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Foreword I

The Pan American Conference of Naval Engineering, Maritime Transport and Port
Engineering (COPINAVAL) is a long-standing prestigious conference. It has been
held in practically every American country, from the United States in the north, to
Chile and Argentina in the south of the continent. Strangely enough, until 2017, it
was never before held in Panama, a bioceanic country whose importance to world
maritime activities is simply too great to need an explanation.

It is only fair to acknowledge that COPINAVAL 2017 put things right. The
conference was outstanding in organization, venue, and scientific quality of the
papers. The outcome, in the form of this book, shows that a small resolute team can
achieve results second to none.

Valdivia, Chile Dr. Marcos Salas,
Universidad Austral de Chile

The publication of XXV COPINAVAL papers by SPRINGER shows the progress
and academic success of the Congress and rewards the authors and the organization
of the event for the excellent work developed. The 40 selected papers in the areas of
ship design, ship maintenance, sustainability, maritime transportation, corrosion,
legal aspects, and education, demonstrate high quality and the ability to produce
good research with interesting themes that was achieved by the Pan-American
countries.

Sao Paulo, Brazil Dr. Rui Carlos Botter
Naval and Ocean Engineering Department

University of São Paulo, Brazil

The Pan-American Conference of Naval Engineering, Maritime Transportation and
Ports Engineering (COPINAVAL) has been an excellent opportunity for the
meeting of researchers, professors, and users related to the maritime sector. The
importance of the exchange of experiences of different technological centers and
universities is of crucial importance in the new era of this fourth revolution, also
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called Industry 4.0, in which we are immersed. The observation of reality shows
that R&D investment generates economic return, quality employment, and great
benefits for society. Reference institutions such as the United Nations or the OECD
confirm that sustainable growth in research is the engine for social improvement.

The papers presented are a good example of research and represent an excellent
manual to learn about innovation in different aspects in shipbuilding, maritime
transport, and naval engineering. In this new era of the optimization of processes,
whose characteristics are to make intensive use of process simulation and to use
other cutting-edge technologies, the primary goal is to develop industrial plants
with much better interconnected production chains and obviously much more
competiveness. The naval field is not outside this practice and the presentations,
like those included in this book, are good evidence that innovation in this field
produces benefits that sooner or later will reach the desired social improvement.

A Coruña, Spain Salvador Naya
Vicerector for Science Policy, Research and Transfer

Universidade da Coruña, Spain
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Foreword II

Over the years the Pan-American Conference of Naval Engineering, Maritime
Transportation and Port Engineering—COPINAVAL, has been constituted in the
ideal space for the development and strengthening of technological and scientific
capabilities of academics and professionals of the area, those who with huge effort,
discipline, perseverance, and motivation have worked for the progress of our
brotherly nations.

The XXV COPINAVAL, followed with a five-decade trajectory, has been
developed in a week that allowed the assistants, speakers, and master lecturers, to
share experiences, good practices, and new knowledge that surely will generate
impact in the solving of today’s problems linked to the tasks of naval engineers and
related professionals, people who with hard work and determination assume the
responsibility of generating development and social welfare, taking the great ocean
as the referent of new opportunities.

Panama, with commitment and dedication, was the manager of all intercultural
and scientific exchange in October of 2017. Proof of this was shown through the
excellent academic agenda that considered a wide range of issues that considered
aspects regarding the 4.0 industry, corrosion, maritime trade, legal aspects of the
naval world, offshore, and ship recycling as an opportunity to shipyard crises,
among other topics of no less importance.

This book is an acknowledgment of all the authors who contributed to the
continued enrichment of the naval profession in the last COPINAVAL. All the
works considered here, that were elaborated with excellent quality, are the reflection
of the innovative and creative spirit of the professionals in Pan-American nations,
all committed to the consolidation of naval engineering. Surely for our authors, the
ocean has pointed to the horizon as a life project for self-realization.

With this motivation, and recognizing the success of the XXV COPINAVAL
Congress, we invite all authors, professionals, and related researchers to continue in
the generation of knowledge and development, using science and technology as the
main tools for continuous improvement of our nations.
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Colombia accepts with great enthusiasm and happiness assuming the challenge
that the Pan-American Institute of Naval Engineering—IPEN has given to us. Our
Panamanian kin and their labor will be a reference point for accomplishing the
assigned duty, so that in the next March of 2019 the XXVI COPINAVAL Congress
in union with the VI International Ship Design and Naval Engineering Congress
(ISDNEC) and the VIII International Fair of Naval Industry—Colombiamar, all the
Pan-American countries and invited nations will continue to contribute to the
development of society through knowledge.

To all of you, thank you for the effort. We will be waiting for you in Cartagena
in order to continue with this noble purpose.

Bogota, Colombia Vice Admiral Jorge Enrique Carreño Moreno
President

Pan-American Institute of Naval Engineering
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Structural Parametric Model
of an Ecological and Efficient Shuttle
Tanker for Operations at the Brazilian
Pre-salt Region

Rodrigo A. Schiller , Rubens C. da Silva and Kazuo Nishimoto

Abstract The aim of this paper is to present the development of an ecological and
efficient shuttle tanker structural parametric model with optimized capacity that was
designed to operate at the Brazilian pre-salt region. Such a model estimates the
weights and centers of the bare hull, as well as the structural weight, the center of
gravity of the ship, and the moments of inertia at different dimensional, geometric,
and capacity features of the ship from structural elements of the parallel middle
body. These elements were automatically dimensioned at a MATLAB® environ-
ment. After an exhaustive search method through several dimensioning cases of
these elements, the lowest structural weight was obtained, which satisfies the rules
of classification societies. Finally, the results are shown as a response surface,
which was built by means of artificial neural networks. These allow assessing the
behavior of weights and centers characteristics of the ship, based on the variation of
design parameters.

Keywords Pre-salt region � Shuttle tanker � Structural parametric model
Weights and centers

1 Introduction

Structural weight reductions are quite important in design and construction cost
savings and have a reasonable effect on decreasing fuel consumption and gas
emissions. For large cargo vessels (displacement hulls) a lower structural weight
increases the available deadweight for a ship of the same size, thereby improving
transport efficiency.
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To gain an understanding of the impact of decreased light ship steel weight on
fuel consumption, according to [2], a 1% reduction in hull steel weight for each ship
in a set of standard designs leads to decreasing fuel consumption by 0.16% for
Suezmax tankers (approximately 0.11 ton/day fuel savings).

The discoveries made in the Brazilian pre-salt are among the world’s most
important in the past decade. The pre-salt region comprises large accumulations of
excellent quality, high commercial value light oil, a reality that puts Brazil in a
strategic position to meet the great global demand for energy. Daily oil output at the
pre-salt progressed from the average of approximately 41,000 barrels per day in
2010, to 1 million barrels per day in mid-2016 [3]. This overall growth of Brazilian
oil production generates a demand for a more modern tanker fleet, capable of
efficiently transporting the whole production of offshore oil rigs to terminals and
following international environmental regulations. Such vessels may present unique
design features that can lead to a hull with unconventional dimensions, specific to
operate at certain areas with a desirable efficiency.

The purpose of this paper is to present a numerical methodology to estimate the
weights and centers of a shuttle tanker hull based on a midsection whose structural
components have the lighter possible weight and are in accordance with the
International Association of Classification Societies (IACS) Common Structural
Rules (CSR) for Double Hull Oil Tankers.

2 Methodology

2.1 General Considerations

The structural model can estimate the weights and centers of a double hull shuttle
tanker with a payload (Δload) greater than 100,000 ton, for different combinations of
length overall (LOA), breadth (B), block coefficient (CB), depth (D), and draft (T).
The structural arrangement of the ship’s parallel middle body is sized in accordance
with the International Association of Classification Societies (IACS) Common
Structural Rules (CSR) for Double Hull Oil Tankers with Length 150 m and Above
and by comparisons with existing similar ships.

As shown in Fig. 1a, the obtained midship section has a typical double hull oil
tanker layout, with a double side structure and one cargo tank symmetrically
arranged on each board. The tank arrangement and D were parameterized with LOA
and B from existing ships, particularly the NORDIC Rio Shuttle Tanker (Fig. 1b).

The structural model can be used, as demonstrated in the results section, as an
analysis tool of variation of weights and centers of the bare hull in preliminary
stages design, in which different combinations of main dimensions of the ship are
evaluated.

In the specific case of the application example presented, a vessel with a fixed
Δload = 170,000 ton that will operate at the Brazilian pre-salt region was
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considered. The results were evaluated by means of a response surface that allowed
observing the weights and centers variations in function of a combination of LOA
and B.

2.2 Sequence of Structural Model Operations

The sequence of the structural synthesis model operations (steps A to I) is shown in
Fig. 2. Each step is explained below.

• Step A: The model establishes for each (LOA, B) combination the possible
values of spacing among primary support members (S), stiffeners (r), and frames
(l) (Fig. 3a), based on IACS requirements, and the variation of plating and
stiffener thickness. As a simplification, CB and Δload were considered constant,
and D was estimated by cargo tank height of similar ships. In addition, r, S, and l
remained constant around the whole midship section in each case. However,

Fig. 1 a Typical midship section for double hull tankers [1], b NORDIC Rio general arrangement
[4]

Fig. 2 Structural model flowchart
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based on IACS requirements, the plating and stiffeners thickness vary according
to their location (Fig. 3b).

• Step B: For a given combination of (r, S, l) the minimum thickness and
dimensions of plating and stiffeners are calculated according to the IACS local
loads and dimensioning criteria, considering the position of each structural
element and the static and dynamic pressure combinations on each region for
different conditions of draft, loads, and damage. Moreover, thickness values
were obtained from manufacturers’ tables.

• Steps C, D: After meeting the local requirements, the structural elements are
placed and the midship section is defined. Hereafter, the section modulus and
hull girder inertia are calculated and compared with the minimum global
requirements.

• Steps E, F: If the midship section meets the global requirements, the weights
and centers are calculated. At each cycle defined by a given combination of (r,
S, l), the data (longitudinal and transversal elements) of the midsection with the
minimum structural weight (considering the linear weight of the parallel middle
body) are stored.

• Step G: If the global requirements are not met, the structural elements undergo a
new thickness increment and a new midship section is defined for further
evaluation. The thickness increment is performed to maximize the increase of
the section modulus and the hull girder inertia with the smallest possible
increasing weight.

• Step H: The process is repeated for all (r, S, l) combinations.
• Step I: Each midship section stored in Step F initially has flat bars as stiffeners.

In this step, the stiffener profile is optimized to an equivalent T-bar profile with
lower weight and the structural requirements are compared. Finally, the weights
and centers of the new midship section are calculated.

• Corrosion Additions: The IACS Local Corrosion Additions (LCA) were
implemented in the model. The LCA consider the environment that the plates
and stiffeners are immersed in and the adjacent ones to increment the thickness
due to corrosion. For dimensioning the structural elements, IACS defines three
different conditions for the application of the corrosion additions:

Fig. 3 a Spacings considered in the model; b different element thickness regions
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• No Corrosion Addition (For dimensioning the local elements, corrosion
additions are not considered and the local requirements are met for the most
critical situation of a lower thickness).

• 50% Corrosion Addition (The calculation of the section modulus and hull
girder inertia is made considering half the corrosion addition and then, the
global requirements are assessed).

• 100% Corrosion Addition (For the final arrangement of the structural
elements and for the calculation of the structural weight, the full corrosion
addition is considered).

2.3 Geometric Optimization of Stiffeners

For each minimum weight midship section stored in Step F, a series of T-bar
stiffeners with different flange and web length ratios (Lflange/Lweb) were dimen-
sioned (flange and web have the same thickness). T-Profile was chosen because of
its symmetry and it will not be prone to skew bending and is favorable for fatigue
strength. The main constraints in this case are the minimum section modulus,
inertia, and thickness defined by IACS in a certain position and previously calcu-
lated for the flat-bar stiffeners. T-bar stiffeners with Lflange/Lweb around 35–40%
were chosen because they presented the higher sectional area reduction (AT/AI) if
compared with the flat-bar at the same position. Particularly, Fig. 4 shows a result
of a stiffener located at the double-bottom region that presented a sectional area
reduction of almost 24%.

Fig. 4 Sectional area reduction (AT/AI) of a stiffener located at double-bottom
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2.4 Bare Hull and Lightship Weight and Centers Estimation

The estimation was based on the method of Watson [5], which uses a bare hull
steel-weight distribution curve along the length between perpendiculars obtained by
analyzing existing vessels with parallel middle body and displacement hull (Fig. 5).
This curve is determined by three parameters (r, p, e), where r is the distance
between the after perpendicular and the parallel middle body, p is the length of the
parallel middle body, and e is the distance between the parallel middle body and the
forward perpendicular.

At this preliminary stage in which the hull geometry is not yet defined, the three
parameters were determined by the arrangement of the similar vessel NORDIC Rio
(Fig. 1b). The distribution of the frames’ weight is simple, because its geometry and
spacing (l) are defined in the structural model. The number and spacing of trans-
verse bulkheads were also defined by the tank arrangement of the similar vessel.
The linear weight of the midship section was defined as the sum of the linear
weights of the longitudinal and transverse structural elements. Therefore, by the
presented methodology the bare hull weight was estimated by adding a margin of
5% referring to welding and painting material.

The longitudinal position of the center of gravity (LCG) was based on the
longitudinal position of the center mass of the steel-weight distribution curve
(Fig. 5). The vertical position of the center of gravity (VCG) was approached by the
VCG of the parallel middle body, neglecting the stern and bow regions.

For bare hull moments of inertia estimation, the moments of inertia of each
structural element “i” of the midship section was calculated according to equations:

Ixx ið Þ ¼
ZZZ

y2 þ z2
� �

qeqdv ið Þ ð1Þ

Iyy ið Þ ¼
ZZZ

x2 þ z2
� �

qeqdv ið Þ ð2Þ

Fig. 5 Steel-weight distribution for ships with parallel middle body [5]
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Izz ið Þ ¼
ZZZ

x2 þ y2
� �

qeqdv ið Þ ð3Þ

where q eq = f(x)qsteel is the equivalent density and f(x) is associated with the
steel-weight distribution curve (Fig. 5) to estimate the mass properties of the stern
and bow regions. This approach can present significant errors by not considering
the geometry of the stern and bow of the ship, especially for the Ixx. However, it is
satisfactory for the preliminary stages of the project. Furthermore, the parallel axis
theorem was applied to calculate the moment of inertia of the whole midship
section considering the position of the bare hull center of gravity.

The lightship (WLS) was considered to consist of four components: bare hull
(WHull), superstructure (WSS), machinery (WM), and outfit (WO). The weight of each
component, except WHull (calculated by the structural model) was estimated from
formulations that consider parameters such as LOA, B, D, and CB. Such formula-
tions, which are not detailed, were based on the studies of [6–8].

3 Results

In this section, the results of the structural model for a specific case of preliminary
stage design of a shuttle tanker made to operate at the Brazilian pre-salt region are
presented. The following design requirements were considered.

• Maximum draft (Tmáx) = 18 m.
• Lightship limited to 0.22Δload.

• Δload = 170,000 ton and CB = 0.82.
• LOA/B > 5 and B/D < 2.5 (IACS).

As previously explained, the input variables are the main dimensions of the ship,
of which just LOA and B vary, and for each combination (LOA, B) also the spacings
(r, S, l) of the midship section components vary.

The range of values (r, S, l) were based on the analysis of similar Suezmax
tankers, with a small margin on the lower and upper values. Table 1 shows the
values of the variables, and it is possible to evaluate the number of simulated cases.

Table 1 Range of values
assumed by the variables

Variable Range Number of cases

LOA 263:2:357 48

B 44:1:56 13

S B
4:2:12½ � 5

r S
5:1:20½ � 16

l LOA
50:10:150½ � 11

Total number of cases 549,120
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3.1 Midship Section and Parallel Middle Body

From the presented variables, the structural model establishes the elements of the
midship section, such as the side plating, double hull, main deck, longitudinal and
transverse bulkheads, frames, and longitudinal stiffeners.

The mechanism chosen to define the lower weight midship section for each
combination of structural variables was the exhaustive search. This is a simple
method that will always define a result. However, the computational time in this
case is much higher than using optimization algorithms.

As a result, Fig. 6 shows examples of a lower structural weight midship section
and frame (Fig. 6a) for a specific case of LOA = 297 m and B = 53 m and the
three-dimensional model of the parallel middle body (Fig. 6b).

3.2 Response Surface

The response surface for each estimated parameter was constructed with artificial
neural networks (ANN) because they can present accurate results for simple meshes
(with a few simulated cases), depending on the parameter variation. The ANN
topology that best fits the characteristics of the response surface with fast conver-
gence and high precision was the one with a 10-neuron layer and back propagation
training algorithm (Fig. 7a). According to [9], back propagation is the most widely
used ANN algorithm for general engineering applications.

The ANN inputs were LOA and B values and the desired outputs were the
estimated parameters from the structural model (one per ANN). The training subset,
composed of 60–90% of random samples from the complete set, were used
essentially in the ANN learning (training) process. The ANN results and the values
obtained by simulations of the structural model were compared. The obtained mean
error was almost 2%, and the number of simulated cases was considered sufficient
to obtain a good response surface. Figure 7a shows the comparison of the results for
the lightship (WLS).

Fig. 6 Lower structural weight midship section (a) and parallel middle body (b)
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3.3 General Results

This section presents the results of weights and centers of the lightship according to
the variation of LOA and B. Figures 8, 9 and 10 show some of the main results
obtained from the structural model to a constant Δload = 170,000 ton.

Applying the design constraints relative to lightweight (limited to 0.22Δload) and
maximum draft (Tmáx = 18 m) to the results, a region with the feasible cases was
defined (Fig. 11).

To validate the model results, the range of WLS values was compared with the
IHS–Fairplay data for Suezmax tankers with 160,000 ton � Δload � 170,000 ton
and the same range values of LOA and B from [10], through the lightweight coef-
ficient (CWLS = WLS/LPPxBxD). Table 2 shows the comparison between the results
from the structural model and the IHS–Fairplay data, and the adherence among the
values can be noticed.

Fig. 7 ANN topology (a) and comparison between the WLS results and ANN (b)

Fig. 8 WHull and WLS results

Structural Parametric Model of an Ecological … 11



Fig. 9 LCG and VCG results

Fig. 10 Inertia results

Fig. 11 Feasible region defined by the design constraints
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4 Conclusion

The structural model generated results that can be quite important at the early stages
of the design of a vessel with specific dimensions and requirements as an assistance
to decision making. The behavior of the output parameters according to the vari-
ation of some variables (in this case, LOA and B) has a great value as a sensitivity
analysis of the design requirements. However, an optimization algorithm must be
added to the model to make it more efficient, mainly regarding computational time.
Moreover, the bow and stern geometry must be considered in more detail to
increase the accuracy of the inertia and weights results. These aspects will be
improved in the next works.
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Effect of Encountered Wave Condition
on Fatigue Life Prediction of Ship
Structures

Luis De Gracia , Hitoi Tamaru, Naoki Osawa and Toichi Fukasawa

Abstract Ship weather routing develops an optimum track for ocean voyages
based on a forecast of weather, sea conditions, and a ship’s individual character-
istics for a particular transit. In these days, most ships follow weather routing, and
those ships never experience extremely severe seas. In classification society rules,
ship structure fatigue assessment is performed without consideration of weather
routing. In these assessments, the occurrence probability of severe seas is overes-
timated and their recurrence interval is underestimated. This might lead to deteri-
oration in fatigue assessment precision. In this study, S–N-based fatigue
assessments of a welded joint in a container ship that follows weather routing are
performed. This ship sails on a North Atlantic Ocean route. Fatigue lives are
evaluated assuming different encountered wave conditions: for a planned route,
“Great Circle Route,” and a weather routing, “Minimum Time Route.” Short sea
sequences are generated by a storm model using hindcast data. The storm profiles
are determined by using the cumulative frequency of shot seas which is experienced
on the MTR routes. Based on these results, the effect of encountered wave con-
ditions on cumulative fatigue damage is discussed.
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1 Introduction

A fatigue assessment is a mandatory assessment in major Classification Society
Rules. The fatigue assessment is performed based on the S–N approach (Palmgren–
Miners rule). The fatigue damage is caused primarily by the variation of the wave
loading acting on ships, resulting in the variation of the stress amplitude [1]. The
effectiveness of the S–N-based assessment falls in the reliable description of the
encounter wave conditions experienced by ocean-going ships. Tomita et al. [2–4]
proposed a “storm model” that can simulate the wave load sequence experienced by
ocean-going ships. Kawabe [5] and Prasetyo [6] modified Tomita’s model to
improve the emulation capability of a real sea state sequence. Recently, De Gracia
et al. [7] proposed a modified model that considered the stochastic nature of the
wave direction.

In this paper, fatigue assessments of a 6000 TEU (Twenty-foot Equivalent Unit)
container ship’s welded joint were performed. The target ship is assumed to face
two different encountered wave conditions in a North Atlantic Ocean route, fol-
lowing a weather routing, called minimum time route (MTR), and a planned route,
great circle route (GCR). Short sea sequences are generated by using Japan Weather
Association (JWA) hindcast data, and those for MTR are simulated by adopting
Tamaru’s weather routing algorithm [8]. SN-based fatigue assessments are per-
formed for MTR and GCR sequences, and the effect of the encountered wave
condition on fatigue damage is examined.

2 Encountered Wave Conditions

2.1 Weather Routing Algorithm

The benefits of ship weather routing are primarily in time and cost reductions and
increased crew and structural safety. The reduction in transit time, fuel consump-
tion, extreme weather encounters, and hull damage is directly related to saving in
operating cost reductions. A weather routing algorithm that can judge the minimum
time route from a spatiotemporal distribution of sea states (significant wave height
and wave direction) was proposed by Tamaru [8]. The relationship between sig-
nificant wave height, ship speed loss, and the relative heading angle is considered in
the analysis. The ship route is optimized by analysis of the isochrones and the
spatiotemporal sea state data was generated from JWA’s hindcast data.
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2.2 Sea State Data

A North Atlantic route between Boston and Bishop is chosen as the shipping route.
The weather routing algorithm explained in Sect. 2.1 is adopted in this study, and
the GCRs and MTRs are determined by Tamaru. Figure 1 shows an example of the
MTR for the assumed route.

The target ship is a 6000 TEU container ship. It is considered that she sailed on
the North Atlantic Ocean for a period of 10 years. The ship experiences the sea
state (significant wave height HS, mean period TS, and wave direction h) sequence
determined by those at the nearest JWA hindcast data grid point.

2.3 Real Headings Model and Wave Statistics

Consider h, a, and v as the wave direction, ship’s heading angle, and relative
heading angle. The stress in the conventional fatigue design procedure is evaluated
assuming that v is given by a uniform random number. However, throughout the
ship’s service life, she meets each new wave at a particular relative angle. In this
paper, let “real headings model” be the model in which the stress response is
calculated by considering the v’s occurrence probability fv. h is determined by
random number selection considering h’s occurrence probability fh, and v is cal-
culated by Eq. 1 each time.

v ¼ a� h ð1Þ

The averaged fh for the North Atlantic Ocean is determined from JWA hindcast
data. Figure 2 shows the determined fh. It is shown that h is predominant between
240° and 330°.

Fig. 1 An example of
minimum time routes
(MTR) for the United States/
United Kingdom
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The time history of individual wave height is generated assuming that the
individual wave height obeys the Rayleigh distribution, whose energy spectrum can
be defined by the ISSC (International Ship and Offshore Structures Congress)
spectrum as Eq. (2).

S xð Þ
H2

S
¼ 0:11

xTS
2p

� ��5

exp �0:44
xTS
2p

� ��4
( )

ð2Þ

where x is the wave frequency (rad/s), S xð Þ the specified wave spectrum (m2/s),
and TS the peak period (s). Let “as-simulated sea sequence” be the sea state
sequence directly determined from the GCR or MTR ship position sequence and
JWA hindcast data’s spatiotemporal wave data, and the “storm sea sequence” be
that generated from a storm model simulation. These spatiotemporal wave data are
fitted by the log-normal distribution proposed by Wan and Shinkai [9] due to
rounding errors that might be found in the histograms. Figure 3 shows the com-
parison of HS exceedance probability PEX;Hs, of an as-simulated sea sequence for
GCR and MTR routes. It is observed that the difference becomes larger for waves
larger than 5 m, whereas the difference increases with HS. Additionally, differences
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Fig. 2 Wave direction’s
occurrence probability
distribution fh, determined
from JWA hindcast data in
the North Atlantic Ocean
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Fig. 3 The comparison of significant wave height’s exceedance probability PEX;Hs, for
as-simulated sea sequence for MTR and GCR routes
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in the maximum significant wave height HS;max with MTR having less severe
encounter wave conditions than those found in the GCR route are observed.

3 Stress Response

3.1 Stress Statistics

In the as-simulated sea sequences, sequences of (HS,TS,h) are given. The ship
course a, is determined by drawing a line segment joining previous and current ship
positions. The relative heading angle v can be determined from h and a. In this way,
the sequence of (HS, TS, h) is determined. DS denotes the hotspot stress range. Once
(HS, TS, h) is given, the DS sequence can be generated by following linear spectrum
analysis. In these analyses, ISSC’s wave spectrum is adopted as the R parameter.
Let this DS sequence be the “as-simulated stress sequence.” Let PEX;DS be DS’s
exceedance probability. Let PEX;DSjGCR and PEX;DSjMTR be PEX;DS of as-simulated
stress sequences for GCR and MTR routes. A comparison of PEX;DSjGCR and
PEX;DSjMTR is presented in Fig. 4. In the as-simulated sequence, the difference in the
encountered wave condition shows that the difference in the stress exceedance
probability becomes evident for DS > 100 MPa, and the difference becomes
slightly larger with the increase in DS. It is considered that these differences are due
to v’s randomness and the variation in stress response amplitude operator
(RAO) associated with v. Additionally, the differences in the stress exceedance
probability is associated with the encountered wave condition differences between
the two routes.
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Fig. 4 Comparison of the stress range’s exceedance probability PEX;DS for as-simulated stress
sequence for MTR and GCR routes
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4 Storm Model

4.1 Wave Scatter Diagrams

The joint frequency distributions of (HS,TS), known as a wave scatter diagram, are
generated by counting sea states recorded in as-simulated sea sequences for both
encountered wave conditions: GCR and MTR routes. It is considered that these sea
histograms include round errors. These errors are corrected by using the correcting
method proposed by Wan and Shinkai [9]. In this method, histograms are fitted with
the conditional log-normal distribution p TSjHSð Þ given by Eq. (3).

p TSjHSð Þ ¼ exp � ln TS � lð Þ½ �2
2r2

( )
a TS;HSð Þ;

a TS;HSð Þ ¼
ffiffiffiffiffiffi
2p

p

2pTSr
; l ¼ E ln TS HSð Þð Þf g;
r2 ¼ var ln TS HSð Þð Þf g

ð3Þ

HS’s marginal probability distribution p HSð Þ is determined in Sect. 2.3. The
joint probability distribution p TS;HSð Þ is calculated by Eq. (4).

p HS; TSð Þ ¼ p HSð Þp TSjHSð Þ ð4Þ

Furthermore, it is recognized that the long-term probability distribution of HS

can be approximated by the Weibull distribution [10]. The characteristic of the
Weibull distribution is described as that of F HSð Þ in Eq. 5:

F HSð Þ ¼ 1� exp � HS

k

� �k
" #

ð5Þ

and, its p.d.f. is given as

kHk�1
S

kk

� �
exp � HS

k

� �k
" #

ð6Þ

where k and k are the Weibull’s shape and its scale parameters.
In Figs. 5 and 6 are presented the Weibull plot of F HSð Þ considering all seasons

on the North Atlantic wave scatter diagram for the GCR and MTR cases. The
relation between ln HSð Þ and ln ln 1=1� F HSð Þð Þð Þ can be represented by a straight
line. The shape and scale of the Weibull parameters can be identified by using the
least square method in conjunction with the correlation of natural logarithms on the
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left- and right-hand sides of Eq. (5). In this case, for the North Atlantic wave scatter
diagram, F HSð Þ are determined by performing Weibull fitting from all HS ranges.

4.2 Storm Models

Tomita et al. [2] studied the time history of wave occurrence experienced by a ship
during voyages on the North Pacific Ocean, and demonstrated that the
wave-induced load in a ship hull can be divided into two groups: calm sea condition
and storm condition. The wave histories are described in calm conditions as
time-independent waveforms, whereas in the storm condition the waves can be
modeled as time-dependent crescendo–decrescendo waveforms, and they appear
randomly. Figure 7 shows an example of wave history generated by the storm
model. The “storm model” consists of a “storm profile” and HS’s probability dis-
tribution in calm seas. The storm profile consists of a series of storm waveforms and
the occurrence probability of storms. In this paper, storm profiles are determined by
adopting the “3G storm model” proposed in [6], which can take into account
variation of storm duration.
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Fig. 5 Weibull plot considering all seasons in the North Atlantic Ocean for GCR cases
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Fig. 6 Weibull plot considering all seasons in the North Atlantic Ocean for MTR cases
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Once the storm model is established, sea sequences (HS, TS, h) are generated
from the storm model. After these sea sequences are generated, stress sequences are
generated by adopting real headings or all-headings models. Let PEX;DS;storm be DS’s
exceedance probability of a storm model’s stress sequence. PEX;DS;storm;RH represent
PEX;DS;storm calculated for a real headings model. A storm sea sequence generated by
a storm model with a real heading model emulates the occurrence probability of sea
state and relative heading angle.

Figures 8 and 9 show comparisons of PEX;DS;storm;RH and as-simulated PEX;DS for
GCR and MTR routes. It is shown that the differences in PEX;DS are satisfactorily
small for both routes. Furthermore, these results demonstrate that the storm models
have the emulation capability of generating stress sequences experienced by
ocean-going ships. These results are presented for cases where ships follow a
weather routing or not, under the conditions chosen.
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Fig. 7 An example of wave load history generated by the storm model
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Fig. 8 The comparison of the storm model and as-simulated for GCR route
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5 Fatigue Assessment

5.1 Cumulative Fatigue Damage

The cumulative fatigue damage is evaluated by the Palmgren–Miner rule for all
classification society rules. It says that the total damage experienced by the structure
may be expressed by the accumulated damage from individual load cycles at dif-
ferent stress levels. In this paper, the cumulative damage is calculated over 10 years
D10years. The cumulative fatigue damages of the target welded joint D10years for a
given DS sequence is calculated by Eq. (7):

D10years ¼
X ni

Ni
ð7Þ

where ni is the number of stress cycles in ith stress range block DSi, and Ni the
number of cycles to failure for DSi, which is determined using DnV CN.30.7’s
curve I (for welded joints) [11]. The thickness effect is not considered and the mean
stress is assumed to be zero.

5.2 Fatigue Damage Results

In this section, the comparison of the fatigue damage due to differences in the
encountered wave conditions is presented. It is assumed that the ship sails in the
North Atlantic Ocean. Additionally, the effectiveness of the storm model is
examined, comparing the fatigue damage results with those obtained in the
as-simulated sequences for both routes, the GCR and MTR. Table 1 shows
the cumulative fatigue damage results over 10 years D10years. It is observed that the
differences in statistical properties of D10years are about 15% smaller for ships that
encountered wave conditions following the minimum time route, compared to those
that sail in the great circle route. These results clearly suggest the effect of the

1E-10

1E-08

0.000001

0.0001

0.01

1
0100200300400

1-
F 

∆S (MPa)

MTR_RH_Storm model
MTR_As Simul.

Fig. 9 The comparison of the storm model and as-simulated for MTR route
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encounter wave condition for vessels that follow a weather routing, is to extend the
service life of the structure. These results are expected due to less severe wave
conditions encountered in a weather routing compared to those structures experi-
encing wave loadings in a great circle route (see Figs. 3 and 4).

Moreover, it is recognized that the storm model for weather routing can suc-
cessfully emulate the HS; Tm; vð Þ sequences experienced by a vessel in the GCR and
MTR routes. Under the condition chosen, the storm model results tend to be slightly
conservative compared to those obtained in the as-simulated sequence. The dif-
ferences in statistical properties of D10years are at most about 8% larger than those
obtained in the as-simulated sequence. However, the effects of the high-frequency
loading (whipping/springing vibrations) were not considered in this paper, and
additional studies are needed to clarify their effect on the statistical properties of the
fatigue damage of ship structural members.

6 Conclusions

In this paper, fatigue assessments of the welded joint in the 6000 TEU container
ship are performed. Two different encounter wave conditions in the North Atlantic
Ocean are considered: great circle (GCR) and minimum time (MTR) routes. Stress
sequences are generated by the storm model, with a real heading model that
emulates the occurrence probability of sea state and relative heading angle. SN
analyses are based on DnV CN 30.7. The following points are obtained from the
results.

– To generate the stress sequence of wave random loading, the storm model can
be adapted. The storm model leads to slightly conservative estimations com-
pared to those obtained in the as-simulated sequence, under the condition
chosen.

– The weather routing affects the fatigue assessment results. The difference in the
cumulative fatigue damage between GCR and MTR is at least about 15% under
the conditions chosen.

– Additional studies on the development of an advanced wave load sequence
model that can consider the effect of whipping/springing vibration are needed.

Acknowledgements The authors would like to acknowledge Dr. Kuniaki Matsuura of Japan
Weather Association (JWA) for providing JWA hindcast data.

Table 1 Comparison of the
statistic Lf calculated by
DnV CN. 30.7

Sequence
model

Storm model As simulated

Route GCR MTR GCR MTR

D10YR 0.3694 0.3223 0.3408 0.3402

Lf (year) 27.07 31.03 29.345 29.399
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Numerical Model to Analyze a SNCR
System to Reduce NOx

M. Isabel Lamas Galdo , María Jesús Rodríguez Guerreiro ,
Almudena Filgueira Vizoso , José de Troya Calatayud
and Raul Villa Caro

Abstract Taking into account the importance of NOx (nitrogen oxides) emissions
from marine engines and the current increasingly restrictive legislation, this work
aims to develop a numerical model to study NOx reduction. Particularly, a selective
non-catalatytic reduction system was designed. A numerical model was developed
to analyze several performance parameters. The pressure, velocity, temperature, and
NOx concentration fields were characterized. This numerical model was compared
with experimental measurements. The satisfactory results obtained validated the
work.

Keywords CFD � SNCR � NOx � Emissions

1 Introduction

Due to the lean combustion that takes place in diesel engines, these emit low values
of carbon monoxide and hydrocarbons. However, their emissions of nitric oxides
and particles are considerable [1]. The current environmental situation requires new
technologies to control nitrogen oxides, and recently new techniques are being
developed. The oxides of nitrogen formed in combustion processes are mainly
caused by the reaction of nitrogen present in atmospheric air. For this reason, it is
very difficult to avoid their formation. Nitrogen oxides are generated from nitrogen
and oxygen at high combustion temperatures. The formation of NOx increases with
the combustion temperature, the residence time of the gas burned at high temper-
ature, and the amount of oxygen present [2, 3].

In the marine field, pollution is controlled by agencies such as the European
Protection Agency, European Commission, and the International Maritime
Organization, among others. In this regard, the United States Environmental
Protection Agency (EPA or USEPA), which belongs to the federal government of
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the United States, was created to regulate the environment and its influence on
human health. The European Commission also regulates the environment and
developed limitations aimed at pollution from ships. The International Maritime
Organization (IMO) focuses on marine pollution and other fields such as safety,
technical issues, legislation, and so on. According to this legislation, it is extremely
important to reduce NOx in marine engines.

Many NOx reduction methods have been proposed in the literature [4]. Basically,
these can be classified into primary and secondary methods. The difference is that
primary methods reduce NOx while combustion takes place and secondary methods
reduce NOx at the flue gases. The main goal of primary methods is to reduce the
combustion temperature due to its importance in the NOx formation process.

Regarding secondary methods, two procedures are widely employed in the
marine field: SCR and SNCR. SCR (selective catalytic reduction) eliminates NOx

contained in the exhaust gas employing catalytic substances to accelerate the
chemical reactions that take place. On the other hand, SNCR (selective noncatalytic
reduction) does not employ catalytic substances. The main limitation of SNCR is
that the temperature must be high if catalytic substances are not employed.
According to this, the present work analyzes measures to get a reasonable NOx

reduction. Particularly, ammonia was chosen to reduce NOx.

2 Kinetic Model

NO is the main species of NOx [5]. For this reason, the present work focuses on
reducing NO. The first research about NO reduction using ammonia was realized in
the 1970s and after that several models were proposed in the literature. The most
relevant kinetic models are indicated in Table 1.

The present work compares the models of Miller and Bowman [6], Glarborg
et al. [7], and Miler and Glarborg [8].

Despite the discrepancies between these models, the main differences can be
explained in terms of the branching ratio of the sequence, a. This parameter is
defined by the expression:

Table 1 Kinetic models for NO reduction using ammonia

Authors Number of reactions Number of species

Miller and Bowman [6] 73 19

Glargorg et al. [7] 104 22

Miller and Glarborg [8] 134 24

Brouwer et al. [9] 2 2

Duo et al. [10] 2 2
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