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Preface

Data science combines statistical techniques, data analysis methods, and machine
learning algorithms and techniques to analyze and understand tangible trends in
data. Through data science, one can identify relevant issues, collect data from
various data sources, integrate the data, conclude solutions, and communicate the
results to improve and enhance organizations’ decisions and deliver value to users
and organizations. Data science draws techniques and methods from mathematics,
statistics, information science, and computer science. The demand for data scientists
is constantly increasing; scientists and practitioners are faced with numerous
challenges caused by exponential expansion of digital data together with its diversity
and complexity. The scale and growth of data considerably outpaces technological
capacities of organizations needed to process and manage their data.

Thinking of massive omnipresent amounts of data as strategic assets and the
aim to capitalize on these assets by means of analytic procedures is more relevant
and topical than ever before. Although there are very helpful advances in hardware
and software, there are still many challenges to be tackled in order to leverage
the potentials of data analytics. Obviously, technological change is never ending
and appears to be accelerating. Nowadays, the world seems to be especially
focused on data science, and an ever-increasing impact on our society is expected.
Many industries are working toward “Version 4.0,” with digitization, digitalization,
and even digital transformation of traditional processes resulting in improved
workflows, new concepts, and new business plans. Their goal usually includes data
analytics, automation, automatization, robotics, AI, and other related fields.

This book provides readers with a thorough understanding of various research
areas within the field of data science. To this extent, readers who are into research
will extract and conclude various future research ideas and topics that could
result in potential publications or thesis. Furthermore, this book will contribute to
data scientists preparation or enhancing the knowledge of current data scientists.
It will introduce readers to various techniques for data acquisition, extraction,
and cleaning, data summarizing and modeling, data analysis and communication
techniques, data science tools, deep learning, and various data science applications
in different domains.
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Principles of Data Science introduces various techniques, methods, and algo-
rithms adopted by data science experts in the field and provides detailed explanation
of the data science perceptions that are properly reinforced by various practical
examples. It acts as a road map of future trends suitable for innovative data
science research and practice and presents a rich collection of manuscripts in highly
regarded data science topics that have not been fully compiled before. It is edited by
full professors with long experience in the field of data science and by data science
experts in industry.
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Simulation-Based Data Acquisition

Fabian Lorig and Ingo J. Timm

1 Introduction

Most data science approaches rely on the existence of big data that is acquired
and extracted from real-world systems for further processing. However, for some
analyses or investigations, real data might not be available. Potential reasons are,
for instance, accessibility to or existence of the system of interest such that data
cannot be acquired. Other possible restrictions are economical or time limitations
that do not allow for the efficient extraction of required data. In other disciplines,
similar challenges are addressed using computer simulation. Here, artificial systems
serve as a substitute for real-world systems, which enable a more efficient, viable,
and unlimited generation of synthetic data instead.

In many disciplines and domains, scientific advance increasingly relies on the
application of simulation. It is used for the generation and validation as well as
for the illustration and imparting of knowledge. To this end, simulation can be
applied both as a scientific method in terms of simulation studies and as a practical
tool for educational purposes [37]. Either way, individual models are required,
which are configured and executed with respect to a specific purpose. In many
fields of application, simulation models exist for different purposes and are often
provided in domain-specific repositories, e.g., OpenABM [14] or CellML [19]. In
addition, numerous simulation frameworks exist for different modeling paradigms

F. Lorig (�)
Department of Computer Science and Media Technology, Internet of Things and People Research
Center (IoTaP), Malmö University, Malmö, Sweden
e-mail: fabian.lorig@mau.se

I. J. Timm
Center for Informatics Research and Technology, Trier University, Trier, Germany
e-mail: itimm@uni-trier.de

© Springer Nature Switzerland AG 2020
H. R. Arabnia et al. (eds.), Principles of Data Science, Transactions on
Computational Science and Computational Intelligence,
https://doi.org/10.1007/978-3-030-43981-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43981-1_1&domain=pdf
mailto:fabian.lorig@mau.se
mailto:itimm@uni-trier.de
https://doi.org/10.1007/978-3-030-43981-1_1


2 F. Lorig and I. J. Timm

that facilitate the creation of new models, e.g., [9]. Many of these frameworks do
not require advanced technical or programming skills such that they can be utilized
by both novice and professional users from different domains and with different
backgrounds.

The application of simulation is particularly reasonable when empirical studies or
observations are too costly, inconvenient, time-consuming, dangerous, or generally
impossible. Instead of investigating a real-world system, cause-effect relationships
of this system are modeled and simulated. This allows for observing the behavior of
the model or individual mechanisms within the model under specific circumstances
to confirm or refute assumptions or theories. For this purpose, the values of the
model’s exogenous variables (inputs) are systematically altered to observe the
impact they have on the endogenous variables (outputs) that are used to measure
the model’s performance or behavior. By this means, large amounts of synthetic
data can be acquired for the investigation of systems and phenomena using data
science methods.

This chapter introduces simulation as a technique for the systematic acquisition
of synthetic data in data science. Instead of generating a vast data basis by simulating
all possible parametrizations of a model, this chapter presents techniques from
the field of data farming, which enable the problem-related extraction of data in
respect of a specific problem. By this means, simulation can help to address data
science challenges that are especially associated with the volume of data. The
resulting relationship between simulation and data science is bilateral: Simulation
experiments enable the efficient acquisition of synthetic data for the use in data
science, and data science provides approaches for deriving insights from simulation
models.

To outline advantages and opportunities simulation offers for data science,
this chapter is structured as follows: Sect. 2 introduces simulation as method for
modeling, executing, and investigating artificial systems. In Sect. 3, the relationship
between simulation and data science is outlined to illustrate how simulation models
can be used for the acquisition of synthetic data as part of the data science process.
Different approaches for the systematic design and execution of experiments are pre-
sented in Sect. 4, with focus on the comparison of different data farming approaches
in respect of data science needs. In Sect. 5, two free-to-use simulation frameworks
are introduced, which facilitate the conducting of simulation experiments. Finally,
the opportunities simulation offers for data science are summarized.

2 What Is Computer Simulation?

The history of modern computer simulation starts in the 1940s, when the invention
of the ENIAC general-purpose computer enabled scientists to automatically execute
mathematical computations for solving numerical problems [39]. Nowadays, more
than 70 years later, scientific progress often inherently relies on the use of
simulation, and research without simulation became unimaginable. Axelrod even
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introduced simulation as a third way of doing science besides deductive and
inductive research, i.e., empirically and theory-driven approaches [2]. Based on
this classification of scientific advance, some authors postulate the emergence of
data-intensive science as a fourth paradigm of research, with focus on large data
sets from different sources [11]. A special emphasis lies on the strong connection
between computational sciences such as simulation and data science. Due to the
large amount of data that can be generated by means of simulation, a demand for
dedicated techniques arises to explore and extract relevant information.

Simulation is often utilized when the application other approaches is too costly,
time-consuming, or cannot deal with the investigated system’s complexity [3]. For
instance, when analyzing crisis of the banking system, it might be necessary to
investigate and understand the fractional-reserve banking mechanisms that allow
banks to grant credits as well as its consequences to the banking system itself.
In this example, experimentation with the real-world system is impossible as it
might expose the financial market to unforeseeable threads. Likewise, the creation
of a banking market under laboratory conditions that can be safely used for
experimentation is not feasible due to financial and pragmatic reasons. The real-
world system is also too complex to be analyzed by means of numerical approaches
because of the large number of heterogeneous and independently acting market
participants. Thus, Law [18] proposes simulation as technique of choice.

The conducting of a simulation usually consists of two distinct yet mutually
dependent tasks: model building and experimentation. Hence, the corresponding
discipline is also referred to as Modeling & Simulation (M&S). As this chapter
addresses the practical application of simulation for means of data acquisition, the
focus lies on the experimentation part of M&S, and it is assumed that a suitable
simulation model already exists. Comprehensive introductions on the building of
simulation models are, for instance, provided by Bonabeau [4], Carson and John
[5], and Sokolowski and Banks [36].

With respect to the conducting of simulation experiments, a black box perspective
on the model is often sufficient (cf. Fig. 1). Here, the inner states and mechanisms
of the simulation model are not considered, and only the input-output behavior
is investigated [41]. Inputs represent exogenous factors that affect the model’s
behavior such as uncontrollable environmental influences or control variables.
Outputs of the model are those variables that can be used for observing and assessing
the behavior or performance of the model. Simulation is often used to examine

Fig. 1 Black box view on the
input-output behavior of
simulation models [24]
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the relationship between inputs and outputs, i.e., which particular inputs influence
specific outputs or how certain values of inputs minimize or maximize outputs.

To analyze the relationship between the model’s inputs and outputs, experiments
must be systematically executed to generate suitable data and to gradually exploit
the model’s response surface [20]. For this purpose, data farming techniques can
be applied, which pursue an approach that takes place before data mining [13].
While data mining focuses on the discovery of patterns in data sets, data farming
starts one step prior to this and targets the generation of relevant data on the
model’s behavior. Referring to agricultural farmers, relevant data for the analysis
is deliberately “grown,” and data samples can be drawn from different parts of the
model’s response surface to selectively assess the quality of data. Data miners, in
contrast, can neither influence the quality of the data set nor generate more data.
Still, both approaches depend on each other. On the one hand, data farming must
provide suitable data sets that can be further processed by means of data mining and
other data science techniques. On the other hand, data science provides approaches
that allow for deriving information and knowledge from data that was generated by
simulation models.

In many scientific publications, mutual benefits are outlined that emerge from the
combination of simulation and data science. Feldkamp et al., for instance, combine
data farming and visual analytics to investigate the relationship between inputs and
outputs of simulation models [8]. Following the knowledge discovery in databases
process, the authors make use of a data farming approach to acquire data on the
model’s behavior which is then further analyzed via clustering and visual analytics
to identify influential inputs of the model.

Conversely, simulation is also applied as technique in data science, e.g., as part
of predictive analytics to validate the used models or to generate sample data of
a system’s behavior [27]. It is also utilized as independent application, e.g., in
data analytics for addressing big data challenges [35]. To this end, Shao et al.
demonstrate different applications of simulation in manufacturing and emphasize
how data can be generated, which is required for the analysis of domain-specific
data analytics applications [35]. Especially the combination of both disciplines
allows the user to overcome existing shortcomings. Costs of data processing and
acquisition can be reduced when applying data farming to artificial simulation
models. Additionally, data points that are missing in the data set can easily be
substituted by observations from the model. Finally, for the generation of simulation
models, the need to understand all possible cause-effect relationships within the
real-world system decreases as relevant mechanisms can be learned from data.

3 Computer Simulation for the Acquisition of Data

After introducing computer simulation as method for the generation of synthetic
data and presenting approaches that combine simulation and data science, this sec-
tion outlines the methodological relationship between simulation and data science.
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It is illustrated how simulation can be integrated into the process of data acquisition
as required in data science. Especially, the use of simulation as a technique for the
generation and acquisition of synthetic raw data is addressed.

According to O’Neil and Schutt, the data science process starts from the real
world [26]. Here, data exists in a variety of forms and contexts such that raw
data might be directly acquired or observed from systems within this world. In
consecutive steps, the goal of data science approaches is then to process and clean
the raw data to prepare them for further analysis. Yet, the acquisition of raw data
from the real world is not always feasible or possible. Among other things, this
might be due to limited access to the system of interest, the required amount of time
and money, or the existence of the system.

Here, benefits become apparent that simulation holds for data science: The
use of M&S allows for the creation of an artificial system, which might be a
suitable alternative to investigating a system in the real world. Compared to real-
world systems, modeled systems can be executed and investigated with slowed
or accelerated speed. They are not subject to access restrictions, and the initial
state of the system can be restored at any time and at no expense. Moreover,
artificial systems do not necessarily require the existence of the underlying real-
world system, which additionally allows for the generation and investigation of
fictive and theoretical systems or effects.

As intended by the design science process, the conventional data acquisition
process relies on the collection and export of data from a real-world system, e.g.,
from the data warehouse of a company or other sources of big data. Gained raw
real-world data is then processed, cleaned, explored, and quantitatively analyzed to
derive qualitative insights that can be used as basis of a decision-making process.

In contrast to this, the simulation-based data acquisition approach extends and
partially replaces this conventional approach of data acquisition (cf. Fig. 2). Instead
of accessing big data in the real world, only a specific set of small data (real

Fig. 2 Simulation-based and conventional data acquisition



6 F. Lorig and I. J. Timm

system data) is acquired [22]. This includes information that is required for the
model building process, e.g., information on the system’s mechanisms, involved
entities, process flow, and further specifications. Moreover, data that is required
for the calibration and parametrization of the model is extracted. Besides real
system data, experience and knowledge of domain experts are also required for
the model building. After verifying and validating the developed model, simulation
experiments are conducted and data farming approaches applied to systematically
generate synthetic big data that is required for the application of further design
science methods.

Considering trends that come along with the digitalization of our society, e.g.,
Internet of Things (IoT), the potentials of simulation-based data acquisition can be
illustrated. This especially includes the use of artificial data for the evaluation of
innovative technologies. For instance, Renoux and Klügl outline how agent-based
simulation of inhabitants in smart homes can be used to gather realistic artificial
sensor data on human behavior [29]. Such data can then be used to test augmented
living algorithms or to identify patterns for learning rules on activities of inhabitants
of smart homes. To this end, the authors also refer to OpenSHS, a simulator which
can be used to extrapolate small data into big data with the aim of testing and
evaluating IoT models using smart home data [1].

4 Design and Execution of Experiments

To enable and facilitate data farming on a simulation model, standardized experi-
mental designs are used to derive experiment plans, which define all experiments
that must be executed [32]. In this section, different experimental designs are
presented that can be used for the systematic acquisition of data with respect to data
science needs. This goes beyond the recommendation of big data only (“the more,
the better”) but also aims at the heterogeneity of the used or generated data, i.e., how
adequately and evenly the data points cover all parts of the investigated response
surface. To ensure the systematic investigation of the model’s parameter space and
the generation of heterogeneous data, simple factorial designs are introduced first.
Especially for models with a great number of inputs, the suitability of basic factorial
designs is often limited due to the combinatorial explosion of parametrizations that
are suggested by the experiment plan. To overcome this limitation, this section also
introduces more advanced fractional factorial designs. In contrast to basic factorial
designs, fractional factorial designs investigate the model’s parameter space more
efficiently by reducing the number of simulated model parametrizations.

In experimental design terminology, exogenous inputs of a model are referred to
as factors that can be used to control the model during the experimentation. Each
factor is defined by a set of admissible qualitative or quantitative values (levels),
which it can take. In a manufacturing model, examples of potential factor levels
might be simple logical values, e.g., factor AutomatedAllocation that can either
be true or false; a set of discrete levels, e.g., factor QueuingDiscipline which can
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take levels FIFO, LIFO, and SPT; or a range of numerical values, e.g., factor
NumberOfMachines for which all whole numbers between 1 and 15 are admissible
[33].

Factorial designs “cross” the levels of the factors to investigate all possible factor-
level combinations [24]. In other words, if a model consist of two factors A and B

with a respectively b levels, the Cartesian product A×B is applied which results in
a set of a ∗ b possible parametrizations of the model. Compared to the conventional
one-factor-at-a-time method, where only one factor is changed and tested in each
experiment, factorial designs allow for the investigation of interactions between
factors as multiple factors are tested at the same time [15].

Factorial designs are usually defined via the number of factors (k) and the
number of levels (m). Examples for common factorial designs are 2k , 3k , or the
general mk design. A 2k factorial design is well-suited for the investigation of
models with a smaller number of binary factors or factors with a limited number
of levels. However, as both the number of factors and levels per factor increase,
the number of resulting parametrizations also increases exponentially. This results
in a combinatorial explosion of data points that are suggested by the experiment
plan. For instance, the 2k factorial design of a model with 10 factors and only
5 levels per factor consists of almost 10 million individual parametrizations (cf.
Fig. 3). It also must be considered that many simulation models consist of stochastic
components that, for example, represent real-world variations of processing times.
The simulation of each parametrization must then be replicated multiple times
to estimate the underlying probability distribution. Thus, Sanchez and Wan [33]
suggest not to apply mk designs in case the number of factors or levels exceeds ten.

Data generated by applying mk designs allows for the identification of inter-
actions between two and more factors. By confounding these interactions, the
efficiency of mk designs can be increased as only a fraction of the intended
parametrizations needs to be executed. Resulting mk−p fractional factorial designs
generate an experiment plan which consists of a subset of parametrizations from
the respective mk design. Hence, the larger p is chosen, the less data but also
information is generated [18].

Other examples of fractional designs that are well-suited for greater numbers of
factors and levels are Nearly Orthogonal Latin Hypercubes (NOLH) and approaches

Fig. 3 Data requirements for
factorial designs [33]

No. of

factors 10k factorial 5k factorial 2k factorial

1 10 5 2

2 102 = 100 52 = 25 22 = 4
3 103 = 1,000 53 = 125 23 = 8
5 100,000 3,125 32

10 10 billion 9,765,625 1,024

20 don’t even 95 trillion 1,048,576

40 think of it! 9100 trillion 1 trillion

trillion



8 F. Lorig and I. J. Timm

X1

X2

X3

X4

(a) 54 Factorial Design

.
X1

X2

X3

X4

(b) NOLH Design

Fig. 4 Scatterplot matrices for (a) 54 factorial design and (b) NOLH design with 4 factors in 17
runs [33]

that combine different designs, e.g., FFCSB-X [34]. According to Sanchez, NOLH
have good space-filling properties for k ≤ 29, meaning that all parts of the
simulation model’s parameter space have the same probability of being investigated
and require a considerably lower amount of data points. She also illustrates that
while a 510 design consists of almost 10 million data points, 33 parametrizations are
sufficient for a NOLH design of 10 factors. Furthermore, reducing the number of
required experiments allows for the execution of a sufficient number of replication
per parametrization to investigate the distribution of the results as well as for the
execution and combination of multiple NOLH designs.

Figure 4 illustrates the space-filling properties of NOLH by comparing the
resulting coverage of the parameter space to a mk factorial design. For each possible
combination of two inputs x1 to x4, all investigated factor-level combinations are
visualized. In the scatterplot matrix of the 54 design, the grid-like shape of the
investigated tuples can be observed. Accordingly, the parts of the parameter space
that fall between the grid cells are never analyzed. Thus, the scatterplot matrix of a
specific mk design will always be the same for a specific model. In contrast to this,
the matrix of a NOLH design consists of a random permutation of all possible tuples
in accordance with certain restrictions that ensure the coverage of the parameter
space. Hence, the tuples that are suggested by the NOLH design are distributed
randomly such that any possible factor-level combination might be suggested by the
design.

An example of a sophisticated design that combines different more basic designs
is FFCSB-X. Here, CSB-X is applied after using fractional factorial design to
estimate the direction of the factors’ effects. It pursues a divide-and-conquer
approach to determine those factors that have the greatest effect on the model’s
behavior. According to Sanchez and Wan, FFCSB-X is more efficient than CSB-
X and can be applied for models with more than 1,000 factors and with a large
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number of discrete or even continuous factor levels [33]. Yet, the application of this
approach is challenging as it requires advanced simulation knowledge and is not
pre-implemented in standard simulation frameworks. Other more basic designs are
often available in ready-to-use packages, e.g., via the R Archive Network (CRAN)
or MATLAB.

Regardless of the used design, it must be ensured that a sufficient number of
replications is executed for stochastic models to precisely measure the performance
of the model [30]. For each execution of the model, the made observation of the
model’s output can be considered as a sample drawn from an unknown probability
population. Thus, a sufficient number of experiments must be executed such that the
sample mean (x̃) can be used to adequately estimate the population mean (μ). For
this purpose, Hoad et al. suggest the use of confidence intervals [12].

Summarizing, factorial designs are well-suited to gather data on smaller models
and to gain insights on interactions between the model’s factors. When the
application of factorial designs is limited, fractional factorial designs provide more
efficient experiment plans that can handle a greater number of factors and levels.
Yet, the reduced amount of data might also result in a reduced amount of information
that can be gained from the simulation data. A detailed overview and comparison
of different experimental designs are provided by Sanchez and Wan [33], Kleijnen
et al. [16], and Montgomery [24]. However, with respect to the combination of
simulation-based data acquisition and data science approaches, the execution of a
great number of experiments as well as the quantity and controllability of generated
data set might no longer be a showstopper. This is because data science provides
more sophisticated and dedicated analytical approaches.

5 Simulation Frameworks and Toolkits

To apply experimental plans that were generated using factorial designs, the
simulation model under investigation must be executed. Usually, simulation models
are developed using commercial or free-to-use simulation frameworks rather than
proprietary software developments. This facilitates the model building process, as
commonly used modeling constructs or domain-specific formalisms are provided
by these frameworks and can be applied out of the box. Moreover, a runtime
environment is provided that enables the user to easily execute the model with a
specific parametrization or to automatically observe the model’s behavior under
different parametrizations. To this end, scaling and parallelization of experiments
as well as logging and first visualizations of output data are further functionalities
that are often provided by such frameworks.

This section introduces NetLogo and Repast Simphony as related modeling envi-
ronments that are applicable for novice as well as for professional simulation users.
Both frameworks are especially well-suited for building and executing agent-based
models in which actions of and interactions between individual entities (software
agents) are investigated, e.g., in economic markets [10] or social networks [31]. In
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Fig. 5 Interface of the NetLogo simulation framework

contrast to other modeling paradigms, e.g., system dynamics or microsimulation, the
autonomous and proactive decision behavior of each individual is in focus, which
allows for the investigation of a system’s behavior on a microlevel [7]. With respect
to the simulation of agent-based models, the focus of this section also lies on the
execution assistance BehaviorSpace that is provided by NetLogo. It facilitates the
systematic execution of simulation experiments to examine how different factor
levels influence the agents’ behavior [38].

Of both frameworks, NetLogo is the one that is more suitable for novice users.
It is lightweight, makes use of the functional and procedural Logo programming
language, provides a user interface for the development and execution of the model,
and facilitates the export and visualization of observed data (cf. Fig. 5). Moreover,
NetLogo’s model library consists of a great number of sample models that can be
downloaded and modified as required.

Beside its ease of use for model building, NetLogo also provides assistance
functionalities that facilitate the design and conducting of experiments. In Behav-
iorSpace, individual experiments can be configured as combination of different
factor levels that shall be investigated. Referring to the mk design, one or many
distinct levels or a range of levels can be selected for each factor such that Behav-
iorSpace deduces and executes all possible factor-level combinations. Moreover,
the number of replications can be determined that must be executed for each
distinct parametrization of the model. After designing an experiment, all runs can
be automatically executed, and the respective results are logged into a CSV file.
NetLogo enables the use of multiple CPU cores to distribute and parallelize the
execution of the runs.

Repast Simphony is more comprehensive compared to NetLogo and provides
a greater range of functionalities, which allows for the building and executing of
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more sophisticated simulation models. To import NetLogo models into Repast,
the ReLogo language can be used, which is a NetLogo-inspired domain-specific
language for the development of agent-based models in Repast [28]. Besides Repast
Simphony, that is mostly Java-based, a C++-based version (Repast HPC) exists,
which is intended for the use on clusters and supercomputers. In this regard, a
comprehensive and practical introduction to agent-based modeling is provided by
Wilensky and Rand [40] who maintain and teach NetLogo.

NetLogo and Repast Simphony are only two examples of a large number of
simulation frameworks. In their literature review, Kravari and Bassiliades provide
an overview on different platforms that can be used for agent-based modeling [17].
Even though not all agent platforms are also simulation frameworks, most of them
include functionalities that facilitate the execution and simulation of multi-agent
systems. Other prominent examples of agent simulation frameworks are AnyLogic,
MASON, and Swarm.

In addition to agent-based simulation, there are also other established simulation
paradigms. To efficiently model progress of time and to skip periods of time in
which no relevant actions take place during simulation, the discrete event paradigm
only calculates the next model state when specific predefined events take place.
This is in contrast to continuous simulations, where time continuously progresses
even if no actions take place. Franceschini et al. provide an overview of different
frameworks that are suited for the simulation of discrete event systems [9].

It is noticeable that many of the introduced frameworks make use of the
Java programming language. Yet, there are also extensions of existing systems
or additional packages that enable simulation by means of other languages, e.g.,
Python, which might be more familiar to data scientists. Examples include DES
[23], ManPy [6], or Repast Py [25]. Especially with regard to data science, Python
is a programming language that is frequently used for extracting, cleaning, and
analyzing data sets, e.g., Pandas for exploratory data analysis or scikit-learn for
machine learning. This facilitates first steps in the application of simulation for data
scientists, as they can make use of a programming language they most likely are
familiar with.

6 Investigation of a Credit Market

To emphasize how simulation can be applied with respect to data science require-
ments, this section introduces a simple NetLogo simulation model. Besides the
formulation of potential analysis goals (hypotheses [21]), this section elaborates on
the implementation of the model as well as the possibilities the model provides for
data farming. The outlined model consists of a banking market and is taken from
Hamill and Gilbert’s introduction to “Agent-Based Modelling in Economics” [10].

Especially in economics, the use of simulation is promising to investigate
cause-effect relationships between different entities in the system, to analyze the
mechanisms behind certain phenomena, or to examine the effect new rules or norms



12 F. Lorig and I. J. Timm

have on the system’s behavior and resilience. In their book, Hamill and Gilbert
introduce the banking market as an omnipresent system with sophisticated dynamics
and partially unnoticed mechanisms. The authors especially stress on the credit
system of fractional reserve banking, where banks can multiply money by granting
credits, which are then used to pay money to third parties, which again potentially
deposit the money in the bank. The deposited money can then be used to grant
further credits that are smaller than the original credit. This mechanism results in a
recursive credit system where the bank gains money from earlier credits, which are
deposited by third-party retailers.

According to the authors, when analyzing such processes, most approaches leave
out partial or monthly repayments of granted loans. This is undesirable as from
the bank’s perspective as the repaid money can be used to grant further credits
which have a large effect on the bank’s potential loan volume. When thoroughly
implementing such mechanisms, respective models can be used to investigate the
stability of the banking market. Potential triggers of crises can be analyzed, i.e.,
solvency crisis and liquidity crisis, and strategies for preventing or handling crises
can be evaluated, e.g., regulatory frameworks and standards such as the global
and voluntarily regulatory frameworks Basel I–III. To this end, understanding the
relationship between credit institutions, regulators, and households seems most
relevant such that potential questions that can be answered by means of simulation
might be: How does the borrower’s budget affect the stability of fractional reserve
banking?

The presented model consists of one bank with an initial deposit of 1 million GBP
and 10,000 households with an average monthly budget of 1,000 GBP. There are two
kinds of loans, i.e., 25-year mortgages and 3-year consumer loans. According to the
limitations of the regulators, the bank decides how much money to provide as credits
to the households. The households then use the borrowed money to buy from other
households who decide to deposit the money at the bank. This money is then again
available to the bank and can be granted as further credits. Moreover, the borrowers
of the loans repay on a monthly basis, and the bank also uses this money to grant
further credits.

The described model can be used to conduct simulation experiments with
different parametrizations of the banking system. Potential configurations that might
be analyzed include different reserve ratios of the bank, the ratio of households
that are borrowers and savers, or the amount of money the households spend for
repayments. To investigate the resilience of the banking system under different
circumstances, it can be simulated how the bank reacts to the absence of repayments
in terms of profit and vulnerability.

To analyze different configurations of the model, the use of data farming
approaches and experimental designs is reasonable. This allows for the systematic
investigation of the model’s parameter space and the identification of interactions
between the model’s factors as well as the overall impact of each factor. However,
from a simulation perspective, the conducting of experiments is not sufficient for
the identification of circumstances that lead to resilient or fragile banking markets.
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Likewise, the analysis of real bank data is not satisfying as information from
multiple bank crashes is required to derive patterns. Here, the potentials that emerge
from combining simulation and data science can be highlighted. Based on a smaller
amount of real system data, simulation allows for the generation of a large amount
of artificial banking data for different policies of the bank, external regulations, and
kinds of borrower. This set of big data can then be processed and explored to derive
potential insights regarding the crisis resistance of the banking system. Without the
use of simulation, data science methods would rely on real-world big data, which
might not be accessible or exist at all, and result in limited possibilities to identify
and analyze causal relationships in banking markets.

7 Conclusions

Limited access to real-world data imposes challenges on the acquisition of data and
thus also on the application of data science techniques. To overcome a lack of real
data, this chapter introduced the simulation-based acquisition of synthetic data. By
modeling and executing an artificial system, limitations of big data acquisition are
overcome and even fictive systems can become subject to data science approaches.
To enable the efficient acquisition of synthetic data from simulation models, this
chapter suggested data farming as a technique for the systematic extraction of data
from the model’s parameter space. Through this, the availability of real-world big
data is no longer mandatory for the application of data science techniques, and the
observation of smaller and specific real system data is sufficient. Finally, this chapter
outlined the methodological relationship between simulation and data science and
illustrated how data science can benefit from the utilization of simulation.
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