configure the IDE when using it on multiple workstations. If you do not have a Microsoft Account, follow the process for the creation of one and then use it to sign in. If you do not want to sign in, click the “Not now, maybe later” link, and continue the initial configuration of Visual Studio. We recommend that at some point you sign in and get a developer license.

[image: Screenshot illustration of an installation of Visual Studio Community 2017 with a window.]FIGURE 2‐1

If this is the first time you've run Visual Studio, you will be presented with a list of preferences intended for users who have experience with previous releases of this development environment. The choices you make here affect a number of things, such as the layout of windows, the way that console windows run, and so on. Therefore, choose Visual C# from the drop‐down; otherwise, you might find that things don't quite work as described in this book. Note that the options available vary depending on the options you chose when installing Visual Studio, but as long as you chose to install C# this option will be available.

If this isn't the first time that you've run Visual Studio, and you chose a different option the first time, don't panic. To reset the settings to Visual C#, you simply have to import them. To do this, select Tools [image: image] Import and Export Settings, and choose the Reset All Settings option, shown in Figure 2‐2.

Click Next, and indicate whether you want to save your existing settings before proceeding. If you have customized things, you might want to do this; otherwise, select No and click Next again. From the next dialog box, select Visual C#, shown in Figure 2‐3. Again, the available options may vary.

[image: Screenshot illustration of how to run Visual Studio by selecting Tools➪ Import and Export Settings, and choose the Reset All Settings option.]FIGURE 2‐2

[image: Screenshot illustration of how to save the existing settings before proceeding to select Visual C#.]FIGURE 2‐3

Finally, click Finish, then Close to apply the settings.

The Visual Studio environment layout is completely customizable, but the default is fine here. With C# Developer Settings selected, it is arranged as shown in Figure 2‐4.

[image: Screenshot illustration of the arrangement of the Visual Studio environment layout.]FIGURE 2‐4

The main window, which contains a helpful Start Page by default when Visual Studio is started, is where all your code is displayed. This window can contain many documents, each indicated by a tab, so you can easily switch between several files by clicking their filenames. It also has other functions: It can display GUIs that you are designing for your projects, plain‐text files, HTML, and various tools that are built into Visual Studio. You will come across all of these in the course of this book.

Above the main window are toolbars and the Visual Studio menu. Several different toolbars can be placed here, with functionality ranging from saving and loading files to building and running projects to debugging controls. Again, you are introduced to these as you need to use them.
Here are brief descriptions of each of the main features that you will use the most:

	The Toolbox window pops up when you click its tab. It provides access to, among other things, the user interface building blocks for desktop applications. Another tab, Server Explorer, can also appear here (selectable via the View [image: image] Server Explorer menu option) and includes various additional capabilities, such as Azure subscription details, providing access to data sources, server settings, services, and more.

	The Solution Explorer window displays information about the currently loaded solution. A solution, as you learned in the previous chapter, is Visual Studio terminology for one or more projects along with their configurations. The Solution Explorer window displays various views of the projects in a solution, such as what files they contain and what is contained in those files.

	The Team Explorer window displays information about the current Team Foundation Server or Team Foundation Service connection. This allows you access to source control, bug tracking, build automation, and other functionality. However, this is an advanced subject and is not covered in this book.

	Just below the Solution Explorer window you can display a Properties window, not shown in Figure 2‐4 because it appears only when you are working on a project (you can also toggle its display using View [image: image] Properties Window). This window provides a more detailed view of the project's contents, enabling you to perform additional configuration of individual elements. For example, you can use this window to change the appearance of a button in a desktop application.

	Also not shown in the screenshot is another extremely important window: the Error List window, which you can display using View [image: image] Error List. It shows errors, warnings, and other project‐related information. The window updates continuously, although some information appears only when a project is compiled.

This might seem like a lot to take in, but it doesn't take long to get comfortable. You start by building the first of your example projects, which involves many of the Visual Studio elements just described.

NOTE
Visual Studio is capable of displaying many other windows, both informational and functional. Many of these can share screen space with the windows mentioned here, and you can switch between them using tabs, dock them elsewhere, or even detach them and place them on other displays if you have multiple monitors. Several of these windows are used later in the book, and you'll probably discover more yourself when you explore the Visual Studio environment in more detail.

CONSOLE APPLICATIONS
You use console applications regularly in this book, particularly at the beginning, so the following Try It Out provides a step‐by‐step guide to creating a simple one.

TRY IT OUT Creating a Simple Console Application: ConsoleApplication1\Program.cs

	Create a new console application project by selecting File [image: image] New [image: image] Project, as shown in Figure 2‐5.

	Ensure that the Visual C# node is selected in the left pane of the window that appears, and choose the Console Application (.NET Framework) project type in the middle pane (see Figure 2‐6). Change the Location text box to C:\BeginningCSharp7\Chapter02 (this directory is created automatically if it doesn't already exist). Leave the default text in the Name text box (ConsoleApplication1) and the other settings as they are (refer to Figure 2‐6).

	Click the OK button.

	Once the project is initialized, add the following lines of code to the file displayed in the main window:
namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 // Output text to the screen.
 Console.WriteLine("The first app in Beginning Visual C# 2017!");
 Console.ReadKey();
 }
 }
}

	Select the Debug [image: image] Start Debugging menu item. After a few moments you should see the window shown in Figure 2‐7.

	Press any key to exit the application (you might need to click on the console window to focus on it first). The display in Figure 2‐7 appears only if the Visual C# Developer Settings are applied, as described earlier in this chapter. For example, with Visual Basic Developer Settings applied, an empty console window is displayed, and the application output appears in a window labeled Immediate. In this case, the Console.ReadKey() code also fails, and you see an error. If you experience this problem, the best solution for working through the examples in this book is to apply the Visual C# Developer Settings—that way, the results you see match the results shown here.

[image: Screenshot illustration of creating a new console application project by selecting File➪ New➪ Project.]FIGURE 2‐5

[image: Screenshot illustration of choosing the Console Application (.NET Framework) project type in the middle pane.]FIGURE 2‐6

[image: Screenshot illustration of the Window page seen after selecting the Debug➪ Start Debugging menu item.]FIGURE 2‐7

How It Works
For now, I won't dissect the code used thus far because the focus here is on how to use the development tools to get code up and running. Clearly, Visual Studio does a lot of the work for you and makes the process of compiling and executing code simple. In fact, there are multiple ways to perform even these basic steps—for instance, you can create a new project by using the menu item mentioned earlier, by pressing Ctrl+Shift+N, or by clicking the corresponding icon in the toolbar.
Similarly, your code can be compiled and executed in several ways. The process you used in the example—selecting Debug [image: image] Start Debugging—also has a keyboard shortcut (F5) and a toolbar icon. You can also run code without being in debugging mode using the Debug [image: image] Start Without Debugging menu item (or by pressing Ctrl+F5), or compile your project without running it (with debugging on or off) using Build [image: image] Build Solution or pressing F6. Note that you can execute a project without debugging or build a project using toolbar icons, although these icons don't appear on the toolbar by default. After you have compiled your code, you can also execute it simply by running the .exe file produced in Windows Explorer, or from the command prompt. To do this, open a command prompt window, change the directory to C:\
BeginningCSharp7\Chapter02\ConsoleApplication1\ConsoleApplication1\bin\Debug\, type ConsoleApplication1, and press Enter.

NOTE
In future examples, when you see the instructions “create a new console project” or “execute the code,” you can choose whichever method you want to perform these steps. Unless otherwise stated, all code should be run with debugging enabled. In addition, the terms “start,” “execute,” and “run” are used interchangeably in this book, and discussions following examples always assume that you have exited the application in the example.

Console applications terminate as soon as they finish execution, which can mean that you don't get a chance to see the results if you run them directly through the IDE. To get around this in the preceding example, the code is told to wait for a key press before terminating, using the following line:
 Console.ReadKey();
You will see this technique used many times in later examples. Now that you've created a project, you can take a more detailed look at some of the regions of the development environment.

The Solution Explorer
By default, the Solution Explorer window is docked in the top‐right corner of the screen. As with other windows, you can move it wherever you like, or you can set it to auto‐hide by clicking the pin icon. The Solution Explorer window shares space with another useful window called Class View, which you can display using View [image: image] Class View. Figure 2‐8 shows both of these windows with all nodes expanded (you can toggle between them by clicking on the tabs at the bottom of the window when the window is docked).

[image: Screenshot illustration of both the Solution Explorer window and another useful window called Class View, with all nodes expanded.]FIGURE 2‐8

This Solution Explorer view shows the files that make up the ConsoleApplication1 project. The file to which you added code, Program.cs, is shown along with another code file, AssemblyInfo.cs, and several references.

NOTE
All C# code files have a .cs file extension.

You don't have to worry about the AssemblyInfo.cs file for the moment. It contains extra information about your project that doesn't concern you yet.

You can use this window to change what code is displayed in the main window by double‐clicking .cs files; right‐clicking them and selecting View Code; or by selecting them and clicking the toolbar button that appears at the top of the window. You can also perform other operations on files here, such as renaming them or deleting them from your project. Other file types can also appear here, such as project resources (resources are files used by the project that might not be C# files, such as bitmap images and sound files). Again, you can manipulate them through the same interface.

You can also expand code items such as Program.cs to see what is contained. This overview of your code structure can be a very useful tool; it also enables you to navigate directly to specific parts of your code file, instead of opening the code file and scrolling to the part you want.

The References entry contains a list of the .NET libraries you are using in your project. You'll look at this later; the standard references are fine for now. Class View presents an alternative view of your project by showing the structure of the code you created. You'll come back to this later in the book; for now the Solution Explorer display is appropriate. As you click on files or other icons in these windows, notice that the contents of the Properties window (shown in Figure 2‐9) changes.

[image: Screenshot illustration showing the contents of the Properties window, as one clicks on files or other icons in the 2 windows.]FIGURE 2‐9

The Properties Window
The Properties window (select View [image: image] Properties Window if it isn't already displayed) shows additional information about whatever you select in the window above it. For example, the view shown in Figure 2‐9 is displayed when the Program.cs file from the project is selected. This window also displays information about other selected items, such as user interface components (as shown in the “Desktop Applications” section of this chapter).

Often, changes you make to entries in the Properties window affect your code directly, adding lines of code or changing what you have in your files. With some projects, you spend as much time manipulating things through this window as making manual code changes.
The Error List Window
Currently, the Error List window (View [image: image]Error List) isn't showing anything interesting because there is nothing wrong with the application. However, this is a very useful window indeed. As a test, remove the semicolon from one of the lines of code you added in the previous section. After a moment, you should see a display like the one shown in Figure 2‐10.

[image: Screenshot illustration of a display of the Error List window (View➪Error List).]FIGURE 2‐10

In addition, the project will no longer compile.

NOTE
In Chapter 3, when you start looking at C# syntax, you will learn that semicolons are expected throughout your code—at the end of most lines, in fact.

This window helps you eradicate bugs in your code because it keeps track of what you have to do to compile projects. If you double‐click the error shown here, the cursor jumps to the position of the error in your source code (the source file containing the error will be opened if it isn't already open), so you can fix it quickly. Red wavy lines appear at the positions of errors in the code, so you can quickly scan the source code to see where problems lie.

The error location is specified as a line number. By default, line numbers aren't displayed in the Visual Studio text editor, but that is something well worth turning on. To do so, tick the Line numbers check box in the Options dialog box (selected via the Tools [image: image] Options menu item). It appears in the Text Editor [image: image] All Languages [image: image] General category.

You can also change this setting on a per‐language basis through the language‐specific settings pages in the dialog box. Many other useful options can be found through this dialog box, and you will use several of them later in this book.
DESKTOP APPLICATIONS
It is often easier to demonstrate code by running it as part of a desktop application than through a console window or via a command prompt. You can do this using user interface building blocks to piece together a user interface.
The following Try It Out shows just the basics of doing this, and you'll see how to get a desktop application up and running without a lot of details about what the application is actually doing. You'll use WPF here, which is Microsoft's recommended technology for creating desktop applications. Later, you take a detailed look at desktop applications and learn much more about what WPF is and what it's capable of.

TRY IT OUT Creating a Simple Windows Application: WpfApplication1\MainWindow.xaml and WpfApplication1\MainWindow.xaml.cs

	Create a new project of type WPF Application in the same location as before (C:\BeginningCSharp7\Chapter02), with the default name WpfApplication1. If the first project is still open, make sure the Create New Solution option is selected to start a new solution. These settings are shown in Figure 2‐11.

	Click OK to create the project. You should see a new tab that's split into two panes. The top pane shows an empty window called MainWindow and the bottom pane shows some text. This text is actually the code that is used to generate the window, and you'll see it change as you modify the UI.

	Click the Toolbox tab on the top left of the screen, then double‐click the Button entry in the Common WPF Controls section to add a button to the window.

	Double‐click the button that has been added to the window.

	The C# code in MainWindow.xaml.cs should now be displayed. Modify it as follows (only part of the code in the file is shown here for brevity):
 private void button_Click(object sender, RoutedEvetnArgs e)
 {
 MessageBox.Show("The first desktop app in the book!");
 }

	Run the application.

	Click the button presented to open a message dialog box, as shown in Figure 2‐12.

	Click OK, and then exit the application by clicking the X in the top‐right corner, as is standard for desktop applications.

[image: Screenshot illustration of creating a new project of type WPF Application to start a new solution.]FIGURE 2‐11

[image: Screenshot illustration of how to click the button presented to open a message dialog box.]FIGURE 2‐12

How It Works
Again, it is plain that the IDE has done a lot of work for you and made it simple to create a functional desktop application with little effort. The application you created behaves just like other windows—you can move it around, resize it, minimize it, and so on. You don't have to write the code to do that—it just works. The same is true for the button you added. Simply by double‐clicking it, the IDE knew that you wanted to write code to execute when a user clicked the button in the running application. All you had to do was provide that code, getting full button‐clicking functionality for free.

Of course, desktop applications aren't limited to plain windows with buttons. Look at the Toolbox window where you found the Button option and you'll see a whole host of user interface building blocks (known as controls), some of which might be familiar. You will use most of these at some point in the book, and you'll find that they are all easy to use and save you a lot of time and effort.

The code for your application, in MainWindow.xaml.cs, doesn't look much more complicated than the code in the previous section, and the same is true for the code in the other files in the Solution Explorer window. The code in MainWindow.xaml (the split‐pane view where you added the button) also looks pretty straightforward.

This code is written in XAML, which is the language used to define user interfaces in WPF applications.

Now take a closer look at the button you added to the window. In the top pane of MainWindow.xaml, click once on the button to select it. When you do so, the Properties window in the bottom‐right corner of the screen shows the properties of the button control (controls have properties much like the files shown in the last example). Ensure that the application isn't currently running, scroll down to the Content property, which is currently set to Button, and change the value to Click Me, as shown in Figure 2‐13.

[image: Screenshot illustration of how to scroll down to the Content property, which is currently set to Button, and change the value to “Click Me.”]FIGURE 2‐13

The text written on the button in the designer should also reflect this change, as should the XAML code, as shown in Figure 2‐14.

[image: Screenshot illustration showing the text written on the button in the designer to reflect a change, as should the XAML code.]FIGURE 2‐14

There are many properties for this button, ranging from simple formatting of the color and size to more obscure settings such as data binding, which enables you to establish links to data. As briefly mentioned in the previous example, changing properties often results in direct changes to code, and this is no exception, as you saw with the XAML code change. However, if you switch back to the code view of MainWindow.xaml.cs, you won't see any changes there. This is because WPF applications are capable of keeping the design aspects of your applications (such as the text on a button) separate from the functionality aspects (such as what happens when you click a button).

NOTE
Note that it is also possible to use Windows Forms to create desktop applications. WPF is a newer technology that is intended to replace Windows Forms and provides a far more flexible and powerful way to create desktop applications, which is why this book doesn't cover Windows Forms.

[image: image] WHAT YOU LEARNED IN THIS CHAPTER

	TOPIC
	KEY CONCEPTS

	Visual Studio 2017 settings
	This book requires the C# development settings option, which you choose when you first run Visual Studio or by resetting the settings.

	Console applications
	Console applications are simple command‐line applications, used in much of this book to illustrate techniques. Create a new console application with the Console Application template that you see when you create a new project in Visual Studio. To run a project in debug mode, use the Debug [image: image] Start Debugging menu item, or press F5.

	IDE windows
	The project contents are shown in the Solution Explorer window. The properties of the selected item are shown in the Properties window. Errors are shown in the Error List window.

	Desktop applications
	Desktop applications are applications that have the look and feel of standard Windows applications, including the familiar icons to maximize, minimize, and close an application. They are created with the WPF Application template in the New Project dialog box.

3
Variables and Expressions

WHAT YOU WILL LEARN IN THIS CHAPTER

	Understanding basic C# syntax

	Using variables

	Using expressions

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER
The wrox.com code downloads for this chapter are found on this book's webpage on Wrox.com on the Download Code tab. The code can also be found at http://github.com/benperk/BeginningCSharp7. The code is in the Chapter03 folder and individually named according to the names throughout the chapter.

To use C# effectively, it's important to understand what you're actually doing when you create a computer program. Perhaps the most basic description of a computer program is that it is a series of operations that manipulate data. This is true even of the most complicated examples, including vast, multi‐featured Windows applications (such as the Microsoft Office Suite). Although this is often completely hidden from users of applications, it is always going on behind the scenes.

To illustrate this further, consider the display unit of your computer. What you see onscreen is often so familiar that it is difficult to imagine it as anything other than a “moving picture.” In fact, what you see is only a representation of some data, which in its raw form is merely a stream of 0s and 1s stashed away somewhere in the computer's memory. Any onscreen action — moving a mouse pointer, clicking on an icon, typing text into a word processor — results in the shunting around of data in memory.

Of course, simpler situations show this just as well. When using a calculator application, you are supplying data as numbers and performing operations on the numbers in much the same way as you would with paper and pencil — but a lot quicker!

If computer programs are fundamentally performing operations on data, this implies that you need a way to store that data, and some methods to manipulate it. These two functions are provided by variables and expressions, respectively, and this chapter explores what that means, both in general and specific terms.

First, though, you'll take a look at the basic syntax involved in C# programming, because you need a context in which you can learn about and use variables and expressions in the C# language.

BASIC C# SYNTAX
The look and feel of C# code is similar to that of C++ and Java. This syntax can look quite confusing at first and it's a lot less like written English than some other languages. However, as you immerse yourself in the world of C# programming, you'll find that the style used is a sensible one, and it is possible to write very readable code without much effort.

Unlike the compilers of some other languages such as Python, C# compilers ignore additional spacing in code, whether it results from spaces, carriage returns, or tab characters (collectively known as whitespace characters). This means you have a lot of freedom in the way that you format your code, although conforming to certain rules can help make your code easier to read.

C# code is made up of a series of statements, each of which is terminated with a semicolon. Because whitespace is ignored, multiple statements can appear on one line, although for readability it is usual to add carriage returns after semicolons, to avoid multiple statements on one line. It is perfectly acceptable (and quite normal), however, to use statements that span several lines of code.

C# is a block‐structured language, meaning statements are part of a block of code. These blocks, which are delimited with curly brackets ({ and }), may contain any number of statements, or none at all. Note that the curly bracket characters do not need accompanying semicolons.
For example, a simple block of C# code could take the following form:
{
 <code line 1, statement 1>;
 <code line 2, statement 2>
 <code line 3, statement 2>;
}

Here the <code line x, statement y> sections are not actual pieces of C# code; this text is used as a placeholder where C# statements would go. In this case, the second and third lines of code are part of the same statement, because there is no semicolon after the second line. Indenting the third line of code makes it easier to recognize that it is actually a continuation of the second line.
The following simple example uses indentation to clarify the C# itself. This is actually standard practice, and in fact Visual Studio automatically does this for you by default. In general, each block of code has its own level of indentation, meaning how far to the right it is. Blocks of code may be nested inside each other (that is, blocks may contain other blocks), in which case nested blocks will be indented further:
{
 <code line 1>;
 {
 <code line 2>;
 <code line 3>;
 }
 <code line 4>;
}
In addition, lines of code that are continuations of previous lines are usually indented further as well, as in the third line of code in the first code example.

NOTE
Look in the Visual Studio Options dialog box (select Tools [image: image] Options) to see the rules that Visual Studio uses for formatting your code. There are many of these, in subcategories of the Text Editor [image: image] C# [image: image] Formatting node. Most of the settings here reflect parts of C# that haven't been covered yet, but you might want to return to these settings later if you want to tweak them to suit your personal style better. For clarity, this book shows all code snippets as they would be formatted by the default settings.

Of course, this style is by no means mandatory. If you don't use it, however, you will quickly find that things can get very confusing as you move through this book!

Comments are something else you often see in C# code. A comment is not, strictly speaking, C# code at all, but it happily cohabits with it. Comments are self‐explanatory: They enable you to add descriptive text to your code — in plain English (or French, German, Mongolian, and so on) — which is ignored by the compiler. When you start dealing with lengthy code sections, it's useful to add reminders about exactly what you are doing, such as “this line of code asks the user for a number” or “this code section was written by Bob.”

C# provides two ways of doing this. You can either place markers at the beginning and end of a comment or you can use a marker that means “everything on the rest of this line is a comment.” The latter method is an exception to the rule mentioned previously about C# compilers ignoring carriage returns, but it is a special case.
To indicate comments using the first method, you use /* characters at the start of the comment and */ characters at the end. These may occur on a single line, or on different lines, in which case all lines in between are part of the comment. The only thing you can't type in the body of a comment is */, because that is interpreted as the end marker. For example, the following are okay:
/* This is a comment */
/* And so…
 … is this! */
The following, however, causes problems:
/* Comments often end with "*/" characters */
Here, the end of the comment (the characters after "*/) will be interpreted as C# code, and errors will occur.
The other commenting approach involves starting a comment with //. After that, you can write whatever you like — as long as you keep to one line! The following is okay:
// This is a different sort of comment.
The following fails, however, because the second line is interpreted as C# code:
// So is this,
 but this bit isn't.
This sort of commenting is useful to document statements because both can be placed on a single line:
<A statement>; // Explanation of statement
It was stated earlier that there are two ways of commenting C# code, but there is a third type of comment in C# — although strictly speaking this is an extension of the // syntax. You can use single‐line comments that start with three / symbols instead of two, like this:
/// A special comment
Under normal circumstances, they are ignored by the compiler — just like other comments — but you can configure Visual Studio to extract the text after these comments and create a specially formatted text file when a project is compiled. You can then use it to create documentation. In order for this documentation to be created, the comments must follow the rules of XML documentation as described here https://docs.microsoft.com/en‐us/dotnet/csharp/programming‐guide/xmldoc/xml‐documentation‐comments — a subject not covered in this book but one that is well worth learning about if you have some spare time.
A very important point about C# code is that it is case sensitive. Unlike some other languages, you must enter code using exactly the right case, because using an uppercase letter instead of a lowercase one will prevent a project from compiling. For example, consider the following line of code, taken from Chapter 2:
Console.WriteLine("The first app in Beginning C# Programming!");
This code is understood by the C# compiler, as the case of the Console.WriteLine() command is correct. However, none of the following lines of code work:
console.WriteLine("The first app in Beginning C# Programming!");
CONSOLE.WRITELINE("The first app in Beginning C# Programming!");
Console.Writeline("The first app in Beginning C# Programming!");
Here, the case used is wrong, so the C# compiler won't know what you want. Luckily, as you will soon discover, Visual Studio is very helpful when it comes to entering code, and most of the time it knows (as much as a program can know) what you are trying to do. As you type, it suggests commands that you might like to use, and it tries to correct case problems.
BASIC C# CONSOLE APPLICATION STRUCTURE
Here, you'll take a closer look at the console application example from Chapter 2 (ConsoleApplication1) and break down the structure a bit. Here's the code:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 // Output text to the screen.
 Console.WriteLine("The first app in Beginning C# Programming!");
 Console.ReadKey();
 }
 }
}
You can immediately see that all the syntactic elements discussed in the previous section are present here — semicolons, curly braces, and comments, along with appropriate indentation.
The most important section of code at the moment is the following:
static void Main(string[] args)
{
 // Output text to the screen.
 Console.WriteLine("The first app in Beginning C# Programming!");
 Console.ReadKey();
}
This is the code that is executed when you run your console application. Well, to be more precise, the code block enclosed in curly braces is executed. The comment line doesn't do anything, as mentioned earlier; it's just there for clarity. The other two code lines output some text to the console window and wait for a response, respectively, although the exact mechanisms of this don't need to concern you for now.
Note how to achieve the code outlining functionality shown in the previous chapter, albeit for a Windows application, since it is such a useful feature. You can do this with the #region and #endregion keywords, which define the start and end of a region of code that can be expanded and collapsed. For example, you could modify the generated code for ConsoleApplication1 as follows:
#region Using directives
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
#endregion
This enables you to collapse this code into a single line and expand it again later should you want to look at the details. The using statements contained here, and the namespace statement just underneath, are explained at the end of this chapter.

NOTE
Any keyword that starts with a # is actually a preprocessor directive and not, strictly speaking, a C# keyword. Other than the two described here, #region and #endregion, these can be quite complicated, and they have very specialized uses. This is one subject you might like to investigate yourself after you've worked through this book. Read more about them here: https://docs.microsoft.com/en‐us/dotnet/csharp/language‐reference/preprocessor‐directives/.

For now, don't worry about the other code in the example, because the purpose of these first few chapters is to explain basic C# syntax, so the exact method of how the application execution gets to the point where Console.WriteLine() is called is of no concern. Later, the significance of this additional code is made clear.
VARIABLES
As mentioned earlier, variables are concerned with the storage of data. Essentially, you can think of variables in computer memory as boxes sitting on a shelf. You can put things in boxes and take them out again, or you can just look inside a box to see if anything is there. The same goes for variables; you place data in them and can take it out or look at it, as required.

Although all data in a computer is effectively the same thing (a series of 0s and 1s), variables come in different flavors, known as types. Using the box analogy again, boxes come in different shapes and sizes, so some items fit only in certain boxes. The reasoning behind this type system is that different types of data may require different methods of manipulation, and by restricting variables to individual types you can avoid mixing them up. For example, it wouldn't make much sense to treat the series of 0s and 1s that make up a digital picture as an audio file.

To use variables, you must declare them. This means that you have to assign them a name and a type. After you have declared variables, you can use them as storage units for the type of data that you declared them to hold.
C# syntax for declaring variables merely specifies the type and variable name:
<type> <name>;
If you try to use a variable that hasn't been declared, your code won't compile, but in this case the compiler tells you exactly what the problem is, so this isn't really a disastrous error. Trying to use a variable without assigning it a value also causes an error, but, again, the compiler detects this.
Simple Types
Simple types include types such as numbers and Boolean (true or false) values that make up the fundamental building blocks for your applications. Unlike complex types, simple types cannot have children or attributes. Most of the simple types available are numeric, which at first glance seems a bit strange — surely, you only need one type to store a number?

The reason for the plethora of numeric types is because of the mechanics of storing numbers as a series of 0s and 1s in the memory of a computer. For integer values, you simply take a number of bits (individual digits that can be 0 or 1) and represent your number in binary format. A variable storing N bits enables you to represent any number between 0 and (2N − 1). Any numbers above this value are too big to fit into this variable.
For example, suppose you have a variable that can store two bits. The mapping between integers and the bits representing those integers is therefore as follows:
0 = 00
1 = 01
2 = 10
3 = 11
In order to store more numbers, you need more bits (three bits enable you to store the numbers from 0 to 7, for example).

The inevitable result of this system is that you would need an infinite number of bits to be able to store every imaginable number, which isn't going to fit in your trusty PC. Even if there were a quantity of bits you could use for every number, it surely wouldn't be efficient to use all these bits for a variable that, for example, was required to store only the numbers between 0 and 10 (because storage would be wasted). Four bits would do the job fine here, enabling you to store many more values in this range in the same space of memory.
Instead, a number of different integer types can be used to store various ranges of numbers, which take up differing amounts of memory (up to 64 bits). These types are shown in Table 3‐1.

NOTE
Each of these types uses one of the standard types defined in the .NET Framework. As discussed in Chapter 1, this use of standard types is what enables language interoperability. The names you use for these types in C# are aliases for the types defined in the framework. Table 3‐1 lists the names of these types as they are referred to in the .NET Framework library.

TABLE 3‐1: Integer Types

	TYPE
	ALIAS FOR
	ALLOWED VALUES

	sbyte
	System.SByte
	Integer between −128 and 127

	byte
	System.Byte
	Integer between 0 and 255

	short
	System.Int16
	Integer between −32768 and 32767

	ushort
	System.UInt16
	Integer between 0 and 65535

	int
	System.Int32
	Integer between −2147483648 and 2147483647

	uint
	System.UInt32
	Integer between 0 and 4294967295

	long
	System.Int64
	Integer between −9223372036854775808 and 9223372036854775807

	ulong
	System.UInt64
	Integer between 0 and 18446744073709551615

The u characters before some variable names are shorthand for unsigned, meaning that you can't store negative numbers in variables of those types, as shown in the Allowed Values column of the preceding table.

Of course, you also need to store floating‐point values, those that aren't whole numbers. You can use three floating‐point variable types: float, double, and decimal. The first two store floating points in the form 6m × 2e, where the allowed values for m and e differ for each type. decimal uses the alternative form 6m × 10e. These three types are shown in Table 3‐2, along with their allowed values of m and e, and these limits in real numeric terms.
TABLE 3‐2: Floating‐Point Types

	TYPE
	ALIAS FOR
	MIN M
	MAX M
	MIN E
	MAX E
	APPROX MIN VALUE
	APPROX MAX VALUE

	float
	System.Single
	0
	224
	−149
	104
	1.5 × 10−45
	3.4 × 1038

	double
	System.Double
	0
	253
	−1075
	970
	5.0 × 10−324
	1.7 × 10308

	decimal
	System.Decimal
	0
	296
	−28
	0
	1.0 × 10−28
	7.9 × 1028

In addition to numeric types, three other simple types are available (see Table 3‐3).
TABLE 3‐3: Text and Boolean Types

	TYPE
	ALIAS FOR
	ALLOWED VALUES

	char
	System.Char
	Single Unicode character, stored as an integer between 0 and 65535

	bool
	System.Boolean
	Boolean value, true or false

	string
	System.String
	A sequence of characters

Note that there is no upper limit on the number of characters making up a string, because it can use varying amounts of memory.

The Boolean type bool is one of the most commonly used variable types in C#, and indeed similar types are equally prolific in code in other languages. Having a variable that can be either true or false has important ramifications when it comes to the flow of logic in an application. As a simple example, consider how many questions can be answered with true or false (or yes and no). Performing comparisons between variable values or validating input are just two of the programmatic uses of Boolean variables that you will examine very soon.
Now that you've seen these types, consider a short example that declares and uses them. In the following Try It Out you use some simple code that declares two variables, assigns them values, and then outputs these values.

TRY IT OUT Using Simple Type Variables: Ch03Ex01\Program.cs

	Create a new console application called Ch03Ex01 and save it in the directory C:\BeginningCSharp7\Chapter03.

	Add the following code to Program.cs:static void Main(string[] args)
{
int myInteger;
string myString;
myInteger = 17;
myString = "\"myInteger\" is";
Console.WriteLine($"{myString} {myInteger}");
Console.ReadKey();
}

	Execute the code. The result is shown in Figure 3‐1.

[image: Screenshot illustration of creating a new console application called Ch03Ex01 and saving it in the directory C:\BeginningCSharp7\Chapter03.]FIGURE 3‐1

How It Works
The added code performs three tasks:

	It declares two variables.

	It assigns values to those two variables.

	It outputs the values of the two variables to the console.

Variable declaration occurs in the following code:
 int myInteger;
 string myString;
The first line declares a variable of type int with a name of myInteger, and the second line declares a variable of type string called myString.

NOTE
Variable naming is restricted; you can't use just any sequence of characters. You learn about this in the section titled “Variable Naming.”

The next two lines of code assign values:
 myInteger = 17;
 myString = "\"myInteger\" is";
Here, you assign two fixed values (known as literal values in code) to your variables using the = assignment operator (the “Expressions” section of this chapter has more details about operators). You assign the integer value 17 to myInteger, and you assigned the following string (including the quotes) to myString:
 "myInteger" is
When you assign string literal values in this way, double quotation marks are required to enclose the string. Therefore, certain characters might cause problems if they are included in the string itself, such as the double quotation characters, and you must escape some characters by substituting a sequence of other characters (an escape sequence) that represents the character(s) you want to use. In this example, you use the sequence \" to escape a double quotation mark:
 myString = "\"myInteger\" is";
If you didn't use these escape sequences and tried coding this as follows, you would get a compiler error:
 myString = ""myInteger" is";
Note that assigning string literals is another situation in which you must be careful with line breaks — the C# compiler rejects string literals that span more than one line. If you want to add a line break, then use the escape sequence for a newline character in your string, which is \n. For example, consider the following assignment:
 myString = "This string has a\nline break.";
This string would be displayed on two lines in the console view as follows:
 This string has a
 line break.
All escape sequences consist of the backslash symbol followed by one of a small set of characters (you'll see the full set later). Because this symbol is used for this purpose, there is also an escape sequence for the backslash symbol itself, which is simply two consecutive backslashes (\\).
Getting back to the code, there is one more new line to look at:
 Console.WriteLine($"{myString} {myInteger}");
This is a new feature in C# 6 called String Interpolation and looks similar to the simple method of writing text to the console that you saw in the first example, but now you are specifying your variables. It's too soon to dive into the details of this line of code, but suffice it to say that it is the technique you will be using in the first part of this book to output text to the console window.
This method of outputting text to the console is what you use to display output from your code in the examples that follow. Finally, the code includes the line shown in the earlier example for waiting for user input before terminating:
Console.ReadKey();
Again, the code isn't dissected now, but you will see it frequently in later examples. For now, understand that it pauses code execution until you press a key.

Variable Naming
As mentioned in the previous section, you can't just choose any sequence of characters as a variable name. This isn't as worrying as it might sound, however, because you're still left with a very flexible naming system.
The basic variable naming rules are as follows:

	The first character of a variable name must be either a letter, an underscore character(_), or the at symbol (@).

	Subsequent characters may be letters, underscore characters, or numbers.

There are also certain keywords that have a specialized meaning to the C# compiler, such as the using and namespace keywords shown earlier. If you use one of these by mistake, the compiler complains, however, so don't worry about it.
For example, the following variable names are fine:
myBigVar
VAR1
_test
These are not, however:
99BottlesOfBeer
Namespace
It's-All-Over
Literal Values
The previous Try It Out showed two examples of literal values: an integer (17) and a string ("\"myInteger\" is"). The other variable types also have associated literal values, as shown in Table 3‐4. Many of these involve suffixes, whereby you add a sequence of characters to the end of the literal value to specify the type desired. Some literals have multiple types, determined at compile time by the compiler based on their context (also shown in Table 3‐4).
TABLE 3‐4: Literal Values

	TYPE(S)
	CATEGORY
	SUFFIX
	EXAMPLE/ALLOWED VALUES

	bool
	Boolean
	None
	True or false

	int, uint, long, ulong
	Integer
	None
	100

	uint, ulong
	Integer
	u or U
	100U

	long, ulong
	Integer
	l or L
	100L

	ulong
	Integer
	ul, uL, Ul, UL, lu, lU, Lu, or LU
	100UL

	float
	Real
	f or F
	1.5F

	double
	Real
	None, d, or D
	1.5

	decimal
	Real
	m or M
	1.5M

	char
	Character
	None
	'a', or escape sequence

	string
	String
	None
	"a…a", may include escape sequences

Binary Literals and Digit Separators
No matter how sophisticated or complex programming syntax becomes, computers function in only 2 states, 0 and 1, also known as binary (base 2). If you wanted, you could code all your programs as a sequence of 0's and 1's and then run that program. Although that is neither feasible nor recommended, by doing so you alleviate the burden from the interpreters of converting the program from, for example, C#, decimal (base 10), octal (base 8) or hexadecimal (base 16). There is not a lot of gain or value from doing that, so realize that using binary today is reserved for very specific scenarios that require it. For example, you might need to pass values to a third‐party code package in binary, hexadecimal, or ASCII form. For the most part, unless those literals are required, you should code using a programming language like C#.
Deep technical knowledge and historical understandings of nibbles, bits, bytes, characters, words, bin, hex, octal, and so on is required to deeply understand when, where, how, and why to use these literals. Instead of going deeper into the historical question of “why” and professional‐level discussions of “how,” it's enough for now to know that, for example, you can use binary literals as an elegant way to store values as constants for pattern matching and comparison, as well as for implementing bit masks. As shown with the binary vs. hex example in the following code lines, you can see that the binary numbers are rotated by a single bit from right to left. The hex values have no pattern, which makes it more difficult to quickly determine what the intent of the code might be.
int[] binaryPhases = [0b00110001, 0b01100010, 0b11000100, 0b10001001];
int[] hexPhases = [0x31, 0x62, 0xC4, 0x89];
Now you have some context, and instead of going too deep too fast into pattern matching and bit masks, the remainder of this section specifically focuses on C# 7's binary literals and digital separators. You can read more about binary pattern matching and bit masks on your own to increase your knowledge after reading this book and gaining more coding experience.
To better understand the C# 7 binary literal feature, take, for example, the following code:
int[] numbers = [1, 2, 4, 8, 16];
In C# 7, the values added to the numbers array can be written directly in binary, as shown here.
int[] numbers = [0b0001, 0b0010, 0b00100, 0b0001000, 0b00010000];
As with hexadecimals where the prefix is 0x, the compiler will recognize any value beginning with 0b as a binary value and process it as such. As you can imagine, binary values for larger numbers get long and it's easy to make mistakes when you type them in manually. Take the number 128 for example, which has a binary value of 10000000—that's a 1 followed by 7 zeros. This is where digit separators, also new in C# 7, can help. Take the following code as an example:
int[] numbers = [32, 64, 128];
int[] numbers = [0b0010_0000, 0b0100_0000, 0b1000_0000];
Knowing that you can separate the binary literal into groups of digits helps the readability and management of the code. Digit separators are not limited only to binary values: they can be used with decimal, float, and double as well. The following line of code represents the value of Pi using a separator after every third digit. The primary reason for digit separators is to make the code easier to read.
public const double Pi = 3.141_592_653_589_793_238_462_643_383_279_502;
String Literals
Earlier in the chapter, you saw a few of the escape sequences you can use in string literals. Table 3‐5 lists these for reference purposes.
TABLE 3‐5: Escape Sequences for String Literals

	ESCAPE SEQUENCE
	CHARACTER PRODUCED
	UNICODE (HEX) VALUE OF CHARACTER

	\'
	Single quotation mark
	0x0027

	\"
	Double quotation mark
	0x0022

	\\
	Backslash
	0x005C

	\0
	Null
	0x0000

	\a
	Alert (causes a beep)
	0x0007

	\b
	Backspace
	0x0008

	\f
	Form feed
	0x000C

	\n
	New line
	0x000A

	\r
	Carriage return
	0x000D

	\t
	Horizontal tab
	0x0009

	\v
	Vertical tab
	0x000B

The Unicode Value of Character column of the preceding table shows the hexadecimal values of the characters as they are found in the Unicode character set. As well as the preceding, you can specify any Unicode character using a Unicode escape sequence. These consist of the standard \ character followed by a u and a four‐digit hexadecimal value (for example, the four digits after the x in Table 3‐5).
This means that the following strings are equivalent:
"Benjamin\'s string."
"Benjamin\u0027s string."
Obviously, you have more versatility using Unicode escape sequences.
You can also specify strings verbatim. This means that all characters contained between two double quotation marks are included in the string, including end‐of‐line characters and characters that would otherwise need escaping. The only exception to this is the escape sequence for the double quotation mark character, which must be specified to avoid ending the string. To do this, place the @ character before the string:
@"Verbatim string literal."
This string could just as easily be specified in the normal way, but the following requires the @ character:
@"A short list:
item 1
item 2"
Verbatim strings are particularly useful in filenames, as these use plenty of backslash characters. Using normal strings, you'd have to use double backslashes all the way along the string:
"C:\\Temp\\MyDir\\MyFile.doc"
With verbatim string literals you can make this more readable. The following verbatim string is equivalent to the preceding one:
@"C:\Temp\MyDir\MyFile.doc"

NOTE
As shown later in the book, strings are reference types. This contrasts with the other types you've seen in this chapter, which are value types. One consequence of this is that strings can also be assigned the value null, which means that the string variable doesn't reference a string (or anything else, for that matter).

EXPRESSIONS
C# contains a number of operators for this purpose. By combining operators with variables and literal values (together referred to as operands when used with operators), you can create expressions, which are the basic building blocks of computation.

The operators available range from the simple to the highly complex, some of which you might never encounter outside of mathematical applications. The simple ones include all the basic mathematical operations, such as the + operator to add two operands; the complex ones include manipulations of variable content via the binary representation of this content. There are also logical operators specifically for dealing with Boolean values, and assignment operators such as =.

This chapter focuses on the mathematical and assignment operators, leaving the logical ones for the next chapter, where you examine Boolean logic in the context of controlling program flow.
Operators can be roughly classified into three categories:

	Unary — Act on single operands

	Binary — Act on two operands

	Ternary — Act on three operands

Most operators fall into the binary category, with a few unary ones, and a single ternary one called the conditional operator (the conditional operator is a logical one and is discussed in Chapter 4, “Flow Control”). Let's start by looking at the mathematical operators, which span both the unary and binary categories.
Mathematical Operators
There are five simple mathematical operators, two of which (+ and ‐) have both binary and unary forms. Table 3‐6 lists each of these operators, along with a short example of its use and the result when it's used with simple numeric types (integer and floating point).
TABLE 3‐6: Simple Mathematical Operators

	OPERATOR
	CATEGORY
	EXAMPLE EXPRESSION
	RESULT

	+
	Binary
	var1 = var2 + var3;
	var1 is assigned the value that is the sum of var2 and var3.

	‐
	Binary
	var1 = var2 ‐ var3;
	var1 is assigned the value that is the value of var3 subtracted from the value of var2.

	*
	Binary
	var1 = var2 * var3;
	var1 is assigned the value that is the product of var2 and var3.

	/
	Binary
	var1 = var2 / var3;
	var1 is assigned the value that is the result of dividing var2 by var3.

	%
	Binary
	var1 = var2 % var3;
	var1 is assigned the value that is the remainder when var2 is divided by var3.

	+
	Unary
	var1 = +var2;
	var1 is assigned the value of var2.

	‐
	Unary
	var1 = ‐var2;
	var1 is assigned the value of var2 multiplied by ‐1.

NOTE
The + (unary) operator is slightly odd, as it has no effect on the result. It doesn't force values to be positive, as you might assume — if var2 is ‐ 1, then +var2 is also ‐1. However, it is a universally recognized operator, and as such is included. The most useful fact about this operator is shown later in this book when you look at operator overloading.

The examples use simple numeric types because the result can be unclear when using the other simple types. What would you expect if you added two Boolean values, for example? In this case, nothing, because the compiler complains if you try to use + (or any of the other mathematical operators) with bool variables. Adding char variables is also slightly confusing. Remember that char variables are actually stored as numbers, so adding two char variables also results in a number (of type int, to be precise). This is an example of implicit conversion, which you'll learn a lot more about shortly (along with explicit conversion), because it also applies to cases where var1, var2, and var3 are of mixed types.

The binary + operator does make sense when used with string type variables. In this case, the table entry should read as shown in Table 3‐7.
TABLE 3‐7: The String Concatenation Operator

	OPERATOR
	CATEGORY
	EXAMPLE EXPRESSION
	RESULT

	+
	Binary
	var1 = var2 + var3;
	var1 is assigned the value that is the concatenation of the two strings stored in var2 and var3.

None of the other mathematical operators, however, work with strings.

The other two operators you should look at here are the increment and decrement operators, both of which are unary operators that can be used in two ways: either immediately before or immediately after the operand. The results obtained in simple expressions are shown in Table 3‐8.
TABLE 3‐8: Increment and Decrement Operators

	OPERATOR
	CATEGORY
	EXAMPLE EXPRESSION
	RESULT

	++
	Unary
	var1 = ++var2;
	var1 is assigned the value of var2
+
1. var2 is incremented by 1.

	‐‐
	Unary
	var1 = ‐‐var2;
	var1 is assigned the value of var2
‐
1. var2 is decremented by 1.

	++
	Unary
	var1 = var2++;
	var1 is assigned the value of var2. var2 is incremented by 1.

	‐‐
	Unary
	var1 = var2‐‐;
	var1 is assigned the value of var2. var2 is decremented by 1.

These operators always result in a change to the value stored in their operand:

	++ always results in its operand being incremented by one.

	−− always results in its operand being decremented by one.

The differences between the results stored in var1 are a consequence of the fact that the placement of the operator determines when it takes effect. Placing one of these operators before its operand means that the operand is affected before any other computation takes place. Placing it after the operand means that the operand is affected after all other computation of the expression is completed.
This merits another example! Consider this code:
int var1, var2 = 5, var3 = 6;
var1 = var2++ * --var3;
What value will be assigned to var1? Before the expression is evaluated, the ‐‐ operator preceding var3 takes effect, changing its value from 6 to 5. You can ignore the ++ operator that follows var2, as it won't take effect until after the calculation is completed, so var1 will be the product of 5 and 5, or 25.
These simple unary operators come in very handy in a surprising number of situations. They are really just shorthand for expressions such as this:
var1 = var1 + 1;
This sort of expression has many uses, particularly where looping is concerned, as shown in the next chapter. The following Try It Out provides an example demonstrating how to use the mathematical operators, and it introduces a couple of other useful concepts as well. The code prompts you to type in a string and two numbers and then demonstrates the results of performing some calculations.

TRY IT OUT Manipulating Variables with Mathematical Operators: Ch03Ex02\Program.cs

	Create a new console application called Ch03Ex02 and save it to the directory C:\BeginningCSharp7\Chapter03.

	Add the following code to Program.cs:

 static void Main(string[] args)
 {
 string userName;
 Console.WriteLine("Enter your name:");
 userName = Console.ReadLine();
 Console.WriteLine($"Welcome {userName}!");
 Console.WriteLine("Now give me a number:");
 firstNumber = Convert.ToDouble(Console.ReadLine());
 Console.WriteLine("Now give me another number:");
 secondNumber = Convert.ToDouble(Console.ReadLine());
 Console.WriteLine($"The sum of {firstNumber} and {secondNumber} is " +
 $"{firstNumber + secondNumber}.");
 Console.WriteLine($"The result of subtracting {secondNumber} from " +
 $"{firstNumber} is {firstNumber - secondNumber}.");
 Console.WriteLine($"The product of {firstNumber} and {secondNumber} " +
 $"is {firstNumber * secondNumber}.");
 Console.WriteLine($"The result of dividing {firstNumber} by " +
 $"{secondNumber} is {firstNumber / secondNumber}.");
 Console.WriteLine($"The remainder after dividing {firstNumber} by " +
 $"{secondNumber} is {firstNumber % secondNumber}.");
 Console.ReadKey();
 }

	Execute the code. The display shown in Figure 3‐2 appears.

	Enter your name and press Enter. Figure 3‐3 shows the display.

	Enter a number, press Enter, enter another number, and then press Enter again. Figure 3‐4 shows an example result.

[image: Screenshot illustration of how to execute the code to create a program using the new console application.]FIGURE 3‐2

[image: Screenshot illustration showing the display after the process of “Enter your name and press Enter“.]FIGURE 3‐3

[image: Screenshot illustration of an example result after the process of “Enter a number, press Enter, enter another number, and then press Enter again“.]FIGURE 3‐4

How It Works
As well as demonstrating the mathematical operators, this code introduces two important concepts that you will often come across:

	User input

	Type conversion

User input uses a syntax similar to the Console.WriteLine() command you've already seen — you use Console.ReadLine(). This command prompts the user for input, which is stored in a string variable:
 string userName;
 Console.WriteLine("Enter your name:");
 userName = Console.ReadLine();
 Console.WriteLine($"Welcome {userName}!");
This code writes the contents of the assigned variable, userName, straight to the screen.

You also read in two numbers in this example. This is slightly more involved, because the Console.ReadLine() command generates a string, but you want a number. This introduces the topic of type conversion, which is covered in more detail in Chapter 5, “More about Variables,” but let's have a look at the code used in this example.
First, you declare the variables in which you want to store the number input:
 double firstNumber, secondNumber;
Next, you supply a prompt and use the command Convert.ToDouble() on a string obtained by Console.ReadLine() to convert the string into a double type. You assign this number to the firstNumber variable you have declared:
 Console.WriteLine("Now give me a number:");
 firstNumber = Convert.ToDouble(Console.ReadLine());
This syntax is remarkably simple, and many other conversions can be performed in a similar way.
The remainder of the code obtains a second number in the same way:
 Console.WriteLine("Now give me another number:");
 secondNumber = Convert.ToDouble(Console.ReadLine());
Next, you output the results of adding, subtracting, multiplying, and dividing the two numbers, in addition to displaying the remainder after division, using the remainder (%) operator:
 Console.WriteLine($"The sum of {firstNumber} and {secondNumber} is " +
 $"{firstNumber + secondNumber}.");
 Console.WriteLine($"The result of subtracting {secondNumber} from " +
 $"{firstNumber} is {firstNumber - secondNumber}.");
 Console.WriteLine($"The product of {firstNumber} and {secondNumber} " +
 $"is {firstNumber * secondNumber}.");
 Console.WriteLine($"The result of dividing {firstNumber} by " +
 $"{secondNumber} is {firstNumber / secondNumber}.");
 Console.WriteLine($"The remainder after dividing {firstNumber} by " +
 $"{secondNumber} is {firstNumber % secondNumber}.");
Note that you are supplying the expressions, firstNumber + secondNumber and so on, as a parameter to the Console.WriteLine() statement, without using an intermediate variable:
 Console.WriteLine($"The sum of {firstNumber} and {secondNumber} is " +
 $"{firstNumber + secondNumber}.");
This kind of syntax can make your code very readable, and reduce the number of lines of code you need to write.

Assignment Operators
So far, you've been using the simple = assignment operator, and it may come as a surprise that any other assignment operators exist at all. There are more, however, and they're quite useful! All of the assignment operators other than = work in a similar way. Like =, they all result in a value being assigned to the variable on their left side based on the operands and operators on their right side.

Table 3‐9 describes the operators.
TABLE 3‐9: Assignment Operators

	OPERATOR
	CATEGORY
	EXAMPLE EXPRESSION
	RESULT

	=
	Binary
	var1 = var2;
	var1 is assigned the value of var2.

	+=
	Binary
	var1 += var2;
	var1 is assigned the value that is the sum of var1 and var2.

	‐=
	Binary
	var1 ‐= var2;
	var1 is assigned the value that is the value of var2 subtracted from the value of var1.

	*=
	Binary
	var1 *= var2;
	var1 is assigned the value that is the product of var1 and var2.

	/=
	Binary
	var1 /= var2;
	var1 is assigned the value that is the result of dividing var1 by var2.

	%=
	Binary
	var1 %= var2;
	var1 is assigned the value that is the remainder when var1 is divided by var2.

As you can see, the additional operators result in var1 being included in the calculation, so code like
var1 += var2;
has exactly the same result as
var1 = var1 + var2;

NOTE
The += operator can also be used with strings, just like + .

Using these operators, especially when employing long variable names, can make code much easier to read.
Operator Precedence
When an expression is evaluated, each operator is processed in sequence, but this doesn't necessarily mean evaluating these operators from left to right. As a trivial example, consider the following:
var1 = var2 + var3;
Here, the + operator acts before the = operator. There are other situations where operator precedence isn't so obvious, as shown here:
var1 = var2 + var3 * var4;
In the preceding example, the * operator acts first, followed by the + operator, and finally the = operator. This is standard mathematical order, and it provides the same result as you would expect from working out the equivalent algebraic calculation on paper.
Similarly, you can gain control over operator precedence by using parentheses, as shown in this example:
var1 = (var2 + var3) * var4;
Here, the content of the parentheses is evaluated first, meaning that the + operator acts before the * operator.

Table 3‐10 shows the order of precedence for the operators you've encountered so far. Operators of equal precedence (such as * and /) are evaluated from left to right.
TABLE 3‐10: Operator Precedence

	PRECEDENCE
	OPERATORS

	Highest
	++, ‐‐ (used as prefixes); +, ‐ (unary)
		*, /, %
		+, ‐
		=, *=, /=, %=, +=, ‐=

	Lowest
	++, ‐‐ (used as postfixes)

NOTE
You can use parentheses to override this precedence order, as described previously. In addition, note that ++ and ‐‐, when used as postfixes, only have lowest priority in conceptual terms, as described in Table 3‐10. They don't operate on the result of, say, an assignment expression, so you can consider them to have a higher priority than all other operators. However, because they change the value of their operand after expression evaluation, it's easier to think of their precedence as shown in Table 3‐10.

Namespaces
Before moving on, it's worthwhile to consider one more important subject — namespaces. These are the .NET way of providing containers for application code, such that code and its contents may be uniquely identified. Namespaces are also used as a means of categorizing items in the .NET Framework. Most of these items are type definitions, such as the simple types in this chapter (System.Int32 and so on).

C# code, by default, is contained in the global namespace. This means that items contained in this code are accessible from other code in the global namespace simply by referring to them by name. You can use the namespace keyword, however, to explicitly define the namespace for a block of code enclosed in curly brackets. Names in such a namespace must be qualified if they are used from code outside of this namespace.
A qualified name is one that contains all of its hierarchical information, which basically means that if you have code in one namespace that needs to use a name defined in a different namespace, you must include a reference to this namespace. Qualified names use period characters (.) between namespace levels, as shown here:
namespace LevelOne
{
 // code in LevelOne namespace
 // name "NameOne" defined
}
// code in global namespace
This code defines one namespace, LevelOne, and a name in this namespace, NameOne (no actual code is shown here to keep the discussion general; instead, a comment appears where the definition would go). Code written inside the LevelOne namespace can simply refer to this name using NameOne — no classification is necessary. Code in the global namespace, however, must refer to this name using the classified name LevelOne.NameOne.

Note one more important point here: The using statement doesn't in itself give you access to names in another namespace. Unless the code in a namespace is in some way linked to your project, by being defined in a source file in the project or being defined in some other code linked to the project, you won't have access to the names contained. In addition, if code containing a namespace is linked to your project, then you have access to the names contained in that code, regardless of whether you use using. using simply makes it easier for you to access these names, and it can shorten otherwise lengthy code to make it more readable.
Going back to the code in ConsoleApplication1 shown at the beginning of this chapter, the following lines that apply to namespaces appear:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace ConsoleApplication1
{
 …
}
The five lines that start with the using keyword are used to declare that the System, System.Collections.Generic, System.Linq, System.Text, and System.Threading.Tasks namespaces will be used in this C# code and should be accessible from all namespaces in this file without classification. The System namespace is the root namespace for .NET Framework applications and contains all the basic functionality you need for console applications. The other four namespaces are very often used in console applications, so they are there just in case. Additionally, notice that a namespace is declared for the application code itself, ConsoleApplication1 itself.

C# 6 introduced the using static keyword. This keyword allows the inclusion of static members directly into the scope of a C# program. For example, both Try It Out code walkthroughs in this chapter have used the System.Console.WriteLine() method, which is part of the System.Console static class. Notice that in these examples it is required to include the Console class combined with the WriteLine() method. When the using static System.Console namespace is added to the list of included namespaces, accessing the WriteLine() method no longer requires the preceding static class name.

All code examples requiring the System.Console static class from this point forward include the using static System.Console keyword.
EXERCISES

	3.1 In the following code, how would you refer to the name great from code in the namespace fabulous? namespace fabulous
{
 // code in fabulous namespace
}
namespace super
{
 namespace smashing
 {
 // great name defined
 }
}

	3.2 Which of the following is not a legal variable name?
	myVariableIsGood

	99Flake

	_floor

	time2GetJiggyWidIt

	wrox.com

	3.3 Is the string "supercalifragilisticexpialidocious" too big to fit in a string variable? If so, why?

	3.4 By considering operator precedence, list the steps involved in the computation of the following expression: resultVar += var1 * var2 + var3 % var4 / var5;

	3.5 Write a console application that obtains four int values from the user and displays the product. Hint: You may recall that the Convert.ToDouble() command was used to convert the input from the console to a double; the equivalent command to convert from a string to an int is Convert.ToInt32().

Answers to the exercises can be found in Appendix.
[image: image] WHAT YOU LEARNED IN THIS CHAPTER

	TOPIC
	KEY CONCEPTS

	Basic C# syntax
	C# is a case‐sensitive language, and each line of code is terminated with a semicolon. Lines can be indented for ease of reading if they get too long, or to identify nested blocks. You can include non‐compiled comments with // or /* … */ syntax. Blocks of code can be collapsed into regions, also to ease readability.

	Variables
	Variables are chunks of data that have a name and a type. The .NET Framework defines plenty of simple types, such as numeric and string (text) types for you to use. Variables must be declared and initialized for you to use them. You can assign literal values to variables to initialize them, and variables can be declared and initialized in a single step.

	Expressions
	Expressions are built from operators and operands, where operators perform operations on operands. There are three types of operators — unary, binary, and ternary — that operate on 1, 2, and 3 operands, respectively. Mathematical operators perform operations on numeric values, and assignment operators place the result of an expression into a variable. Operators have a fixed precedence that determines the order in which they are processed in an expression.

	Namespaces
	All names defined in a .NET application, including variable names, are contained in a namespace. Namespaces are hierarchical, and you often have to qualify names according to the namespace that contains them in order to access them.

4
Flow Control

WHAT YOU WILL LEARN IN THIS CHAPTER

	Using Boolean logic

	Branching code

	Looping code

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found on this book's webpage on Wrox.com on the Download Code tab. The code can also be found at http://github.com/benperk/BeginningCSharp7. The code is in the Chapter04 folder and individually named according to the names throughout the chapter.

All the C# code you've seen so far has had one thing in common. In each case, program execution has proceeded from one line to the next in top‐to‐bottom order, missing nothing. If all applications worked like this, then you would be very limited in what you could do. This chapter describes two methods for controlling program flow—that is, the order of execution of lines of C# code—branching and looping. Branching executes code conditionally, depending on the outcome of an evaluation, such as “Execute this code only if the variable myVal is less than 10.” Looping repeatedly executes the same statements, either a certain number of times or until a test condition has been reached.

Both techniques involve the use of Boolean logic. In the last chapter, you saw the bool type, but didn't actually do much with it. In this chapter, you'll use it a lot, so the chapter begins by discussing what is meant by Boolean logic, and then goes on to cover how you can use it in flow control scenarios.

BOOLEAN LOGIC
The bool type introduced in the previous chapter can hold one of only two values: true or false. This type is often used to record the result of some operation, so that you can act on this result. In particular, bool types are used to store the result of a comparison.

NOTE
As a historical aside, it is the work of the mid‐nineteenth‐century English mathematician George Boole that forms the basis of Boolean logic.

For instance, consider the situation (mentioned in the chapter introduction) in which you want to execute code based on whether a variable, myVal, is less than 10. To do this, you need some indication of whether the statement “myVal is less than 10” is true or false—that is, you need to know the Boolean result of a comparison.

Boolean comparisons require the use of Boolean comparison operators (also known as relational operators), which are shown in Table 4‐1.
TABLE 4‐1: Boolean Comparison Operators

	OPERATOR
	CATEGORY
	EXAMPLE EXPRESSION
	RESULT

	==
	Binary
	var1 = var2 == var3;
	var1 is assigned the value true if var2 is equal to var3, or false otherwise.

	!=
	Binary
	var1 = var2 != var3;
	var1 is assigned the value true if var2 is not equal to var3, or false otherwise.

	<
	Binary
	var1 = var2 < var3;
	var1 is assigned the value true if var2 is less than var3, or false otherwise.

	>
	Binary
	var1 = var2 > var3;
	var1 is assigned the value true if var2 is greater than var3, or false otherwise.

	<=
	Binary
	var1 = var2 <= var3;
	var1 is assigned the value true if var2 is less than or equal to var3, or false otherwise.

	>=
	Binary
	var1 = var2 >= var3;
	var1 is assigned the value true if var2 is greater than or equal to var3, or false otherwise.

In all cases in Table 4‐1, var1 is a bool type variable, whereas the types of var2 and var3 may vary.
You might use operators such as these on numeric values in code:

bool isLessThan10;
isLessThan10 = myVal < 10;

The preceding code results in isLessThan10 being assigned the value true if myVal stores a value less than 10, or false otherwise.

You can also use these comparison operators on other types, such as strings:

bool isBenjamin;
isBenjamin = myString == "Benjamin";

Here, isBenjamin is true only if myString stores the string "Benjamin".

You can also compare variables with Boolean values:

bool isTrue;
isTrue = myBool == true;

Here, however, you are limited to the use of the == and != operators.

NOTE
A common code error occurs if you unintentionally assume that because val1 < val2 is false, val1 > val2 is true. If val1 == val2, both these statements are false .

The & and | operators also have two similar operators, known as conditional Boolean operators, shown in Table 4‐2.
TABLE 4‐2: Conditional Boolean Operators

	OPERATOR
	CATEGORY
	EXAMPLE EXPRESSION
	RESULT

	&&
	Binary
	var1 = var2 && var3;
	var1 is assigned the value true if var2 and var3 are both true, or false otherwise. (Logical AND)

	||
	Binary
	var1 = var2 || var3;
	var1 is assigned the value true if either var2 or var3 (or both) is true, or false otherwise. (Logical OR)

The result of these operators is exactly the same as & and |, but there is an important difference in the way this result is obtained, which can result in better performance. Both of these look at the value of their first operands (var2 in Table 4.2) and, based on the value of this operand, may not need to process the second operands (var3 in Table 4.2) at all.

If the value of the first operand of the && operator is false, then there is no need to consider the value of the second operand, because the result will be false regardless. Similarly, the || operator returns true if its first operand is true, regardless of the value of the second operand.
Boolean Bitwise and Assignment Operators
Boolean comparisons can be combined with assignments by combining Boolean bitwise and assignment operators. These work in the same way as the mathematical assignment operators that were introduced in the preceding chapter (+=, *=, and so on). The Boolean versions are shown in Table 4‐3. When expressions use both the assignment (=) and bitwise operators (&, |, and ^), the binary representation of the compared quantities are used to compute the outcome, instead of the integer, string, or similar values.
TABLE 4‐3: Boolean Assignment Operators

	OPERATOR
	CATEGORY
	EXAMPLE EXPRESSION
	RESULT

	&=
	Binary
	var1 &= var2;
	var1 is assigned the value that is the result of var1
&
var2.

	|=
	Binary
	var1 |= var2;
	var1 is assigned the value that is the result of var1
|
var2.

	^=
	Binary
	var1 ^= var2;
	var1 is assigned the value that is the result of var1 ^ var2.

For example, the equation var1 ^= var2 is similar to var1 = var1 ^ var2 where var1 = true and var2 = false. When comparing the binary representation of false which is 0000 to true, which is typically anything other than 0000 (usually 0001), var1 is set to true.

NOTE
Note that the &= and |= assignment operators do not make use of the && and || conditional Boolean operators; that is, all operands are processed regardless of the value to the left of the assignment operator.

This Try‐It‐Out is the first of many that assumes that the “using static System.Console;” and the “using static System.Convert;” (if required) statements are added to the using section at the top of the file.

TRY IT OUT Using Boolean Operators: Ch04Ex01\Program.cs

	Create a new console application called Ch04Ex01 and save it in the directory C:\BeginningCSharp7\Chapter04.

	Add the following code to Program.cs:

 static void Main(string[] args)
 {
 WriteLine("Enter an integer:");
 int myInt = ToInt32(ReadLine());
 bool isLessThan10 = myInt < 10;
 bool isBetween0And5 = (0 <= myInt) && (myInt <= 5);
 WriteLine($"Integer less than 10? {isLessThan10}");
 WriteLine($"Integer between 0 and 5? {isBetween0And5}");
 WriteLine($"Exactly one of the above is true? " +
 $"{isLessThan10 ^ isBetween0And5}");
 ReadKey();
}

	Execute the application and enter an integer when prompted. The result is shown in Figure 4‐1.

[image: Screenshot illustration showing the display of how to execute the application and enter an integer when prompted.]FIGURE 4‐1

How It Works
The first two lines of code prompt for and accept an integer value using techniques you've already seen:

 WriteLine("Enter an integer:");
 int myInt = ToInt32(ReadLine());

You use ToInt32()to obtain an integer from the string input, which is simply another conversion command in the same family as the ToDouble()command used previously. Both the ToInt32() and ToDouble() methods are part of the System.Convert static class. As discussed in Chapter 3, since C# 6, it is possible to access the method of a static class directly (in this example System.Convert) by including the using static System.Convert class to the list of included namespaces. Also note that there is no check to make certain the user has actually entered an integer. If a value other than an integer is provided, for example a string, an exception would occur when trying to perform the conversion. You can handle this using a try{}…catch{} block or by checking if the entered value is an integer before performing the conversion using the GetType() method. Both approaches are discussed in later chapters.

Next, two Boolean variables, isLessThan10 and isBetween0And5, are declared and assigned values with logic that matches the description in their names:

 bool isLessThan10 = myInt < 10;
 bool isBetween0And5 = (0 <= myInt) && (myInt <= 5);

These variables are used in the next three lines of code, the first two of which output their values, whereas the third performs an operation on them and outputs the result. You work through this code assuming that the user enters 7, as shown in the screenshot.

The first output is the result of the operation myInt
<
10. If myInt is 6, which is less than 10, the result is true, which is what you see displayed. Values of myInt of 10 or higher result in false.

The second output is a more involved calculation: (0
<=
myInt)
&&
(myInt
<=
5). It uses two comparison operations to determine whether myInt is greater than or equal to 0 and less than or equal to 5, and a Boolean AND operation on the results obtained. With a value of 6, (0
<=
myInt)returns true, and (myInt
<=
5)returns false. The result is then (true)
&&
(false), which is false, as you can see from the display.

Finally, you perform a logical exclusive OR on the two Boolean variables isLessThan10 and isBetween0And5. This will return true if one of the values is true and the other false; that is, it returns true only if myInt is 6, 7, 8, or 9. With a value of 6, as in the example, the result is true.

Operator Precedence Updated
Now that you have a few more operators to consider, Table 3‐10: “Operator Precedence” from the previous chapter should be updated to include them. The new order is shown in Table 4‐4.
TABLE 4‐4: Operator Precedence (Updated)

	PRECEDENCE
	OPERATORS

	Highest
	++, −− (used as prefixes); (), +, – (unary), !, ˜
		*, /, %
		+, –
		<<, >>
		<, >, <=, >=
		==, !=
		&
		^
		|
		&&
		||
		=, *=, /=, %=, +=, −=, <<=, >>=, &=, ^=, |=

	Lowest
	++, –– (used as suffixes)

This adds quite a few more levels but explicitly defines how expressions such as the following will be evaluated, where the && operator is processed after the <= and >= operators (in this code var2 is an int value):

var1 = var2 <= 4 && var2 >= 2;

It doesn't hurt to add parentheses to make expressions such as this one clearer. The compiler knows what order to process operators in, but we humans are prone to forget such things (and you might want to change the order). Writing the previous expression as

var1 = (var2 <= 4) && (var2 >= 2);

solves this problem by explicitly ordering the computation.
BRANCHING
Branching is the act of controlling which line of code should be executed next. The line to jump to is controlled by some kind of conditional statement. This conditional statement is based on a comparison between a test value and one or more possible values using Boolean logic.

This section describes three branching techniques available in C#:

	The ternary operator

	The if statement

	The switch statement

The Ternary Operator
The simplest way to perform a comparison is to use the ternary (or conditional) operator mentioned in the last chapter. You've already seen unary operators that work on one operand, and binary operators that work on two operands, so it won't come as a surprise that this operator works on three operands. The syntax is as follows:

<test> ? <resultIfTrue>: <resultIfFalse>

Here, <test> is evaluated to obtain a Boolean value, and the result of the operator is either <resultIfTrue> or <resultIfFalse> based on this value.

You might use this as follows to test the value of an int variable called myInteger:

string resultString = (myInteger < 10) ? "Less than 10"
 : "Greater than or equal to 10";

The result of the ternary operator is one of two strings, both of which may be assigned to resultString. The choice of which string to assign is made by comparing the value of myInteger to 10. In this case, a value of less than 10 results in the first string being assigned, and a value of greater than or equal to 10 results in the second string being assigned. For example, if myInteger is 4, then resultString will be assigned the string Less
than
10.
The if Statement
The if statement is a far more versatile and useful way to make decisions. Unlike ?: statements, if statements don't have a result (so you can't use them in assignments); instead, you use the statement to conditionally execute other statements.

The simplest use of an if statement is as follows, where <test> is evaluated (it must evaluate to a Boolean value for the code to compile) and the line of code that follows the statement is executed if <test> evaluates to true:

if (<test>)
 <code executed if <test> is true>;

After this code is executed, or if it isn't executed due to <test> evaluating to false, program execution resumes at the next line of code.

You can also specify additional code using the else statement in combination with an if statement. This statement is executed if <test> evaluates to false:

if (<test>)
 <code executed if <test> is true>;
else
 <code executed if <test> is false>;

Both sections of code can span multiple lines using blocks in braces:

if (<test>)
{
 <code executed if <test> is true>;
}
else
{
 <code executed if <test> is false>;
}

As a quick example, you could rewrite the code from the last section that used the ternary operator:

string resultString = (myInteger < 10) ? "Less than 10"
 : "Greater than or equal to 10";

Because the result of the if statement cannot be assigned to a variable, you have to assign a value to the variable in a separate step:

string resultString;
if (myInteger < 10)
 resultString = "Less than 10";
else
 resultString = "Greater than or equal to 10";

Code such as this, although more verbose, is far easier to read and understand than the equivalent ternary form, and enables far more flexibility.

The following Try It Out illustrates the use of the if statement.

TRY IT OUT Using the if Statement: Ch04Ex02\Program.cs

	Create a new console application called Ch04Ex02 and save it in the directory C:\BeginningCSharp7\Chapter04.

	Add the following code to Program.cs:

 static void Main(string[] args)
 {
 string comparison;
 WriteLine("Enter a number:");
 double var1 = ToDouble(ReadLine());
 WriteLine("Enter another number:");
 double var2 = ToDouble(ReadLine());
 if (var1 < var2)
 comparison = "less than";
 else
 {
 if (var1 == var2)
 comparison = "equal to";
 else
 comparison = "greater than";
 }
 WriteLine($"The first number is {comparison} " +
 $"the second number.");
 ReadKey();

	Execute the code and enter two numbers at the prompts (see Figure 4‐2).

[image: Screenshot illustration showing the display of how to execute the code and enter two numbers at the prompts.]FIGURE 4‐2

How It Works
The first section of code is very familiar. It simply obtains two double values from user input:

 string comparison;
 WriteLine("Enter a number:");
 double var1 = ToDouble(ReadLine());
 WriteLine("Enter another number:");
 double var2 = ToDouble(ReadLine());

Next, you assign a string to the string variable comparison based on the values obtained for var1 and var2. First, you check whether var1 is less than var2:

 if (var1 < var2)
 comparison = "less than";

If this isn't the case, then var1 is either greater than or equal to var2. In the else section of the first comparison, you need to nest a second comparison:

 else
 {
 if (var1 == var2)
 comparison = "equal to";

The else section of this second comparison is reached only if var1 is greater than var2:

 else
 comparison = "greater than";
 }

Finally, you write the value of comparison to the console:

 WriteLine("The first number is {0} the second number.",
 comparison);

The nesting used here is just one method of performing these comparisons. You could equally have written this:

 if (var1 < var2)
 comparison = "less than";
 if (var1 == var2)
 comparison = "equal to";
 if (var1 > var2)
 comparison = "greater than";

The disadvantage to this method is that you are performing three comparisons regardless of the values of var1 and var2. With the first method, you perform only one comparison if var1
<
var2 is true, and two comparisons otherwise (you also perform the var1
==
var2 comparison), resulting in fewer lines of code being executed. The difference in performance here is slight, but it would be significant in applications where speed of execution is crucial.

Checking More Conditions Using if Statements
In the preceding example, you checked for three conditions involving the value of var1. This covered all possible values for this variable. Sometimes, you might want to check for specific values—for example, if var1 is equal to 1, 2, 3, or 4, and so on. Using code such as the preceding can result in annoyingly nested code:

if (var1 == 1)
{
 // Do something.
}
else
{
 if (var1 == 2)
 {
 // Do something else.
 }
 else
 {
 if (var1 == 3 || var1 == 4)
 {
 // Do something else.
 }
 else
 {
 // Do something else.
 }
 }
}

WARNING
It's a common mistake to write conditions such as if
(var1
==
3
||
var1
==
4) as if
(var1
==
3
||
4). Here, owing to operator precedence, the == operator is processed first, leaving the || operator to operate on a Boolean and a numeric operand, which causes an error.

In these situations, consider using a slightly different indentation scheme and contracting the section of code for the else blocks (that is, using a single line of code after the else blocks, rather than a block of code). That way, you end up with a structure involving else
if statements:

if (var1 == 1)
{
 // Do something.
}
else if (var1 == 2)
{
 // Do something else.
}
else if (var1 == 3 || var1 == 4)
{
 // Do something else.
}
else
{
 // Do something else.
}

These else
if statements are really two separate statements, and the code is functionally identical to the previous code, but much easier to read. When making multiple comparisons such as this, consider using the switch statement as an alternative branching structure.
The switch Statement
The switch statement is similar to the if statement in that it executes code conditionally based on the value of a test. However, switch enables you to test for multiple values of a test variable in one go, rather than just a single condition. This test is limited to discrete values, rather than clauses such as “greater than X,” so its use is slightly different; however, it can be a powerful technique.

The basic structure of a switch statement is as follows:

switch (<testVar>)
{
 case <comparisonVal1>:
 <code to execute if <testVar> == <comparisonVal1> >
 break;
 case <comparisonVal2>:
 <code to execute if <testVar> == <comparisonVal2> >
 break;
 …
 case <comparisonValN>:
 <code to execute if <testVar> == <comparisonValN> >
 break;
 default:
 <code to execute if <testVar> != comparisonVals>
 break;
}

The value in <testVar> is compared to each of the <comparisonValX> values (specified with case statements). If there is a match, then the code supplied for this match is executed. If there is no match, then the code in the default section is executed if this block exists.

On completion of the code in each section, you have an additional command, break. It is illegal for the flow of execution to reach a second case statement after processing one case block.

NOTE
The behavior where the flow of execution is forbidden from flowing from one case block to the next is one area in which C# differs from C++. In C++, the processing of case statements is allowed to run from one to another.

The break statement here simply terminates the switch statement, and processing continues on the statement following the structure.

There are alternative methods for preventing flow from one case statement to the next in C# code. You can use the return statement, which results in termination of the current function, rather than just the switch structure (see Chapter 6 for more details about this), or a goto statement. goto statements (as detailed earlier) work here because case statements actually define labels in C# code. Here is an example:

switch (<testVar>)
{
 case <comparisonVal1>:
 <code to execute if <testVar> == <comparisonVal1> >
 goto case <comparisonVal2>;
 case <comparisonVal2>:
 <code to execute if <testVar> == <comparisonVal2> >
 break;
 …

Here's one exception to the rule that the processing of one case statement can't run freely into the next: If you place multiple case statements together (stack them) before a single block of code, then you are in effect checking for multiple conditions at once. If any of these conditions is met, then the code is executed. Here's an example:

OEBPS/images/c02f001.jpg
ntling — Vi St Communty 201 — 152 264073

Workioads Individual components Language packs

[—

Univasl Windows Ption deveapment
B Croesplioean for e Unveres s Pt i C,
VB maSr o ooty Con

|g:

NET skt deveiopment
Ut WP, Wi P comsol ppcations uing e
AT Fmeva:

e Desktop deveapmertwin -
Bud clsic Windows-bsedsplcaions sing o powe o e
il ot AT 304 Sl st s

Web 8 Cloud 7

ASTAGT st s
Bk e sophcaion g ASPET, ASPAGT Core KM
Saasrgt €55

[—
e SO o, et o dveipin i s

Prven devlopment
A —
e

Dut sorge snd procesing
Comec decep e et s ot g 4 Sarr, e
Dv Lk, Hadoopor e

[oncesmmerontseviopment
Lo
e —

Nodes deviopment
e

Dat scinceand il applcations
Cimger ol o o s s sl
ncing o R e,

Summary
> Visual Studio core editor

> NET desktop development

> NET Core crossplatform devel
> Universal Windows Platform de.
> ASPANET and web development
> Azure development

0 3ycrs o syeetove e

Lol e oo et e
S T s e v
e
e By oo o e v e

e 197G
sl

OEBPS/images/c03f004.jpg
Enter your name:
Benjamin
ielcome Benjamin!
iow give me a number:
32.76
give me another number:

sum of 32.76 and 19.43 is 52.19.

result of subtracting 19.43 from 32.76 is 13.33.
product of 32.76 and 19.43 is 636.5268.

result of dividing 32.76 by 19.43 is 1.68665249613999.
remainder after dividing 32.76 by 19.43 is 13.33.

OEBPS/images/c03f003.jpg
Enter your name:
Benjamin

Helcome Benjamin!
flow give me a number:

OEBPS/images/c03f002.jpg
nter your name:

OEBPS/images/c03f001.jpg
= 4
myInteger” is 17

OEBPS/images/rarrow.gif

OEBPS/images/c02f007.jpg
o
The first app in Beginning Visual C¥ 2617!

OEBPS/images/c02f006.jpg
Not findng what you are looking fo?

= T w7~ by Do
S st oo anierairioms
=
Vtom i I ot oo it Famer
e 2
fomoen) T Wit s T et
b
o [e
=
WeF - Y
. B oo 0T S
» ceamamarme E
e B8 sty T et
L -
£ suse
i ——

Open Visal Stusionstallr e

Name: Consoiespicationt
Location: CABeginningCSharp T Chapter02,
Soutonrame: ConsoleAgplcatin)

Viaico

Visal €2

Visalce

Viaico

Visal €2

Visalce

Viaico

Viaico

Visal Co

Searcn @1

Type: Visal ce

A projectfor ceating a command-ine
appicsion

Creste iectory forsluion
] Ada tosource Contol

T | e |

OEBPS/images/c02f009.jpg
Program.s file Propertes

=R
Build Action Compile
Copy to Output Directory Do not copy
Custom Tool

Custom Tool Namespace

File N: Program.cs

Full Path CABeginningCSharp7\Chapter02\ConsoleApplicationT\ConsoleApplication\Program.cs

File Name
Name of the file or folder.

OEBPS/images/c02f008.jpg
~ 1 x M
CORE- 0-5¢FP & W OO B~
‘Search Solution Explorer (Ctrl+0) P~ <search>
55 Solution Consolefpplicationt” (1 project) 4 (= [C YY)
ConsoleApplication1 b 8 Project References
4 J Properties. 4 {} ConsoleApplication!
€= Assemblylnfo.cs 4 ", Program
4 v References. 48 Base Types
& Analyzers 43 Object
*8 MicrosoftCsharp
*8 System
*8 System.Core
*a system.Data
*8 System.Data DataSetExtensions
*8 SystemNetHitp
8 Systemxmi
*8 SystemXmiLing
3 App.config
4 e programes
4 " program
@, Main(stringl)) : void

Solution Explorer Class View Team Explorer Solution Explorer | Class View Team Explorer

OEBPS/images/c02f003.jpg
™ SO

‘Which collction of settings do you want to reset to?

@ Genensl Description:
B Jvascript Customize the emironment to masimize
2 Visual Basic Code editor screen space and improve the
2 Viswl C# vibity of commands specic to

Colncreases productvy with keyboard
& Visual G shortcutsthat are designed to be easy 1o
£ Web Development leam and use.

£ Web Development (Code Only)

[pe] s o] [o

OEBPS/images/c02f002.jpg
™ S —

You can use this wizard to import or export specifc ategories of settings, o o rest the environment to
one of the defaut collections of setings.

Wht do you want to do?

O Export selected environment settings

Settings wil be saved outto a ile 5o they can lter be imported at any time on any machine.

©) Import selected environment sttings
Importsettings fom a il to apply them tothe environment.

® Reset all settings
Reset sl envionment setings to one ofthe defaut collections of setings.

Previou: Cancel

OEBPS/images/c02f005.jpg
€

File | Edit

Start Page
Close

Close Solution

Save Selected tems
Save Selected Items As
Save All

Source Control

Page Setup.

Print.

Account Settings...

Exit

4] start Page - Microsoft Visual Studio.
View Project Debug

N8 e
open RN

Team Tools Test Analyze Window

WebSite..
D File.

Project From Existing Code..
Cuies
Cuteshiftss

,

culep
Altsfa

OEBPS/images/arrow.gif

OEBPS/images/c02f004.jpg
) s Foge - Moot Vil 5o
e B e bome Db Tem o T A Meow s
Beeow [

YW £ |0k Lawrch (CxieQ

Get Started

etk n s et e, s

Recent

[——

T T —
Pttt

Open

cocmrms et

D oSt
[ape—

New project
prr— »
LS —
P
R ——
B coemonicon
e —
P —
Pr——

Developer News
P —
Famon

e ety s

fioperies bpriois o
e e ok
g o P oo

=
et 1t sy o
S om0

B
e
=

Wt doe an Ao
oo o ey
o oo s

ston e

#l= 8 x
senmaes ©

OEBPS/images/c02f010.jpg
Entire Solution -1 1[@ 16ror | [oWamings || @ oMessages [¥r]| Build + Intelisense ~| | Search error List
“ Code | Description Project File Line SuppressionSt.. Y
© 51002 ; expected ConsoleApplicationt Programcs. 15 Adive

OEBPS/images/c02f012.jpg
“The first desktop 2pp in the book!

OEBPS/images/c02f011.jpg
b Recent

NET Frameworkd7 - Sortby: Default
4 Installed
4 Templates &
4 Visual C& [Windows Forms App (NET Framework)
Windows Clesic Desktop
Web Console App (.NET Core)
NET Core
NET Standard Bl Corsole App (NET Framewort)
Cloud
Test . m' Class Library (NET Standard)
 onlne R Clos ibar CNET Framework)
Name WptApplication’
Location: (CABeginningCSharpT\Chapter02\
Solution: Creste new soluton
Solutionname: WpfAppiication]

Visual G2

Visual C#

Visual C#

Visual C#

Visual C#

Search nstalled Templates (Ctr 9 =

Create directory for solution
0] Create new Git repostory

OEBPS/images/logo.gif
WFroxX

A Wiley Brand

OEBPS/images/c01f004.jpg
System Runtime

.NET CLR/CoreCLR
Native Code

Native Code |

OEBPS/images/c01f003.jpg
JIT Compilation

Native Code

OEBPS/images/c01f002.jpg
Compilation

Assembly

OEBPS/images/c01f001.jpg
C# code

OEBPS/images/9781119458722.jpg
Beginning
C# 7 Programming
with Visual Studio 2017

Benjamin Perkins, Jacob Vibe Hammer, Jon D. Reid

OEBPS/images/c04f001.jpg
Enter an integer
d
Integer less than 102 True

Integer between 0 and 52 False

Exactly one of the above is true? True

OEBPS/images/c04f002.jpg
Enter a number
7.9
Enter another numbe
8.0
The first number is less than the second number.

OEBPS/images/c02f014.jpg
522005 BlRq BUIANO WAWNYOG X0aI00L

SRR variindousens

L -

MainWindow
Click Me
= A

mm ED] ———— >

G Design
| EWindow

va~a

10
1
12
13
1

*oEa
| # xClass

‘http://schemas.openxmlformats.org/markup-compatibility/2006™
xmlns:local ="clr-namespace WpfApplicationl”

mc:Ignorable="d"

Title="Mainkindou" Heigh
<arid>

<Button Content

VerticalAlignmen

xnlns.

350" Width="525">

“Click Me" HorizontalAlignment="Left"
Top" Width="75" Click="Button_Click"/>

</Grid>

</Mindow>

B R

oE®

T

OEBPS/images/c02f013.jpg
Name <No Name>
Type Button

Arrange by: Category ~

b Brush

b Layout

b Text

P Appearance

4 Common
Command
CommandParameter
Content ClickMe.
IsCancel a
IsDefault o
Cursor
DataContext

Cooowoo

