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Preface

My wife is past-President of the Society for the Study of Addiction, but
I suspect that even she finds it difficult to understand why I have not
been able to free myself from an obsession with tests for econometric
models in the last 30 years. My only defence is that I hoped that these
tests would be useful to applied workers. Like many other researchers in
the area, I had to make use of asymptotic theory when deriving tests.
I now believe that the application of appropriate bootstrap techniques
can greatly increase the usefulness of asymptotic test procedures at low
cost and so I have a new obsession to combine with the old one.
Two types of problems associated with using asymptotic analysis to

obtain tests are often mentioned. First, even when theory is tractable
and leads to asymptotically valid critical values from standard distribu-
tions like Normal and Chi-Squared, which are convenient to use, there
may be serious approximation errors in finite samples. In particular, the
critical values implied by asymptotic theory may produce finite sample
significance levels that are not close to the desired probabilities. Sec-
ond, there are important test procedures for which asymptotic theory
is intractable and does not provide a standard distribution from which
critical values can be taken. The bootstrap has been used to tackle both
types of problem. When a standard asymptotic test is available, the cor-
responding bootstrap test is often found to provide a better finite sample
approximation and the improvement is sometimes remarkable. When
no standard asymptotic test can be derived, the bootstrap can some-
times produce a test that is easy to carry out and has significance levels
that are reasonably close to the desired values.
The bootstrap approach involves using computer programs to generate

many samples from an artificial model that is intended to approximate
the process assumed to generate the actual data. The values of test statis-
tics calculated from these bootstrap samples can then be used to assess
the statistical significance of the corresponding test statistic derived from
the real observations. Given that many artificial samples are generated
and each is subjected to the same statistical analysis as the genuine sam-
ple, there might be concerns about the computational costs of bootstrap
tests. However, given the amazing increases in the power of personal
computers, the real cost of the bootstrap approach is often very small in
absolute terms, for example, the waiting time for results to appear. The

xi
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costs of bootstrapping are, therefore, often small and there is a great deal
of evidence to suggest that the benefits can be very large.
The examples in this book that illustrate the value of the bootstrap and

the dangers of relying upon asymptotically justified critical values are in
the familiar framework of ordinary least squares (OLS) procedures for a
linear regression model. The regression model is central to economet-
rics and its familiarity allows the reader to concentrate on the bootstrap
techniques. The level of discussion is at an intermediate textbook stan-
dard and the aim has been to write a book that is useful to a fairly wide
audience. However, references that cover more complicated models and
more technical analyses of bootstrap procedures are provided.
Chapter 1 contains a discussion of regression models and OLS-based

tests in order to summarize key results, to provide details of notation
and to motivate going beyond conventional asymptotic theory as a basis
for inference. The second chapter covers some basic ideas of simulation-
based tests, with bootstrap procedures being given prominence but other
approaches also being discussed. The application of simulation-based
tests in regression models, under the assumption of independently and
identically distributed (IID) errors, is examined in Chapters 3 and 4. The
first of these two chapters covers test statistics that have standard asymp-
totic distributions, for example, Chi-Squared, when the null hypothesis
is true. Chapter 4 is devoted to examples of situations of importance to
empirical workers in which the bootstrap can be applied to statistics that,
under the null hypothesis, have non-standard asymptotic distributions.
While the assumption that regressionmodels have IID errors has often

been made in the past when explaining results concerning the asymp-
totic properties of OLS estimators and test statistics, there has been a
growing body of opinion that it is too restrictive. There are, of course,
many ways in which data can be modelled using regression models with
non-IID errors. The bootstrap world must mimic the process that is
assumed to generate actual data under the null hypothesis. Consequently
there is a need for bootstrap methods that allow for departures from the
assumption of IID errors that are of interest to applied workers. Some of
these methods are discussed in Chapter 5.
When the errors are not restricted to be IID, they can be assumed

to be autocorrelated or heteroskedastic, according to precisely defined
parametric models or in unspecified ways. The basic position taken in
Chapter 5 is that there is rarely very clear guidance about the specification
of parametric error models. There is, therefore, an emphasis on bootstrap
methods that are designed to be asymptotically valid under unknown
forms of autocorrelation and/or heteroskedasticity. Some examples of
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the applications of these methods are examined in Chapter 6, which
contains results on the finite sample behaviour of autocorrelation-robust
and heteroskedasticity-robust bootstrap tests.
All of the tests discussed in Chapters 1 to 6 are based upon the

assumption that the null-hypothesis model is a special case of the
alternative-hypothesis model, that is, the former is nested in the latter.
This assumption is required for much of the standard asymptotic theory
of testing statistical hypotheses. However, competing specifications of
linear regression models in applied econometric work are sometimes not
nested and there is a considerable literature on tests for non-nested rela-
tionships. Chapter 7 contains a discussion of asymptotic and bootstrap
tests for non-nested regression models. This discussion indicates how
the bootstrap can help to overcome both of the above-mentioned gen-
eral types of problem associated with reliance upon asymptotic theory
when implementing tests of non-nested hypotheses. Finally, Chapter 8
contains an epilogue.
In the discussions of the application of bootstrap methods to OLS-

based tests in regression analysis, I have used some examples from articles
that I have written with various coauthors. I owe many debts to Chris
Orme, Hashem Pesaran, Joao Santos Silva, Andy Tremayne and Mike
Veall. It was a pleasure to work with these fine researchers and Mike
Veall deserves special acknowledgment because he introduced me to the
bootstrap during his first visit to York. I am very much indebted to Kerry
Patterson, editor of this series, for his careful and constructive comments
on my drafts. I am also grateful to Taiba Batool, commissioning editor at
Palgrave Macmillan, for her encouragement and help, and to Alina Spiru
for her assistance with the indexes. Finally, my thanks go to Christine
who probably never realized that marriage might lead to the burden of
helping me to sort out my ideas about this book during our lunchtime
walks around the York campus.

L. G. Godfrey



1
Tests for Linear Regression Models

1.1. Introduction

The linear regressionmodel is often used to study economic relationships
and is familiar from standard intermediate and introductory courses at
the level of, for example, Greene (2008), Gujarati (2003) andWooldridge
(2006). In such courses, considerable emphasis is usually placed on the
important topic of testing hypotheses about the values of the parame-
ters of themodel. The text-book tests for regressionmodels are developed
using very strong auxiliary assumptions that simplify teaching but are
of limited relevance in practical situations. As a consequence, applied
workers often have to replace procedures that are exactly valid in finite
samples under strong assumptions by tests that are based on weaker
assumptions but are only asymptotically valid.
It is also often necessary to rely upon asymptotic, rather than finite

sample, results when carrying out tests for misspecification of a regres-
sion model. It is now commonplace for the results of estimation to be
accompanied by checks of the assumptions required to validate standard
empirical analysis. Even under the restrictive assumptions of the classical
textbook model, many of these checks have to be carried out using crit-
ical values that are only asymptotically valid. When these assumptions
are relaxed, there is an even greater need to use asymptotic theory.
The problem for the empirical researcher is that asymptotic theory

sometimes provides a poor approximation to the actual distribution of
test statistics; so that the use of asymptotic critical values may lead to
misleading inferences. Moreover, there is a second type of problem asso-
ciated with the standard approach to deriving asymptotically valid tests.
In some situations of importance, this approach is not capable of provid-
ing a usable tool for the applied worker. This failure can occur with some

1



2 Bootstrap Tests for Regression Models

tests when classical assumptions are relaxed, or when several separate
large sample tests are being applied.
The purpose of this book is to explain how computers and appropriate

software can be combined to tackle these problems. More precisely, the
use of procedures involving the simulation of artificial sets of data is
examined and some important cases are discussed in detail. The various
computationally intensive simulation techniques, collectively known as
bootstrap methods, provide:

1. ways to improve the finite-sample performance of well-known and
widely-used large sample tests for regression models; and

2. new tests that can be employedwhen conventional asymptotic theory
does not lead to a test statistic that can be compared with critical
values from some standard distribution.

The reason for believing that it is worth providing a concise, but quite
extensive, account of bootstrap tests in regression analysis is that, in
recent years, personal computers have become so powerful and relatively
cheap that it is now feasible to implement bootstrap procedures as part of
routine econometric analysis. Also the linear multiple regression model
provides a very useful framework for introducing ideas that can be used in
more complicatedmodels that are of interest to appliedworkers, students
and others who carry out empirical econometric analyses.
The emphasis is on practical applications of bootstrap methods in

regression models. There are many excellent treatments of theoretical
issues associated with the validity and properties of bootstrap techniques
in quite general settings. References to such technical material will be
provided and key results will be summarized.
This chapter is intended to give an outline of the various frameworks

for which results about regression model tests are available and widely
used. The foundations required for the detailed treatments contained in
later chapters are provided, along with notation. More thorough cov-
erage of tests for regression models, including numerical examples, can
be found in many text books, for example, J. Davidson (2000, chs 2
and 3) and Greene (2008, ch 5). The discussion in Davidson and MacK-
innon (2004, ch 4) links the statistical underpinnings of tests with the
use of simulation methods and so is especially useful for the purpose of
this book.
The important problem of testing linear restrictions in the classical

Normal linear regressionmodel is covered in Section 1.2, which includes
much of the required notation. Section 1.2 provides key results that are
exactly valid under the very strong assumptions of the textbook classical
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model. It is argued that, despite their value in simplifying the teaching of
econometric tests, these assumptions should not be regarded as suitable
for practical applications. Section 1.3 contains comments on carrying out
tests under weaker assumptions about the error terms and explanatory
variables of the regression model. However, the analysis of Section 1.3 is
based upon the assumptions of independence and homoskedasticity. In
Section 1.4, tests that are asymptotically valid in the presence of auto-
correlation and/or heteroskedasticity are described. The tests of linear
restrictions that are covered in Sections 1.3 and 1.4 are only asymptoti-
cally valid. Applied workers have to use data sets with a finite number of
observations and may be concerned about relying on results that only
hold as the sample size tends to infinity. Some examples are provided
in Section 1.5 that illustrate the problems of inadequate approximations
derived from asymptotic theory. Section 1.6 contains examples of situa-
tions in which it is not possible to derive an asymptotic test that permits
reference to a standard distribution to assess statistical significance. A
summary and some concluding remarks are given in Section 1.7.

1.2. Tests for the classical linear regression model

As in many texts, the starting point is the classical linear regression model

yi =
k∑
j=1

xijβj + ui, (1.1)

in which: yi is a typical observation on the dependent variable; the
terms xi1, . . . , xik are the nonrandom values of a typical observation on
the k regressors; the unknown regression coefficients to be estimated
are β1, . . . ,βk; and the unobservable errors, with typical term ui, are
independently and identically distributed (IID), each having the Normal
distribution with zero mean and variance σ2. The classical assumptions
concerning the error term will sometimes be written using the nota-
tion NID(0, σ2), with NID standing for “Normally and independently
distributed.”
Suppose that there are n > k observations for statistical analysis. It

follows from (1.1) that the randomvariables y1, . . . , yn are independently
distributed, with individual distributions being given by

yi ∼ N

⎛⎝ k∑
j=1

xijβj, σ
2

⎞⎠ , i = 1, . . . ,n. (1.2)
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The system of n equations with typical member (1.1) can be written in
matrix-vector notation as

y = Xβ + u, (1.3)

in which: y and u are the n-dimensional vectors with typical elements
yi and ui, respectively; X is the n by k matrix with typical element
xij, which is assumed to have rank equal to k, that is, there is no per-
fect multicollinearity; and β is the k-dimensional vector with typical
element βj.
The classical assumptions about the errors imply that their joint

distribution can be written in the form

u ∼ N(0n, σ2In), (1.4)

in which: N(μ,�) denotes the multivariate Normal distribution with
mean vector μ and covariance matrix �; 0n is the n-dimensional column
vector with every element equal to zero; and In denotes the n× n iden-
tity matrix. These assumptions, combined with those made about the
regressor terms, also imply that the joint distribution of the elements of
y is given by

y ∼ N(Xβ, σ2In). (1.5)

The parameters to be estimated are, therefore, the elements of θ ′ =
(β ′, σ2).
Under classical assumptions, there are strong incentives to use the

ordinary least squares (OLS) estimator for β because it is best unbiassed
and also the maximum likelihood estimator (MLE). The OLS estimator
of β is

β̂ = (X′X)−1X′y, (1.6)

and so (1.5) implies that

β̂ ∼ N(β,σ2(X′X)−1), (1.7)

with β̂ = (β̂1, . . . , β̂k)
′. The implied vector of OLS predicted values is

denoted by

ŷ = Xβ̂ = X(X′X)−1X′y, (1.8)

using (1.6).
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In (1.8), pre-multiplication of y by X(X′X)−1X′ produces ŷ, which is
read as “y-hat.” The n by n matrix X(X′X)−1X′ is sometimes referred to
as the hat-matrix and is denoted by H, that is,

H = X(X′X)−1X′. (1.9)

The diagonal elements of H, denoted by hii, i = 1, . . . ,n, are called the
leverage values in the literature on diagnostics for regression models. By
combining (1.7) and (1.8), it can be seen that, in the classical framework,

ŷ ∼ N(Xβ, σ2H), (1.10)

in which H is a matrix that is symmetric and idempotent, having rank
equal to k.
It remains to estimate the error variance σ2. The errors are not observed

but their variability can be estimated by using the OLS residuals as
proxies. The OLS residuals are the elements of

û = y − ŷ = (In −H)y =My =Mu, (1.11)

in whichM = In−H = (In−X(X′X)−1X′) has rank equal to (n− k). Like
H,M is a symmetric, idempotent matrix; so that (1.4) implies

û ∼ N(0n, σ2(In −H)), (1.12)

with a typical OLS residual having a Normal distribution according to

ûi ∼ N(0, σ2(1− hii)). (1.13)

The residual sum of squares (RSS) from OLS estimation is

RSS =
n∑
i=1

û2i = û′û. (1.14)

Under the assumptions of the classical regressionmodel, the distribution
of RSS is given by

RSS ∼ σ2χ2(n− k), (1.15)

in which n − k is the number of degrees of freedom associated with the
estimation of (1.3). It follows from properties of the χ2 distribution that
if s2 is defined by

s2 = RSS
(n− k)

, (1.16)
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then s2 is unbiassed and consistent for σ2. The MLE of σ2 is given by

σ̂2 = RSS
n
= (n− k)

n
· RSS
(n− k)

, (1.17)

and so is consistent, but not unbiassed.
It will be assumed that β̂ of (1.6) and s2 of (1.16) are to be used for the

estimation of θ ′ = (β ′, σ2), whether or not the restrictive assumptions
of nonrandom regressors and Normally distributed errors are made. In
addition to the unrestricted estimation of the elements of θ , there is
often interest in testing restrictions that reduce the number of elements
of β that require estimation. Such restrictions can take many forms. If
the restrictions are linear, that is, they specify the values of known linear
combinations of the regression coefficients, the assumptions of the clas-
sical model permit the application of tests that are exactly valid. In such
a case, let the restrictions to be tested be written as the null hypothesis

H0 : Rβ = r, (1.18)

in which R is a known q by k, q ≤ k, matrix with rank equal to q and r is
a known q-dimensional vector.
The alternative hypothesis is assumed to be

H1 : β1, . . . ,βk are unrestricted.

The OLS estimator β̂ of (1.6) minimizes the residual sum of squares

Q(β) = (y −Xβ)′(y −Xβ),

under H1, and will be called the unrestricted estimator. The elements of
û will be referred to as the unrestricted residuals. It is convenient to add
to the notation by using RSS(H1) to stand for the unrestricted residual
sum of squares, that is, the quantity defined by (1.14) and to denote the
number of degrees of freedom for the unrestricted model by df (H1).
The estimator that minimizes Q(β) subject toH0, that is, subject to the

restrictions of Rβ = r, will be called the restricted estimator and is denoted
by β̃. The restricted residuals are defined by

ũ = y −Xβ̃, (1.19)

and the restricted residual sum of squares is written as

RSS(H0) = ũ′ũ.
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The standard F-statistic for testing H0 against H1 can then be calcu-
lated as

F = RSS(H0)− RSS(H1)
RSS(H1)

· df (H1)
q

, (1.20)

where, in this case, df (H1) = n−k. When the null hypothesis is true and
the classical assumptions are satisfied, F of (1.20) has the F distribution
with q and df (H1) degrees of freedom. This result, which is exactly valid,
is written as

F ∼ F(q, df (H1)),

under H0. Large values of the test statistic in (1.20) indicate that there is
strong evidence againstH0, so that a one-sided test should be conducted.
If the required significance level is α, the decision rule can be written as:

reject H0 if F ≥ f (α; q, df (H1)), (1.21)

in which the critical value f (.) is determined by

Pr(F(q, df (H1)) ≤ f (α; q, df (H1))) = 1− α.

If there is a single linear restriction to be tested, there is an alternative
to calculating the F-statistic of (1.20). Suppose that the null hypothesis
has the formH0 : Rβ = r1, whereR is the row vector (R11, . . . ,R1k) and r1
is a specified scalar, and the alternative hypothesis is H1 : Rβ �= r1. With
this combination of a single restriction inH0 and a two-sided alternative,
the reference distribution for the F-test is F(1, df (H1)). A random variable
with the same distribution is the square of a random variable that has the
Student t distribution with df (H1) degrees of freedom. This relationship
is denoted by

F(1, df (H1)) = [t(df (H1))]2.

It follows that a test of a single restriction against a two-sided alterna-
tive can be based upon the t-ratio defined by

t = Rβ̂ − r1
SE(Rβ̂ − r1)

, (1.22)

in which SE(.) denotes the estimated standard error, that is,

SE(Rβ̂ − r1) =
√
s2R(X′X)−1R′.
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Under the assumptions of the classical regression model, a two-sided
t-test with significance level α can be based upon the decision rule

reject H0 if |t | ≥ t(α/2; df (H1)), (1.23)

in which Pr(t(df (H1)) ≤ t(α/2; df (H1))) = 1−α/2. This two-sided t-test is
equivalent to the F-test, with the sample values of test statistics obeying
t2 = F.
If there is a priori (non-sample) information about the sign of Rβ − r1

when H0 is false, a one-sided t-test can be applied in the usual way. With
H+1 : Rβ > r1, the decision rule is

reject H0 if t ≥ t(α; df (H1)), (1.24)

and with H−1 : Rβ < r1, it is

reject H0 if − t ≥ t(α; df (H1)), (1.25)

where Pr(t(df (H1)) ≤ t(α; df (H1))) = 1− α.
Rules (1.21), (1.23), (1.24) and (1.25) have all been written so that

the rejection region is in the right-hand tail of the relevant reference
distribution. It is convenient, for the subsequent discussions, to assume
that all tests are set up in this form. Some diagnostic checks, for example,
the widely-used test for heteroskedasticity proposed in Breusch and Pagan
(1979), involve the use of criteria that are asymptotically distributed as
χ2 under the null hypothesis. The rejection region for such tests are, as
with those given above, in the right-hand tail.
It is worth noting that, as an alternative to a χ2-form, many diagnostic

checks can be computed as seemingly conventional tests of the signifi-
cance of artificial (constructed) variables that are added to the regressors
of (1.1). For example, tests for autocorrelation, structural change, errors-
in-variables etcetera can be computed using standard formulae for F or t
statistics, which are applied to an appropriate artificial regression model;
see Davidson and MacKinnon (2004, section 15.2) for a general discus-
sion. In such cases, (1.1) is viewed as the restricted (null) model. The nature
of the unrestricted (alternative) model, which contains the restricted model
(1.1) as a special case, has important implications for the properties of
the test of the latter against the former. The unrestricted model required
for the convenient calculation of a diagnostic check is often such that
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the F and t tests are not exactly valid even when the classical Normal
regression model (1.1) is the correct specification.
The problems associated with appealing to classical finite sample the-

ory in the context of testing for misspecification can be illustrated by
considering the well-known Breusch-Godfrey Lagrange Multiplier (LM) test
for autocorrelation; see Breusch (1978) and Godfrey (1978). Suppose that
quarterly data are being used and that the researcher believes that it is
useful to test the assumption that the errors are independent against the
fourth-order alternative

ui = φ1ui−1 + · · · + φ4ui−4 + εi,

with the variates εi being NID(0, σ
2
ε ). The required Breusch-Godfrey test

can be implemented by applying the F-test of the four linear restrictions
φ1 = φ2 = φ3 = φ4 = 0 in the augmented version of (1.1) given by

yi =
k∑
j=1

xijβj +
4∑
j=1

φjûi−j + ui, (1.26)

where terms ûi−j with i ≤ j are set equal to zero. Even under the restrictive

assumption that the errors ui are NID(0, σ
2), the F-test of (1.1) against

(1.26) is not exactly valid, but does have a significance level that tends
to the required level α as n −→∞, that is, it is asymptotically valid.
The failure of standard finite sample theory to apply to the F-test of

(1.1) against (1.26) might be anticipated on the grounds that the regres-
sors of the latter, which serves as the alternative or unrestricted model,
include random variables, namely, the lagged residuals. However, there
are cases of diagnostic checks in which F-tests are exact even though
the regressors of the alternative model include random variables. An
important example is the RESET test proposed in Ramsey (1969).
The RESET test provides a check of the specification of the mean func-

tion of (1.1), with theOLS predicted values from estimation of thismodel
being employed to obtain the additional regressors required for the alter-
native model. More precisely, in the formula for the RESET F-statistic
with q test variables, RSS(H0) is derived from OLS estimation of (1.1),
that is, it is given by (1.14), and RSS(H1) is obtained after estimation of
the artificial model

yi =
k∑
j=1

xijβj +
q∑
j=1

ŷj+1i δj + ui, i = 1, . . . ,n, (1.27)
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with df (H1) = n − k − q. The F-statistic for testing δ1 = · · · = δq = 0 in
(1.27) is denoted by FR and

FR ∼ F(q,n− k − q),

under the null hypothesis, when the assumptions of the classical model
concerning X and u hold. Consequently, under these assumptions, it is
possible to have perfect control of finite sample significance levels of the
RESET test. This result follows from a general property of tests involving
functions of ŷ; see Milliken and Graybill (1970).
Notwithstanding the interest to theorists of results such as those in

Milliken and Graybill (1970) and also in Stewart (1997), there is a need
to weaken the assumptions of the classical model and to see what can be
established about the properties of tests under more general conditions.

1.3. Tests for linear regression models under weaker
assumptions: random regressors and non-Normal
IID errors

From the viewpoint of the applied econometrician, the results concern-
ing the exact validity of the F and t tests in the classical linear regression
model are of doubtful relevance. The assumption that the regressors are
non-random and would be fixed if repeated sampling were possible may
well be appropriate for the analysis of data obtained, for example, from
experiments in a laboratory. However, in econometricmodels, the regres-
sors will usually include economic variables that are properly regarded
as random. Thus, in general, the regressor set will include both random
and non-random terms. The applicability of the results of the previous
section is now open to question.
Suppose first that the following two conditions hold: the regressors are

such that any random term xij is independent of um for i,m = 1, . . . ,n;
and the errors um are NID(0, σ2) for m = 1, . . . ,n. When the first of
these conditions is satisfied, the regressors are said to be strictly exogenous
or, less precisely, exogenous. The complete independence of errors and
regressors implies that conditioning on regressor values has no impact on
the distribution of the errors. Consequently, given the two conditions,
we can write the conditional error distribution as

u|X ∼ N(0n, σ2In), (1.28)
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and for the conditional distribution of the dependent variable, given the
regressor values, we have

y|X ∼ N(Xβ, σ2In). (1.29)

Comparison of (1.4) and (1.5) with (1.28) and (1.29), respectively, indi-
cates how results given in the previous section for the former pair of
equations will now apply in a conditional sense under the latter pair. In
particular, when testing restrictions of the form (1.18), the F statistic of
(1.20) will have the conditional distribution

F|X ∼ F(q, df (H1)), (1.30)

under the null hypothesis. This conditional distribution is completely
characterized by the values of q and df (H1), but neither of these items
depends upon X. Hence, when the null hypothesis is true, the uncondi-
tional distribution is the same as the conditional distribution in (1.30),
which is the same as the reference distribution appropriate for the classi-
cal model. The F-test is, therefore, exactly valid. Similar arguments apply
to the t-test.
However, the conditions that underpin this argument are very restric-

tive. The assumption that all regressors are strictly exogenous is incon-
sistent with the common practice of including lagged values of the
dependent variable as explanatory variables when estimating regression
models using time series data. For example, the standard partial adjust-
mentmodel leads to the inclusion of yi−1 as a regressor and this regressor
cannot be independent of all past errors (obviously E(yi−1ui−1) �= 0).
Moreover, there is rarely precise information available about the shape
of the error distribution and, in particular, there seems little reason to
believe that the errors are Normally distributed, even if they are assumed
to be IID.
If the assumption ofNormally distributed errors is relaxed, tests involv-

ing the use of critical values from standard distributionsmust, in general,
be based upon asymptotic theory. Appeal has to be made to versions of a
Law of Large Numbers and a Central Limit Theorem (CLT). Discussions
of these topics and their application to tests for regression models can
be rather technical and readers are referred to Davidson (1994), McCabe
and Tremayne (1993), and White (1984) for detailed treatments. For the
purpose of providing an outline of the relevant arguments of asymptotic
theory, it is useful to introduce the ideas of orders of magnitude for random
variables due to Mann and Wald (1943).
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Given a sequence of real randomvariables, denoted by {S(n)}, and some
real number a, we say that S(n) is of order of probability na if for any ε > 0
there exists bε > 0 such that

Pr(−bε ≤ n−aS(n) ≤ bε) ≥ 1− ε,

for all n. The standard notation for such a variable is to write S(n) =
Op(na). If, for some real number c, p limn−cS(n) = 0, we say that S(n) is
of smaller order of probability than nc and write S(n) = op(nc).
For example, assume that the observations y1, . . . , yn are NID(μ, σ

2)

and S(n) = y1 + · · · + yn. Since, in this case, S(n) is N(nμ,nσ2), it follows
that: (i) S(n) = Op(n) with plim n−1S(n) = μ; (ii) S(n) − nμ is Op(n1/2)
with n−1/2(S(n) − nμ) being N(0, σ2); and (iii) S(n) − nμ is op(n) with
n−1(S(n) − nμ) being N(0,n−1σ2) so that plim n−1(S(n) − nμ) = 0.
In standard textbook discussions of linear regression models, assump-

tions are made that imply that β̂ = β + Op(n−1/2), with n1/2(β̂ − β)

being asymptotically Normally distributed with zero mean vector and
finite, positive-definite covariance matrix. Strictly speaking, the nota-
tion used in the discussion of asymptotic theory for regression models
should reflect the dependence of estimators and test statistics on the
sample size n, for example, β̂(n) rather than β̂. However, no confusion
should be caused by adopting the less cluttered style employed above
and the key results can be summarized as follows. First, when using F of
(1.20) to test the null hypothesis of (1.18), asymptotic theory predicts
that, when the null is true, F is Op(1) with

F ∼a
χ2(q)
q

,

in which ∼a is used as a shorthand for “is asymptotically distributed
as”. Second, if q = 1, the t-ratio of (1.22) is Op(1) and is asymptotically
distributed as N(0, 1) when the null hypothesis is true.
Asymptotic theory can also be used as a source of approximations to

the behaviour of test statistics when the null hypothesis is false. Consider
the case of testing a single restriction, which is written as H0 : Rβ = r1,
as above. The relevant t-statistic can be written as

Rβ̂ − r1
SE(Rβ̂ − r1)

= (Rβ̂ − Rβ)

SE(Rβ̂ − r1)
+ (Rβ − r1)

SE(Rβ̂ − r1)
, (1.31)

in which the first term on the right-hand side of (1.31) tends to N(0, 1),
whether or not H0 is true, but the asymptotic behaviour of the second
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term does depend upon the value of Rβ − r1. If H0 is true, Rβ − r1 = 0
and the second term vanishes. If Rβ − r1 is a fixed nonzero number
(so that H0 is untrue), the second term on the right-hand side of (1.31)
is Op(n1/2), under the standard assumptions of asymptotic theory for
regression models. (The standard errors of OLS estimators are Op(n−1/2),
given these assumptions.) Hence, as n −→ ∞, the t-statistic goes to
±∞, according to the sign of the nonzero constant Rβ − r1. Thus, with
fixed alternatives H1 : Rβ − r1 �= 0, asymptotic theory cannot lead to the
limit of a proper distribution with finite mean and variance as a basis
for approximating the behaviour of the t-statistic. A device known as
a sequence of local alternatives, or as Pitman drift, does allow asymptotic
theory to provide such an approximation for the study of power; see, for
example, Godfrey and Tremayne (1988).
The device is to introduce the sequence of alternatives

H1n : Rβ − r1 =
λ√
n
, |λ| <∞, (1.32)

which clearly tends to the null hypothesis as n increases. The second
term of (1.31) is, under (1.32), given by

λ√
nSE(Rβ̂ − r1)

,

which tends to a finite constant, say μλ. Consequently, under the local
alternatives assumption, the asymptotic distribution of the t-ratio can
be written as

Rβ̂ − r1
SE(Rβ̂ − r1)

∼a N(μλ, 1),

and this distribution satisfies the requirements to have finite mean and
variance. Local alternatives are often used when researchers seek to
choose between two or more asymptotically valid tests on the basis of
their sensitivity to departures from the null hypothesis. A similar result
is available when the F-test is used to check several restrictions.
Several researchers, while acknowledging a reliance on asymptotic

theory, prefer to use the conventional F(q, df (H1)) and t(df (H1)) distribu-
tions for critical values, rather than the corresponding limiting forms of
χ2(q)/q and N(0, 1). There may be reason to be concerned about the rel-
evance of asymptotic theory if df (H1) is not large enough for the choice
between, for example, t(df (H1)) and N(0, 1) to be unimportant. Indeed,
from a practical point of view, a question of real interest is how large does
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the sample size have to be before a CLT will give a useful approximation
for controlling the significance level when testing the null hypothesis.
Unfortunately there is no generally valid answer.
The robustness of the standard regression F-test to non-Normality of the

errors is investigated in Ali and Sharma (1996). In addition to the sam-
ple size, degrees of freedom and the actual distribution of the errors,
important determinants of the robustness to non-Normality are the
non-Normality of the regressors and the presence of observations with
relatively high leverage values. The relevance of such characteristics of
the regressor set is not surprising, given the dependence of the test statis-
tic on OLS residuals and the form of (1.11). In view of the uncertain
quality of the approximation provided by asymptotic theory in the case
of a linear regression model with IID, but non-Normal, errors and the
evidence that the approximation is sometimes poor, it is natural to look
for an alternative approach to testing. Chapter 2 contains a discussion
of a simulation-based approach that can be applied in the context of lin-
ear regression models with IID errors. However, like the standard t and
F tests, these simulation techniques may produce misleading inferences
when the errors of (1.1) are not IID, that is, the data are generated by a
generalized regression model.

1.4. Tests for generalized linear regression models

The generalized regression model with exogenous regressors is derived
by combining the model in (1.3), that is,

y = Xβ + u,

with

E(u|X) = 0,

and

E(uu′|X) = σ2�, (1.33)

in which � is an n by n matrix that is symmetric and positive definite.
If the errors are independent but heteroskedastic, the elements of � are
such that: ωij = 0 if i �= j; and ωii �= ωjj for some i �= j. If the errors
are correlated but homoskedastic, the elements of � are such that: ωii =
ωjj = 1, say, for all i and j; and ωij �= 0 for some i �= j. In the latter case, it is
assumed that there are time series data and the errors are autocorrelated.
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(Tests can be developed for models with spatial correlation; see Anselin,
2006.) It will be assumed that autocorrelated errors are generated by
(weakly) stationary processes so that ωij depends upon |i− j|, rather than
on i and j separately. For example, if the errors were generated by a
stationary first-order autoregression

ui = φui−1 + εi, |φ| < 1, εi NID(0, σ2ε ),

a typical element of � in (1.33) would be ωij = φ|i−j|.
The OLS estimator of β, under the assumptions of the generalized

regression model, has conditional mean vector

E(β̂|X) = β,

and conditional covariance matrix given by

VG(β̂|X) = σ2(X′X)−1X′�X(X′X)−1. (1.34)

In general, thematrix of (1.34) is not equal to the one that appears in (1.7)
and so the tests described above cannot be expected to be asymptotically
valid.
In some special models, the elements of � are known constants. For

example, if each element of u is the sum of a known number of basic
IID disturbances,� can be calculated very simply; see Rowley andWilton
(1973) for an example based upon the “four-quarter overlapping-change”
model in wage analysis. When � is known, the OLS estimator can be
replaced by the more efficient Generalized Least Squares (GLS) estimator

β̌ = (X′�−1X)−1X′�−1y, (1.35)

which has conditional covariance matrix equal to σ2(X′�−1X)−1. The
estimator of σ2 is no longer given by s2 of (1.16) but is now defined by

σ̌2 = (y −Xβ̌)′�−1(y −Xβ̌)
(n− k)

.

Given β̌ and σ̌2, an asymptotically valid test of H0 : Rβ = r in (1.18)
can be based upon the result that, when H0 is true, theWald statistic

WGLS = (Rβ̌ − r)′
[
σ̌2R(X′�−1X)−1R′

]−1
(Rβ̌ − r), (1.36)

is asymptotically distributed as χ2(q); see, for example, Greene (2008, ch.
8, section 8.3.1) for the corresponding asymptotically valid F-statistic.
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Significantly large values of WGLS indicate that the restrictions of H0 :
Rβ = r are not consistent with the sample data.
Unfortunately, the test statistic of (1.36) is rarely available in practical

situations because, in general, � is unknown and it is not feasible to
calculate the GLS estimator β̌.
When the elements of � are continuous functions of the elements of

an unknown parameter vector ψ , estimates of the parameters of the gen-
eralized regression model can be obtained by minimizing the Nonlinear
Least Squares (NLS) criterion

QNLS(β,ψ) = (y −Xβ)′[�(ψ)]−1(y −Xβ),

with respect to both β and ψ . Alternatively, if some consistent estimator
of ψ , denoted by ψ̂ , is available and necessary regularity conditions are
satisfied, β can be estimated by minimizing the Feasible Generalized Least
Squares (FGLS) function

QFGLS(β) = (y −Xβ)′[�(ψ̂)]−1(y −Xβ).

However, both of these estimation methods are based upon the assump-
tions that: (i) there is a parametric model that determines the structure
of �; and (ii) the general form of �(ψ) is known, with only its finite-
dimensional parameter vector ψ being unknown. While economics
might be a source of useful information about the mean function of
y, there is little reason to suppose that applied workers will know the
form of, for example, heteroskedasticity. Thus it will often be difficult to
have confidence in an assumed error model.
Misspecification of themodel for autocorrelation and/or heteroskedas-

ticity will, in general, lead to an inconsistent estimator of the covariance
matrix of the minimizers ofQNLS(β,ψ) andQFGLS(β). Hence errors made
in modelling � may imply misleading outcomes of tests of hypotheses
such as (1.18), because such tests use the estimated covariance matrix
to assess the significance of sample outcomes. An investigation of the
effects of misspecifying the model for heteroskedasticity is reported
in Belsley (2002). It is found that effects can be serious and Belsley
concludes that

Correction for heteroskedasticity clearly does best when both the
proper arguments and the proper form of the skedasticity function
are known. But this is an empty conclusion since misspecification is
probably the rule. (Belsley, 2002, p. 1396)
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Moreover, it has been argued that, even with correct specification of
the model underlying �, it is not clear that FGLS is superior to OLS
in finite samples because of the extra variability associated with the
estimation of ψ ; see, for example, Greene (2008, p. 158).
In view of these findings, it is not surprising that there has been an

interest in deriving tests using the uncorrected OLS estimator β̂ and an
appropriate estimator of its covariance matrix, which is no longer given
by the IID-valid formula σ2(X′X)−1 used in (1.7). If the errors are assumed
to be independent and heteroskedastic, a Heteroskedasticity-Consistent
Covariance Matrix Estimator (usually denoted by HCCME) is required.
If the errors are heteroskedastic and autocorrelated, a Heteroskedastic-
ity and Autocorrelation Consistent (usually denoted by HAC) estimator is
needed. The former provides standard errors that are heteroskedasticity-
robust. The latter provides standard errors that are heteroskedasticity and
autocorrelation robust.
Many computer programs offer users the chance to use robust stan-

dard errors from either some HCCME or some HAC estimate, rather than
relying on the traditional IID-valid standard errors given by the matrix
s2(X′X)−1. However, the traditional standard errors are often provided
as the default and this approach has been criticized. Stock and Watson
remark that

In econometric applications, there is rarely a reason to believe that the
errors are homoskedastic and normally distributed. Because sample
sizes are typically large, however, inference can proceed . . .by first
computing the heteroskedasticity-robust standard errors. (Stock and
Watson, 2007, p. 171)

Similarly, it is argued in Hansen (1999) that amodern approach should
involve the use of test statistics that are valid under heteroskedasticity
and do not require the assumption of Normality. (It is also suggested
in Hansen (1999) that applied workers should think about using the
bootstrap for inference, rather than relying on asymptotic theory. Much
of what follows in this book is concerned with presenting evidence to
support this suggestion and to help empirical researchers to select the
appropriate form of the bootstrap.)
Since the use of procedures based upon HCCME and HAC estimates

offers the chance to derive tests that are asymptotically valid in the pres-
ence of unspecified forms of departure from the assumption of IID errors,
such robust tests are of real interest in practical applications. Moreover,
the availability of suitable software means that there is no important
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obstacle to hinder the use of robust tests. Given the potential importance
of these alternatives to the conventional IID-based asymptotic t and F
tests, each will discussed.

1.4.1. HCCME-based tests

Suppose first that the errors ui are independently distributed with zero
means and variances σ2i , i = 1, . . . ,n, with all variances being finite
and positive. It is not assumed that there is any precise information
available to support the specification of a parametric model of the het-
eroskedasticity. The tests that are to be discussed are asymptotically
robust to heteroskedasticity of unspecified form and are also asymptoti-
cally valid under the classical assumption of homoskedasticity. The key
results for HCCME-based inference in linear regression models will now
be discussed.
If the regressors were not random and the errors were Normally dis-

tributed, the OLS estimator would, in the presence of unspecified forms
of heteroskedasticity, have the following distribution

β̂ ∼ N(β, (X′X)−1X′�X(X′X)−1),

or equivalently,

n1/2(β̂ − β) ∼ N(0k,n(X
′X)−1X′�X(X′X)−1), (1.37)

in which � is the n by n diagonal matrix with the variances σ2i , i =
1, . . . ,n, as the nonzero elements on its leading diagonal. The random
vector n1/2(β̂ − β) is Op(1), with the covariance matrix that appears in
(1.37) being assumed to tend to a finite positive-definite matrix as n −→
∞. This property of the covariance matrix is more easily seen when it is
noted that

n(X′X)−1X′�X(X′X)−1 =
(
X′X
n

)−1 (X′�X
n

)(
X′X
n

)−1
.

The covariance matrix that appears in (1.37) is sometimes referred to
as a sandwich covariance matrix; the term depending on error variances,
that is,X′�X, being sandwiched between the two terms equal to (X′X)−1.
The problem of finding useful estimates for the sandwich form in order
to develop methods for feasible inference was studied in the statistics
literature, for example, Eicker (1967). However, interest and applica-
tions in econometrics were stimulated by an important paper by White
who relaxed the assumptions of fixed regressors andNormally distributed
errors; see White (1980).
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White showed that, under suitable regularity conditions, the OLS esti-
mator β̂ is consistent for β, with (β̂−β) being Op(n−1/2) and n1/2(β̂−β)

having a limiting distribution ( as n −→∞) given by

n1/2(β̂ − β) ∼a N(0k, plim n(X′X)−1X′�X(X′X)−1). (1.38)

It is (1.38) that provides the basis for asymptotically valid hetero-
skedasticity-robust tests. If the null hypothesis H0 : Rβ = r is to be
tested, we can use the result that (1.38) implies that

n1/2R(β̂ − β) ∼a N(0q, plim nR(X′X)−1X′�X(X′X)−1R′),

and so, if the null hypothesis is true,

n1/2(Rβ̂ − r) ∼a N(0q, plim nR(X′X)−1X′�X(X′X)−1R′).

Consequently, if the restrictions of Rβ = r are valid, standard
asymptotic theory implies that

n(Rβ̂ − r)′[plim nR(X′X)−1X′�X(X′X)−1R′]−1(Rβ̂ − r) ∼a χ
2(q).

However, this result does not yield a feasible test procedure because it
concerns a random variable that depends upon the probability limit of
a matrix that is, in part, determined by the unknown matrix �.
White provided a very simple and convenient solution to the problem

of deriving a feasible large sample test. In White (1980), it is shown that,
under certain regularity conditions that place mild restrictions on the
behaviour of errors and random regressors,

plim n−1X′�̇X = plim n−1X′�X, (1.39)

in which �̇ is obtained from � by replacing the unknown variance σ2i
by the calculable squared OLS residual û2i , i = 1, . . . ,n. Consequently
feasible and asymptotically robust tests can be derived by using the
heteroskedasticity-consistent estimator

HC0 = n(X′X)−1X′�̇X(X′X)−1, (1.40)

for the covariance matrix that appears in (1.38). A heteroskedasticity-
robust test of H0 : Rβ = r can then be based upon the statistic

WHC0 = n(Rβ̂ − r)′
[
nR(X′X)−1X′�̇X(X′X)−1R′

]−1
(Rβ̂ − r) ∼a χ

2(q),
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with significantly large values ofWHC0 indicating the data inconsistency
of the linear restrictions of H0.
There is a large literature on the construction and analysis of

heteroskedasticity-robust tests for regression models and a summary will
be given in Chapter 6. However, it is worth noting that statistics that are
asymptotically equivalent toWHC0, that is, differ from it by terms that
are op(1), can be obtained by modifying HC0 of (1.40). Three modifica-
tions are often discussed. First, a simple degrees-of-freedom adjustment
is employed, which leads to

HC1 = (n− k)(X′X)−1X′�̇X(X′X)−1. (1.41)

The second and third standard modifications both involve taking the
leverage values hii (see (1.9) above) into account, with the estimators
being defined by

HC2 = n(X′X)−1X′�̈X(X′X)−1, (1.42)

and

HC3 = n(X′X)−1X′...�X(X′X)−1, (1.43)

in which �̈ and
...
� are derived from �̇ by replacing the terms û2i by (1−

hii)
−1û2i and (1 − hii)

−2û2i , i = 1, . . . ,n, respectively. Clearly HC0 and
HC1 have the same probability limit, with

HC1 = (n− k)
n

·HC0 = HC0+Op(n−1),

so that (HC1−HC0) is asymptotically negligible relative toHC0. Similarly
the differences (HC2 − HC0) and (HC3 − HC0) are also asymptotically
negligible since each term hii is Op(n

−1), with h11 + · · · + hnn = k for
all n ≥ k. An examination of these variants is provided in, for example,
Long and Ervin (2000) and MacKinnon and White (1985).
Many textbooks point out that heteroskedasticity could be present

when regression models are estimated using cross-section data. It is,
therefore, not surprising that the assumption that the regressors are inde-
pendently distributed over the observations is made in White (1980).
However, while this assumption concerning the behaviour of regressors
may often be appropriate for cross-section applications, it is too restric-
tive when time series regressions are estimated and heteroskedasticity
certainly cannot be ruled out in such cases. Fortunately, it is possible to
extend White’s results by establishing that a HCCME can be obtained


