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Preface

The development of the theory of probability metrics — a branch of probability
theory — began with the study of problems related to limit theorems in probability
theory. In general, the applicability of limit theorems stems from the fact that they
can be viewed as an approximation to a given stochastic model and, consequently,
can be accepted as an approximate substitute. The key question that arises in
adopting the approximate model is the magnitude of the error that must be accepted.
Because the theory of probability metrics studies the problem of measuring dis-
tances between random quantities or stochastic processes, it can be used to address
the key question of how good the approximate substitute is for the stochastic model
under consideration. Moreover, it provides the fundamental principles for building
probability metrics — the means of measuring such distances.

The theory of probability metrics has been applied and has become an important
tool for studying a wide range of fields outside of probability theory such as
statistics, queueing theory, engineering, physics, chemistry, information theory,
economics, and finance. The principal reason is that because distances are not
influenced by the particular stochastic model under consideration, the theory of
probability metrics provides some universal principles that can be used to deal with
certain kinds of large-scale stochastic models found in these fields.

The first driving force behind the development of the theory of probability
metrics was Andrei N. Kolmogorov and his group. It was Kolmogorov who stated
that every approximation problem has its own distance measure in which the
problem can be solved in a most natural way. Kolmogorov also contended that
without estimates of the rate of convergence in the central limit theorem (CLT) (and
similar limit theorems such as the functional limit theorem and the max-stable limit
theorem), limit theorems provide very limited information. An example worked
out by Y.V. Prokhorov and his students is as follows. Regardless of how slowly
a function f(n) > 0, n = 1,..., decays to zero, there exists a corresponding
distribution function F(x) with finite variance and mean zero, for which the CLT is
valid at a rate slower than f(n). In other words, without estimates for convergence
in the CLT, such a theorem is meaningless because the convergence to the normal
law of the normalized sum of independent, identically distributed random variables
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with distribution function F(x) can be slower than any given rate f(n) — 0. The
problems associated with finding the appropriate rate of convergence invoked a
variety of probability distances in which the speed of convergence (i.e., convergence
rate) was estimated. This included the works of Yurii V. Prokhorov, Vladimir V.
Sazonov, Vladimir M. Zolotarev, Vygantas Paulauskas, Vladimir V. Senatov, and
others.

The second driving force in the development of the theory of probability metrics
was mass-transportation problems and duality theorems. This started with the work
of Gaspard Monge in the eighteenth century and Leonid V. Kantorovich in the 1940s
— for which he was awarded the Nobel Prize in Economics in 1975 — on optimal mass
transportation, leading to the birth of linear programming. In mathematical terms,
Kantorovich’s result on mass transportation can be formulated in the following
metric way. Given the marginal distributions of two probability measures P and Q
on a general (separable) metric space (U, d), what is the minimal expected value —
referred to as k (P, Q) or the Kantorovich metric — of a distance d(X,Y) over
the set of all probability measures on the product space U x U with marginal
distributions Py = P and Py = Q? If the measures P and Q are discrete,
then this is the classic transportation problem in linear programming. If U is
the real line, then x (P, Q) is known as the Gini statistical index of dissimilarity
formulated by Corrado Gini. The Kantorovich problem has been used in many
fields of science — most notably statistical physics, information theory, statistics,
and probability theory. The fundamental work in this field was done by Leonid V.
Kantorovich, Johannes H. B. Kemperman, Hans G. Kellerer, Richard M. Dudley,
Ludger Riischendorf, Volker Strassen, Vladimir L. Levin, and others. Kantorovich-
type duality theorems established the main relationships between metrics in the
space of random variables and metrics in the space of probability laws/distributions.
The unifying work on those two directions was done by V. M. Zolotarev and his
students.

In this book, we concentrate on four specialized research directions in the theory
of probability metrics, as well as applications to different problems of probability
theory. These include:

* Description of the basic structure of probability metrics,

* Analysis of the topologies in the space of probability measures generated by
different types of probability metrics,

* Characterization of the ideal metrics for a given problem, and

* Investigation of the main relationships between different types of probability
metrics.

Our presentation in this book is provided in a general form, although specific
cases are considered as they arise in the process of finding supplementary bounds or
in applications to important special cases.

The target audience for this book is graduate students in the areas of functional
analysis, geometry, mathematical programming, probability, statistics, stochastic
analysis, and measure theory. It may be partially used as a source of material for
lectures for students in probability and statistics. As noted earlier in this preface,
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the theory of probability metrics has been applied to fields outside of probability
theory such as engineering, physics, chemistry, information theory, economics, and
finance. Specialists in these areas will find the book to be a useful reference to gain
a greater understanding of this specialized area and its potential application.

New York, USA Svetlozar T. Rachev
Prague, Czech Republic Lev B. Klebanov
Singapore Stoyan V. Stoyanov

Nice, France Frank J. Fabozzi
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