

 [image: epub-cover-image]

 Timo Heister, Leo G. Rebholz

 Scientific Computing

 De Gruyter Textbook

 Timo Heister, Leo G. Rebholz

 Scientific Computing

 For Scientists and Engineers

 [image:]

 ISBN 9783110999617

 e-ISBN (PDF) 9783110988451

 e-ISBN (EPUB) 9783110988758

 Bibliographic information published by the Deutsche Nationalbibliothek

 The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

 © 2023 Walter de Gruyter GmbH, Berlin/Boston

 Mathematics Subject Classification 2020: 65F05, 65F15, 65F35, 65G50, 65L05, 65L10, 65L12, 65L20, 65Y20,

 Übersicht
	Table of Contents

 Contents

 	Preface

 	Second edition

 	Software

 	About the title image

 	Acknowledgments

 	1 Introduction

 	1.1 Why study numerical methods?

 	1.2 Terminology

 	1.3 Convergence terminology

 	1.4 Exercises

 	2 Computer representation of numbers and roundoff error

 	2.1 Examples of the effects of roundoff error

 	2.2 Binary numbers

 	2.3 64-bit floating-point numbers

 	2.4 Floating-point arithmetic

 	2.4.1 Avoid adding large and small numbers

 	2.4.2 Subtracting two nearly equal numbers is bad

 	2.5 Visualizing a floating-point number system

 	2.6 Exercises

 	3 Solving linear systems of equations

 	3.1 Linear systems of equations and solvability

 	3.2 Solving triangular systems

 	3.3 Gaussian elimination

 	3.4 The backslash operator

 	3.5 LU decomposition

 	3.6 Exercises

 	4 Finite difference methods

 	4.1 Approximating the first derivative

 	4.1.1 Forward and backward differences

 	4.1.2 Centered difference

 	4.1.3 Three-point difference formulas

 	4.1.4 Further notes

 	4.2 Approximating the second derivative

 	4.3 Application: initial value ODE’s using the forward Euler method

 	4.4 Application: boundary value ODE’s

 	4.5 Exercises

 	5 Solving nonlinear equations

 	5.1 The bisection method

 	5.2 Newton’s method

 	5.3 Secant method

 	5.4 Comparing bisection, Newton, and secant methods

 	5.5 Combining methods, inverse interpolation, and the fzero command

 	5.6 Newton’s method in higher dimensions

 	5.7 Fixed point theory and algorithms

 	5.7.1 Nonlinear Helmholtz

 	5.7.2 Navier–Stokes

 	5.7.3 Anderson acceleration

 	5.8 Exercises

 	6 Accuracy in solving linear systems

 	6.1 Gauss–Jordan elimination and finding matrix inverses

 	6.2 Matrix and vector norms and condition number

 	6.3 Sensitivity in linear system solving

 	6.4 Exercises

 	7 Eigenvalues and eigenvectors

 	7.1 Mathematical definition

 	7.2 Power method

 	7.3 Application: population dynamics

 	7.4 Exercises

 	8 Fitting curves to data

 	8.1 Interpolation

 	8.1.1 Interpolation by a single polynomial

 	8.1.2 Piecewise polynomial interpolation

 	8.2 Curve fitting

 	8.2.1 Line of best fit

 	8.2.2 Curve of best fit

 	8.3 Exercises

 	9 Numerical integration

 	9.1 Newton–Cotes methods

 	9.2 Composite rules

 	9.3 MATLAB’s integral function

 	9.4 Gauss quadrature

 	9.5 Exercises

 	10 Initial value ODEs

 	10.1 Reduction of higher-order ODEs to first-order ODEs

 	10.2 Common methods and derivation from integration rules

 	10.2.1 Backward Euler

 	10.2.2 Crank–Nicolson

 	10.2.3 Runge–Kutta 4

 	10.3 Comparison of speed of implicit versus explicit solvers

 	10.4 Stability of ODE solvers

 	10.4.1 Stability of forward Euler

 	10.4.2 Stability of backward Euler

 	10.4.3 Stability of Crank–Nicolson

 	10.4.4 Stability of Runge–Kutta 4

 	10.5 Accuracy of ODE solvers

 	10.5.1 Forward Euler

 	10.5.2 Backward Euler

 	10.5.3 Crank–Nicolson

 	10.5.4 Runge–Kutta 4

 	10.6 Summary, general strategy, and MATLAB ODE solvers

 	10.7 The 1D heat equation

 	10.8 Exercises

 	A Getting started with Octave and MATLAB

 	A.1 Basic operations

 	A.2 Arrays

 	A.3 Operating on arrays

 	A.4 Script files

 	A.5 Function files

 	A.5.1 Inline functions

 	A.5.2 Passing functions to other functions

 	A.6 Outputting information

 	A.7 Programming in MATLAB

 	A.8 Plotting

 	A.9 Exercises

 	Subject Index

 I dedicate this book to our daughter Sophia and those who helped raising her, especially my lovely wife, Xiaohong Tang, and Guobin Rao! Timo Heister

 Preface

 This book is intended for sophomore-level engineering and science students interested in numerical methods for solving problems such as differential equations, eigenvalue problems, linear systems, etc. and could be appropriate for mathematics majors as well if the instructor supplements this text with more proofs. It has evolved from our lecture notes over the many times we taught the course since 2010.

 We assume a knowledge of calculus through multivariable calculus (typically called Calculus III in the United States), and we teach the course at Clemson with a first course in ordinary differential equations being a corequisite. Also, we assume that students have at least seen and used MATLAB in some minimal capacity.

 We decided to write this book because we wanted the text for this course to have the following:

 	1.

 	
 Low cost. Many books that cover similar material cost upward of $100 or even $150, and we refuse to be part of that. Hence we have chosen a publisher that provides a much lower cost.

 	2.

 	
 Simple programming examples. This is an introductory programming course, and students need to learn the basics before all the bells and whistles. Hence whenever possible, we give code that is as simple as possible, without overcomplicating the main ideas and without excessive commenting.

 	3.

 	
 Cover the fundamentals. For any given problem for which we use numerical methods, there are often dozens of approaches. We believe an introductory text should focus on the basics, and so we give just the most common approaches and discuss them in more detail.

 Second edition

 In the second edition of this book, we made the following additions/changes on top of minor corrections:

 	
 Various new and improved figures

 	
 Many more exercises

 	
 Fixes to proofs in Chapters 6 and 9

 	
 New content in Chapter 5 (inverse interpolation, fixed point theory, Anderson acceleration) and Chapter 6 (1 norm)

 We would greatly appreciate any users of this book to point out typos or other mistakes to us. We would also appreciate any other constructive criticism regarding the presentation of the material.

 Software

 Algorithms given in the text are written in the language of MATLAB and Octave. Currently at Clemson, all students have free access to MATLAB. Octave is a free version of MATLAB, which has almost all of the same functionality. Newer versions of MATLAB have more bells and whistles, but for the purposes of this book, either MATLAB or Octave can be used.

 We have created a website for the codes used in this book, where all MATLAB/Octave codes from the text can be downloaded. We have also posted Python versions of the codes: http://www.math.clemson.edu/~heister/scicompbook/

 About the title image

 The title image of the second edition is a rendering of a three-dimensional finite element simulation of convection in the Earth’s mantle. The simulation covers one billions years of plate motion history that is prescribed at the surface, and the graphic shown is the final state. Plumes are shown in red-yellow (using an isosurface of high temperature), and subducted slabs are shown in blue (using an isosurface of low temperature).

 The simulation is done using the ASPECT code available at https://aspect.geodynamics.org by Rene Gassmöller and Juliane Dannberg (University of Florida). The computation uses various numerical methods: The time-dependent partial differential equations are discretized in time similar to backward Euler in Chapter 10. Each time-step involves solving a nonlinear system using Newton’s method (Chapter 5). The linear systems are created using the finite element method, which uses Gauss quadrature (Chapter 9) and techniques similar to Chapter 4. Each linear system is solved using an iterative method in parallel. Direct solvers like Gauss elimination are not feasible because the linear system has about 125 million rows/columns.

 Acknowledgments

 We wish to thank Mine Akbas, Abigail Bowers, Chris Cox, Vince Ervin, Keith Galvin, Evelyn Lunasin, Ashwin Trikuta Srinath, and Jiaqi Zhang for their help in the preparation of this manuscript. Vince Ervin contributed a large collection of exercise questions for the second edition. Thank you!

 Leo Rebholz thanks the National Science Foundation for partial support of his research and indirectly in the writing of this book through the grant DMS2011490.

 Timo Heister was partially supported by the National Science Foundation (NSF) Award DMS-2028346, OAC-2015848, EAR-1925575, and by the Computational Infrastructure in Geodynamics initiative (CIG) through the NSF under Award EAR-0949446 and EAR-1550901 and the University of California, Davis.

 1 Introduction

 1.1 Why study numerical methods?

 A fundamental questions one should ask before spending time and effort learning a new subject is “Why should I bother?” Aside from the fun of learning something new, the need for this course arises from the fact that most mathematics done in practice (therefore by engineers and scientists) is now done on a computer. For example, it is common in engineering to need to solve more than one million linear equations simultaneously, and even though we know how to do this “by hand” with Gaussian elimination, computers can be used to reduce calculation time from years (if you tried to do it by hand – but you would probably make a mistake!) to minutes or even seconds. Furthermore, since a computer has a finite number system and each operation requires a physical change in the computer system, the idea of having infinite processes such as limits (and therefore derivatives and integrals) or summing an infinite series (which occur in calculating sin, cos, and exponential functions for example) cannot be performed on a computer. However, we still need to be able to calculate these important quantities, and thus we need to be able to approximate these processes and functions. Often in scientific computing, there are obvious ways to do approximations; however, it is usually the case that the obvious ways are not the best ways. This raises some fundamental questions:

 	
 How do we best approximate these important mathematical processes/operations?

 	
 How accurate are our approximations?

 	
 How efficient are our approximations?

 It should be no surprise that we want to quantify accuracy as much as possible. Moreover, when the method fails, we want to know why it fails. In this course, we will see how to rigorously analyze the accuracy of several numerical methods. Concerning efficiency, we can never have the answer fast enough,1 but often there is a trade-off between speed and accuracy. Hence we also analyze efficiency, so that we can “choose wisely”2 when selecting an algorithm.

 Thus, to put it succinctly, the purpose of this course is to

 	
 Introduce students to some basic numerical methods for using mathematical methods on the computer.

 	
 Analyze these methods for accuracy and efficiency.

 	
 Implement these methods and use them to solve problems.

 1.2 Terminology

 Here are some important definitions:

 	
 A numerical method is any mathematical technique used to approximate a solution to a mathematical problem.

 Common examples of numerical methods you may already know include Newton’s method for root-finding and Gaussian elimination for solving systems of linear equations.

 	
 An analytical solution is a closed-form expression for unknown variables in terms of the known variables.

 For example, suppose we want to solve the problem

 0=ax2+bx+c

 for given (known) a, b, and c. The quadratic formula tells us the solutions are

 x=−b±b2−4ac2a.

 Each of these solutions is an analytical solution to the problem.

 	
 A numerical solution is a number that approximates a solution to a mathematical problem in one particular instance.

 For the example above for finding the roots of a quadratic polynomial, to use a numerical method such as Newton’s method, we would need to start with specified a,b, and c. Suppose we choose a=1, b=−2, and c=−1, and run Newton’s method with an initial guess of x0=0. This returns the numerical solution x=−0.414213562373095.

 There are two clear disadvantages to numerical solutions compared to analytic solutions. First, they only work for a particular instance of a problem, and second, they are not as accurate. It turns out that this solution is accurate to 16 digits (which is approximately the standard number of digits a computer stores for any number), but if you needed accuracy to 20 digits, then you need to go through some serious work to get it. However, many other numerical methods will only give “a few” digits of accuracy in a reasonable amount of time.

 On the other hand, there is a clear advantage of numerical methods in that they can solve many problems that we cannot solve analytically. For example, can you analytically find the solution to

 x2=ex?

 Probably, you cannot. However, if we look at the plots of y=ex and y=x2 in Figure 1.1, it is clear that a solution exists. If we run Newton’s method to find the zero of x2−ex, it takes no time at all to arrive at the approximation (correct to 16 digits) x=−0.703467422498392. In this sense, numerical methods can be an enabling technology.

 [image:]
 Figure 1.1 Plots of ex and x2.

 The plot in Figure 1.1 was created with the following commands:

 [image:]

 Some notes on these commands:

 	
 The function linspace(a,b,n) creates a vector of n equally spaced points from a to b.

 	
 In the definition of y1, we use a period in front of the power symbol. This denotes a “vector operation”. Since x is a vector, this will do the operation componentwise, and so y1 will be a vector of the squares of the components of x.

 	
 exp is the exponential operator, so exp(x) = ex. This operator does vector operations as well.

 	
 The plot command plots x vs. y values (each given as a vector of values). The third argument determines the style for plotting. You can plot more than one function into the same plot by listing additional pairs of vectors.

 	
 The last three lines add axis labels and a legend.

 1.3 Convergence terminology

 For a given mathematical problem, assume that there is a solution and call it u. If we use a numerical algorithm to approximate u, then we will get a numerical solution, call it u˜ (it is extremely rare for u=u˜). The fundamental question is how close is u˜ to u? It is our job, and the purpose of this course is to learn how to quantify this difference for various common numerical algorithms.

 In many cases the error in an approximation depends on a parameter. For example, in Newton’s method the error typically depends on how many iterations are performed. If one is approximating a derivative with f′(x) by calculating f(x+h)−f(x)h for a fixed h, the error will naturally depend on h. Hence in this case, we will want to quantify the error in terms of h; that is, we want to be able to write

 |f(x+h)−f(x)h−f′(x)|≤Chk,

 where C is a problem-dependent constant (independent of h and k), and we wish k to be as large as possible. If k>0, then as h decreases, we are ensured that the error will go to 0. The larger k is, the faster it will go to zero.

 Definition 1 (Big O notation).

 Suppose u is the true solution to a mathematical problem, and u˜(h) is an approximation to the solution that depends on a parameter h. If

 |u−u˜(h)|≤Chk

 with C being a constant independent of h and k, then we write

 |u−u˜(h)|=O(hk).

 This is interpreted as “The error is on the order of hk.”

 For first-order convergence (k=1), the error is reduced proportionally to the reduction of h. In other words, if h gets cut in half, you can expect the error to be approximately cut in half also. For second-order convergence, however, if h gets cut in half, the error gets cut in fourth, which is obviously much better.

 Example 2.

 Suppose we have an algorithm where the error depends only on h, and for a sequence of hs {1,1/2,1/4,1/8,1/16,1/32,…}, the sequence of errors

 10,5,2.5,1.25,0.625,0.3125

 converges with first-order accuracy, i. e., O(h). This is because when h gets cut in half, so do the errors. The sequence of errors

 100,25,6.25,1.5625,0.390625,0.09765625

 converges with second-order accuracy, i. e., O(h2), since the errors get cut by 4=22, when h is cut in half.

 Notice that even though for larger h, the errors for linear convergence were smaller as h gets smaller, the errors for the second-order convergence sequence become much better than the linear convergence errors.

 In the example above, it was clear that the exponents of h were 1 and 2, but in general, the k in O(hk) need not be an integer. To approximate k from two data points (h1,e1) and (h2,e2), we treat the error bound as a close approximation and start with

 e≈Chk

 with C independent of h and k. Then we have that

 e1≈Ch1k,e2≈Ch2k.

 Solving for C in both equations and setting them equal gives

 e1h1k≈e2h2k⟹h2h1k≈e2e1⟹klog(h2h1)≈log(e2e1)⟹k≈log(e2e1)log(h2h1).

 Given a sequence of h and the corresponding errors, we calculate k for each successive error, and typically k will converge to a number.

 Remark 3.

 Here we defined O(hk) for a parameter h going to zero to represent the accuracy of a method. Later we will have algorithms where we would like to describe the complexity of an algorithm depending on an integer n, which typically stands for the number of elements in the input. The complexity can be the time to run the algorithm or (equivalently) the total number of floating point operations the computer must make to complete the task. For this, we use the notation O(f(n)) where f is a function (for us, often a polynomial) in n that describes how the complexity of the algorithm grows with n.

 For example: finding the largest element in a list of n numbers requires you to look at each number once. This algorithm would have the complexity O(n), and the time to run it will grow linearly with the number of elements in your list. If somebody had already sorted the list for you, then you can just look at the first element. That algorithm would be O(1) because it always takes the same amount of time (independent of n).

 1.4 Exercises

 	1.

 	
 Create a plot of y=x,y=x2, and y=sin(x) on [−1,1] and complete with axis labels and a legend.

 	2.

 	
 Suppose the error is a function of h, and h decreases via the sequence

 {1,1/2,1/4,1/8,1/16,1/32,…}.

 Classify the rate of convergence (i. e., the k in O(hk)) for the corresponding sequence of errors:

 	(a)

 	
 1,12,14,18,116,132,…;

 	(b)

 	
 1,18,164,1256,12048,116384,…;

 	(c)

 	
 1,0.3536,0.1250,0.0442,0.01563,0.005524,0.001953,….

 2 Computer representation of numbers and roundoff error

 In this chapter, we introduce the notion and consequences of a finite floating-point number system. Each number in a computer must be physically stored, and therefore a computer can only hold a finite number of digits for any number. Decades of research and experimentation has led us to a (usually) reasonable approximation of numbers by representing them with (about) sixteen digits of accuracy. Although this approximation may seem at first to be perfectly reasonable, we will explore its consequences in this chapter. Moreover, given that we must use a finite number system, we will investigate how to not make terrible mistakes.

 2.1 Examples of the effects of roundoff error

 To motivate the need to study computer representation of numbers, let us first consider some examples taken from MATLAB; note that the same thing happens in C, Java, etc., as this is how numbers are represented in current processors:

 	1.

 	
 The order in which you add numbers on a computer makes a difference!

 [image:]

 [image:]

 Note:

 AAAeBBB is a common notation for a floating point number with the value AAA×10BBB. So 1e-16 is equal to 10−16.

 As we will see later in this chapter, the computer stores about 16 base 10 digits for each number; this means we get 15 digits after the first nonzero digit of a number. Hence if you try to add 1e-16 to 1, then there is nowhere for the computer to store the 1e-16 since it is the 17th digit of a number starting with 1. It does not matter how many times you do it, it just gets lost each time, since operations are always done from left to right. So even if we add 1e-16 to 1, 10 times in a row, we get back exactly 1. However, if we first add 10 1e-16 together, then add the 1, these small numbers get a chance to combine to 1e-15, which is big enough not to be lost when added to 1.

 	2.

 	
 Consider

 f(x)=ex−e−xx.

 Suppose we wish to calculate

 limx→0f(x).

 By L’Hôpital’s theorem, we can easily determine the answer to be 2. However, how could we do this on a computer? A limit is an infinite process, and moreover it requires some analysis to get an answer. Hence on a computer we are basically left with the option of choosing small x and plugging them into f. Table 2.1 shows what we get back from MATLAB by doing so.

 Table 2.1Unstable limit computation.

 	x
 	 ex−e−xx

 	1e-6
 	1.999999999946489

 	1e-7
 	1.999999998947288

 	1e-8
 	1.999999987845058

 	1e-9
 	2.000000054458440

 	1e-10
 	2.000000165480742

 	1e-11
 	2.000000165480742

 	1e-12
 	2.000066778862220

 	1e-13
 	1.999511667349907

 	1e-14
 	1.998401444325282

 	1e-15
 	2.109423746787797

 	1e-16
 	1.110223024625157

 	1e-17
 	0

 Moreover, if we choose x any smaller than 1e-17, we still get 0. The main numerical issue here is, as we will learn, subtracting two nearly equal numbers on a computer is bad and can lead to large errors.

 Interestingly, if we create the limit table using a mathematically equivalent expression for f(x), we can get a much better answer. Recall the definition of the exponential function (we hope that you have seen it before):

 ex=∑n=0∞xnn!=1+x+x22!+x33!+x44!+x55!+⋯.

 Using this definition, we calculate

 ex−e−xx=2x+2x33!+2x55!+2x77!+⋯x=2+2x23!+2x45!+2x67!+⋯

 Notice that if |x|<10−4, then 2x45!<10−20 and therefore this term (and all the ones after it in the sum) will not affect the calculation of the sum in any of the first 16 digits, which is all the computer stores. Hence we have

 ex−e−xx≈2+x23,

 provided that |x|<10−4, and we can expect this approximate of f(x) to be accurate to 16 digits. Recalculating a limit table based on this mathematically equivalent expression provides much better results, as we can see in Table 2.2, which shows that the limit is clearly 2.

 Table 2.2Stable limit computation.

 	x
 	 2+x23

 	1e-6
 	2.000000000000334

 	1e-7
 	2.000000000000004

 	1e-8
 	2.000000000000000

 	1e-9
 	2.000000000000000

 	1e-10
 	2.000000000000000

 	1e-11
 	2.000000000000000

 	1e-12
 	2.000000000000000

 	1e-13
 	2.000000000000000

 	1e-14
 	2.000000000000000

 	1e-15
 	2.000000000000000

 	1e-16
 	2.000000000000000

 	1e-17
 	2.000000000000000

 	3.

 	
 We learn in Calculus II that the integral

 ∫1∞1x=∞.

 Note that since the integrand is a decreasing concave up function, approximating it with the left rectangle rule gives an overapproximation of the integral, that is,

 ∑n=1∞1n>∫1∞1x,

 and so we have that

 ∑n=1∞1n=∞.

 But if we calculate this sum in MATLAB, we converge to a finite number instead of ∞. As mentioned above, the computer can only store (about) 16 digits. Since the running sum will be greater than 1, any number smaller than 1e-16 will be lost due to roundoff error. Thus, if we add in order, then we get that

 ∑n=1∞1n=(in MATLAB)∑n=110161n<∞.

 Hence the numerical error has caused a sum that should be infinite to be finite!

 2.2 Binary numbers

 Computers and software allow us to work in base 10, but behind the scenes, everything is done in base 2. This is because numbers are stored in computer memory (essentially) as “voltage on” (1) or “voltage off” (0). Hence it is natural to represent numbers in their base 2, or binary, representation. To explain this, let us start with base 10 (or decimal) number system. In base 10, the number 12.625 can be expanded into powers of 10, each multiplied by a coefficient:

 12.625=1×101+2×100+6×10−1+2×10−2+5×10−3.

 It should be intuitive that the coefficients of the powers of 10 must be digits between 0 and 9, because if we have a coefficient of 10 or more, then we would have another power of 10 in the next coefficient to the left. Also, the decimal point goes between the coefficients of 100 and 10−1.

 Base 2 numbers work in an analogous fashion. First, note that it only makes sense to have digits of 0 and 1, for the same reason that digits in base 10 must be from 0 to 9. Also, the decimal point goes between the coefficients of 20 and 2−1. Hence in base 2, we have, for example, that

 (11.001)base2=1×21+1×20+0×2−1+0×2−2+1×2−3=2+1+18=3.125.

 Converting a base 2 number to a base 10 number is nothing more than expanding it in powers of 2. To get an intuition for this, consider Table 2.3, which converts the base 10 numbers from 1 to 10.

 Table 2.3Binary representation of the numbers from 1 to 10.

 	Base 10 representation
 	Base 2 representation

 	1
 	1

 	2
 	10

 	3
 	11

 	4
 	100

 	5
 	101

 	6
 	110

 	7
 	111

 	8
 	1000

 	9
 	1001

 	10
 	1010

OEBPS/graphic/converted/b_9783110988451-002_fig_001.jpg
>> format long
>> 1 + 1e-16 + 1e-16 + 1e-16 + le-16 + le-16 + le-16 +
>> le-16 + 1e-16 + 1e-16 + 1e-16
ans =
1

OEBPS/graphic/converted/b_9783110988451-002_fig_002.jpg
>> le-16 + l1e-16 + Te-16 + 1le-16 + 1e-16 + le-16 + Te-16 +
>> le-16 + 1e-16 + le-16 + 1
ans =

1.000000000000001

OEBPS/de-gruyter.png

OEBPS/mark_cov_9783110999617.png

OEBPS/graphic/converted/b_9783110988451-001_fig_002.jpg
>>
>>
>>
> >
>>
>>
>>

x = linspace(-2,2,100);

y1 = x."2;
y2 = exp(x);
plot(x,y1,; "k=",x,y2; "'r==")

xlabel ('X")
ylabel('Y")
legend('x*2"','e*x")

OEBPS/graphic/converted/b_9783110988451-001_fig_001.jpg
1.5

0.5

