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Preface

This brief monograph is the first one to deal exclusively with the quantita-
tive approximation by artificial neural networks to the identity-unit opera-
tor. Here we study with rates the approximation properties of the “right”
sigmoidal and hyperbolic tangent artificial neural network positive linear op-
erators. In particular we study the degree of approximation of these operators
to the unit operator in the univariate and multivariate cases over bounded
or unbounded domains. This is given via inequalities and with the use of
modulus of continuity of the involved function or its higher order derivative.
We examine the real and complex cases.

For the convenience of the reader, the chapters of this book are written in
a self-contained style.

This treatise relies on author’s last two years of related research work.
Advanced courses and seminars can be taught out of this brief book. All

necessary background and motivations are given per chapter. A related list of
references is given also per chapter. My book’s results appeared for the first
time in my published articles which are mentioned throughout the references.
They are expected to find applications in many areas of computer science and
applied mathematics, such as neural networks, intelligent systems, complexity
theory, learning theory, vision and approximation theory, etc. As such this
monograph is suitable for researchers, graduate students, and seminars of the
above subjects, also for all science libraries.

The preparation of this booklet took place during 2010-2011 in Memphis,
Tennessee, USA.

I would like to thank my family for their dedication and love to me, which
was the strongest support during the writing of this book.

March 1, 2011 George A. Anastassiou
Department of Mathematical Sciences

The University of Memphis, TN, U.S.A.
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Chapter 1

Univariate Sigmoidal Neural Network
Quantitative Approximation

Here we give the univariate quantitative approximation of real and complex
valued continuous functions on a compact interval or all the real line by
quasi-interpolation sigmoidal neural network operators. This approximation
is obtained by establishing Jackson type inequalities involving the modulus of
continuity of the engaged function or its high order derivative. The operators
are defined by using a density function induced by the logarithmic sigmoidal
function. Our approximations are pointwise and with respect to the uniform
norm. The related feed-forward neural network is with one hidden layer. This
chapter relies on [4].

1.1 Introduction

Feed-forward neural networks (FNNs) with one hidden layer, the only type
of networks we deal with in this chapter, are mathematically expressed as

Nn (x) =
n∑

j=0

cjσ (〈aj · x〉 + bj) , x ∈ R
s, s ∈ N,

where for 0 ≤ j ≤ n, bj ∈ R are the thresholds, aj ∈ R
s are the connection

weights, cj ∈ R are the coefficients, 〈aj · x〉 is the inner product of aj and x,
and σ is the activation function of the network. In many fundamental network
models, the activation function is the sigmoidal function of logistic type.

It is well known that FNNs are universal approximators. Theoretically, any
continuous function defined on a compact set can be approximated to any
desired degree of accuracy by increasing the number of hidden neurons. It
was shown by Cybenko [11] and Funahashi [13], that any continuous function

G.A. Anastassiou: Intelligent Systems: Approximation by ANN, ISRL 19, pp. 1–32.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011



2 1 Univariate Sigmoidal Neural Network Quantitative Approximation

can be approximated on a compact set with uniform topology by a network of
the form Nn (x), using any continuous, sigmoidal activation function. Hornik
et al. in [15], have proved that any measurable function can be approached
with such a network. Furthermore, these authors established in [16], that
any function of the Sobolev spaces can be approached with all derivatives. A
variety of density results on FNN approximations to multivariate functions
were later established by many authors using different methods, for more or
less general situations: [18] by Leshno et al., [22] by Mhaskar and Micchelli,
[10] by Chui and Li, [8] by Chen and Chen, [14] by Hahm and Hong, etc.

Usually these results only give theorems about the existence of an approx-
imation. A related and important problem is that of complexity: determining
the number of neurons required to guarantee that all functions belonging to
a space can be approximated to the prescribed degree of accuracy ε.

Barron [5] shows that if the function is assumed to satisfy certain condi-
tions expressed in terms of its Fourier transform, and if each of the neurons
evaluates a sigmoidal activation function, then at most O

(
ε−2
)

neurons are
needed to achieve the order of approximation ε. Some other authors have pub-
lished similar results on the complexity of FNN approximations: Mhaskar and
Micchelli [23], Suzuki [24], Maiorov and Meir [20], Makovoz [21], Ferrari and
Stengel [12], Xu and Cao [26], Cao et al. [7], etc.

The author in [1] and [2], see chapters 2-5, was the first to establish neural
network approximations to continuous functions with rates by very specifi-
cally defined neural network operators of Cardaliagnet-Euvrard and ”Squash-
ing” types, by employing the modulus of continuity of the engaged function
or its high order derivative, and producing very tight Jackson type inequali-
ties. He treats there both the univariate and multivariate cases. The defining
these operators ”bell-shaped” and ”squashing” function are assumed to be of
compact support. Also in [2] he gives the Nth order asymptotic expansion for
the error of weak approximation of these two operators to a special natural
class of smooth functions, see chapters 4-5 there.

For this chapter the author is greatly motivated by the important article
[9] by Z. Chen and F. Cao.

He presents related to it work and much more beyond however [9] remains
the initial point. So the author here performs univariate sigmoidal neural
network approximations with rates to continuous functions over compact in-
tervals of the real line or over the whole R, then he extends his results to
complex valued functions. All convergences here are with rates expressed via
the modulus of continuity of the involved function or its high order derivative,
and given by very tight Jackson type inequalities.
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The author presents here the correct and precisely defined quasi-
interpolation neural network operator related to compact intervals, and
among others, improves results from [9]. The compact intervals are not nec-
essarily symmetric to the origin. Some of the upper bounds to error quantity
are very flexible and general. In preparation to establish our results we prove
further properties of the basic density function defining our operators.

1.2 Background and Auxiliary Results

We consider here the sigmoidal function of logarithmic type

s (x) =
1

1 + e−x
, x ∈ R.

It has the properties lim
x→+∞s (x) = 1 and lim

x→−∞s (x) = 0.

This function plays the role of an activation function in the hidden layer of
neural networks, also has application in biology, demography, etc. ([6, 17]).

As in [9], we consider

Φ (x) :=
1
2

(s (x+ 1) − s (x− 1)) , x ∈ R.

It has the following properties:

i) Φ (x) > 0, ∀ x ∈ R,

ii)
∑∞

k=−∞ Φ (x− k) = 1, ∀ x ∈ R,

iii)
∑∞

k=−∞ Φ (nx− k) = 1, ∀ x ∈ R; n ∈ N,

iv)
∫∞
−∞ Φ (x) dx = 1,

v) Φ is a density function,

vi) Φ is even: Φ (−x) = Φ (x), x ≥ 0.

We observe that ([9])

Φ (x) =
(
e2 − 1

2e

)
e−x

(1 + e−x−1) (1 + e−x+1)
=

(
e2 − 1
2e2

)
1

(1 + ex−1) (1 + e−x−1)
,

and

Φ′ (x) =
(
e2 − 1
2e2

)[
− (ex − e−x)
e (1 + ex−1)2 (1 + e−x−1)2

]
≤ 0, x ≥ 0.
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Hence

vii) Φ is decreasing on R+, and increasing on R−.

Let 0 < α < 1, n ∈ N. We see the following

∞∑
⎧
⎨

⎩
k = −∞

: |nx− k| > n1−α

Φ (nx− k) =
∞∑

⎧
⎨

⎩
k = −∞

: |nx− k| > n1−α

Φ (|nx− k|) ≤

(
e2 − 1
2e2

)∫ ∞

(n1−α−1)

1
(1 + ex−1) (1 + e−x−1)

dx ≤
(
e2 − 1

2e

)∫ ∞

(n1−α−1)

e−xdx =
(
e2 − 1

2e

)(
e−(n1−α−1)

)

=
(
e2 − 1

2

)
e−n(1−α)

= 3.1992e−n(1−α)
.

We have found that:

viii) for n ∈ N, 0 < α < 1, we get

∞∑
⎧
⎨

⎩
k = −∞

: |nx− k| > n1−α

Φ (nx− k) <
(
e2 − 1

2

)
e−n(1−α)

= 3.1992e−n(1−α)
.

Denote by 	·
 the ceiling of a number, and by �·� the integral part of a
number. Consider x ∈ [a, b] ⊂ R and n ∈ N such that 	na
 ≤ �nb�.

We observe that

1 =
∞∑

k=−∞
Φ (nx− k) >

�nb�∑

k=�na	
Φ (nx− k) =

�nb�∑

k=�na	
Φ (|nx− k|) > Φ (|nx− k0|) ,

for any k0 ∈ [	na
 , �nb�] ∩ Z.
Here we can choose k0 ∈ [	na
 , �nb�] ∩ Z such that |nx− k0| < 1.


