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Preface

This next volume in the Cell Biology and Translational Medicine series
addresses the topic of stem cells in development and diseases. Amongst
specialized topics, there are chapters on the role of stem cells neuronal
development and the role of stem cells in diseases including arthritis, aging
and cancer.

I remain very grateful to Gonzalo Cordova, associate editor of the series,
and acknowledge his continuous support.

I would also like to acknowledge and thank Mariska van der Stigchel,
assistant editor, for her outstanding efforts in helping to get this volume to the
production stages.

A special thank you goes to Shanthi Ramamoorthy and Rathika Ramkumar
for their outstanding efforts in the production of this volume.

Finally, sincere thanks to the contributors not only for their support of the
series, but also for their insights and efforts to capture both the advances and
the remaining obstacles in their areas of research. I trust readers will find their
contributions as interesting and helpful as I have.

Ottawa, ON, Canada Kursad Turksen
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Immune Dysregulation and Recurring
Mutations in Myelodysplastic
Syndromes Pathogenesis

Anacélia Matos, Silvia M. M. Magalhães, and Michael J. Rauh

Abstract

Myelodysplastic syndromes (MDS) are clonal
stem cell malignancies characterized by inef-
fective hematopoiesis leading to peripheral
cytopenias and variable risk of progression to
acute myeloid leukemia. Inflammation is
associated with MDS pathogenesis. Several
cytokines, reactive species of oxygen/nitrogen
and growth factors are directly or indirectly
involved in dysfunction of the MDS bone
marrow (BM) microenvironment. Mutations
in genes mainly regulating RNA splicing,
DNA methylation and chromatin accessibility,
transcription factors, signal transduction and

the response to DNA damage contribute to
ineffective hematopoiesis, genomic instability
and MDS development. The inflammation-
associated DNA damage in hematopoietic
stem cells may also contribute to MDS devel-
opment and progression with aggressive clini-
cal characteristics. Many studies have aimed at
clarifying mechanisms involved in the activity
of immature myeloid cells as powerful
modulators of the immune response and their
correlation with aging, autoimmunity, and
development of cancer. In this review, we
explore recent advances and accumulating evi-
dence uniting immune dysregulation,
inflammaging and recurring mutations in the
pathogenesis of MDS.

Keywords

Bone marrow · Hematopoietic stem cells ·
Inflammation · Mutations · Myelodysplastic
syndromes
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CBL Casitas B-Lineage Lymphoma
Proto-Oncogene

CCUS clonal cytopenia of undetermined
significance

CD cluster of differentiation
CHIP clonal hematopoiesis of indetermi-

nate potential
CSF colony-stimulating factor
DAMP danger-associated molecular pattern
del deletion
DNA deoxyribonucleic acid
DNMT3A DNA methyltransferase 3A
eMDSC early MDSC
ETV6 ETS Variant Transcription Factor 6
EZH2 Enhancer Of Zeste 2 Polycomb

Repressive Complex 2 Subunit
G granulocytic
GATA2 GATA Binding Protein 2
GM granulocyte-monocyte
HLA human leukocyte antigen
HSPC hematopoietic stem/progenitor cell
IDH1/2 isocitrate dehydrogenases 1 and 2
IFN-γ interferon gamma
IL interleukin
IMC immature myeloid cell
iNOS inducible nitric oxide synthase
IPSS International prognostic scoring

system
JAK2 Janus Kinase 2
L-Arg L-arginine
M monocytic
MDS myelodysplastic syndromes
MDSC myeloid-derived suppressor cell
miR micro RNA
NF-κB nuclear factor kappa-light-chain-

enhancer of activated B cells
NK natural killer
NKT natural killer/T
NO nitric oxide
NRAS Neuroblastoma RAS Viral (V-Ras)

Oncogene Homolog
PAMP pathogen-associated molecular

pattern
PGE2 prostaglandin E2
PMN polymorphonuclear
PPM1D Protein Phosphatase, Mg2+/Mn2+

Dependent 1D

RAD21 RAD21 Cohesin Complex
Component

RNA ribonucleic acid
ROS reactive oxygen species
RUNX1 RUNX Family Transcription

Factor 1
S100A8 S100 Calcium Binding Protein A8
S100A9 S100 Calcium Binding Protein A9
SF3B1 Splicing Factor 3b Subunit 1
SRSF2 Serine And Arginine Rich Splicing

Factor 2
STAG2 Stromal Antigen 2
TAM tumour-associated macrophage
TCR T-cell receptor
TET2 Ten-Eleven Translocation

Methylcytosine Dioxygenase 2
TGF-β transforming growth factor beta
TIFAB TRAF-Interacting Protein with

Forkhead-Associated Domain,
Family Member B

TIRAP Toll-interleukin-1 receptor domain-
containing adaptor protein

TLR Toll-like receptor
TME tumour microenvironment
TNF-α tumour necrosis factor alpha
TP53 Tumour Protein P53
TRAF tumor necrosis factor receptor-

associated factor
Treg regulatory T-cell
U2AF1 U2 Small Nuclear RNA Auxiliary

Factor 1
VEGF vascular endothelial growth factor
WT1 Wilms tumour 1
ZRSR2 Zinc Finger CCCH-Type, RNA

Binding Motif And Serine/Arginine
Rich 2

1 Introduction: Immune
Dysregulation in MDS

Myelodysplastic syndromes (MDS) constitute a
group of diseases which are distinguished by the
presence of one or more unexplained peripheral
blood cytopenias, dysplastic hematopoietic dif-
ferentiation, and variable risk to progress to
acute myeloid leukemia (AML). The incidence
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of these disorders increases with age, with an
average of 70 years (Sekeres 2010). Recurrent
mutations and haploinsufficiency of particular
genes, related epigenetic changes, altered RNA
splicing, and disorder in the bone marrow micro-
environment all contribute to the disease pheno-
type (Cazzola 2020).

Inflammation is involved in many disease pro-
cesses, such as hypertension, cardiovascular dis-
ease, rheumatoid arthritis, rheumatoid heart
disease, and systemic lupus erythematosus,
which are characterized by impairment of
immune cell regulatory mechanisms. Several
studies have focused on understanding the immu-
nological abnormalities in in MDS (Banerjee
et al. 2019; Xin et al. 2019; Corey et al. 2007;
Rosenberg and Sinha 2009; Yang et al. 2015).

The pathogenesis of MDS is heterogeneous and
includes abnormalities of both innate and adaptive
immune systems, as will be described. Understand-
ing how senescence-dependent changes and
mutations impact both hematopoietic stem/progen-
itor cells (HSPC) and the bone marrow microenvi-
ronment is essential to understanding the
pathogenesis and progression of the disease (Xin
et al. 2019; Wang et al. 2018; Glenthoj et al. 2016;
Kornblau et al. 2010; Marvel and Gabrilovich
2015).

The innate immune system was traditionally
though to dysregulate HSPC proliferation and
trigger apoptotic events contributing to the hall-
mark ineffective hematopoiesis in MDS. The acti-
vation of innate immune cells happens through
the interaction between pathogen-associated
molecular patterns (PAMPs) or host cell-derived
danger-associated molecular patterns (DAMPs)
with the Toll-like receptors (TLRs) (Kawai and
Akira 2010). The TLR signaling pathway results
in activation of mitogen-activated protein kinase
cascades and the nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) and
leads to transcription of pro-inflammatory
cytokines such as interleukin-8, which has been
described by de Matos et al. (2017). Intrinsic
dysregulation of TLR pathways in MDS HSPC
results in hyperactive TLR signalling, including a
novel inflammatory form of programmed cell
death, known as pyroptosis (Basiorka et al.

2016; Barreyro et al. 2018). Moreover, MDS
HSPC have a competitive advantage over normal
HSPC in the resultant chronic inflammatory envi-
ronment, which favours their expansion and dis-
ease progression (Muto et al. 2020).

Regarding cytokines, the levels of TNF-α,
IFN-γ, TGF-β, IL-6 and IL-8 have been observed
to be higher in MDS patients, and associated with
both dysregulated inflammatory signaling and
myeloid differentiation (Yang et al. 2015; Wang
et al. 2018; Kornblau et al. 2010; de Matos et al.
2017). According to Xin et al. (2019), who
conducted the first meta-analysis focused on
inflammatory cytokine levels in MDS patients,
there is a close association between immunologi-
cal microenvironment disorders and the patho-
genesis of MDS, with significantly increased
TNF-α, IFN-γ, IL-6 and IL-8 in blood and bone
marrow of MDS patients (Xin et al. 2019). In
addition to the aforementioned intrinsic
dysregulation of inflammatory pathways in
HPSC, extrinsic influence of these cytokines
from chronic infections or host inflammatory
disorders may further foster the MDS clonal
advantage and disease progression.

MDS-associated mutations and cytogenetic
aberrations may also contribute to the inflamma-
tory milieu. In a study made by Kornblau et al.
(2010), some cytokines and chemokines were
strongly correlated with certain MDS and AML
cytogenetic abnormalities, and influenced MDS
outcomes beyond the IPSS-calculated risk
(Kornblau et al. 2010). The groups of Karsan and
Starczynowski have also demonstrated that
haploinsufficiency of micro-RNAs (e.g. miR-145
and miR-146a) and genes in del(5q) MDS
(e.g. TIFAB) contribute to inappropriate TLR acti-
vation, including IL-6 production, by affecting
expression of signalling mediators, Toll-interleu-
kin-1 receptor domain-containing adaptor protein
(TIRAP) and tumor necrosis factor receptor-
associated factor-6 (TRAF6) (Starczynowski
et al. 2010; Varney et al. 2015). Moreover, recur-
rent MDS-associated mutations in epigenetic
regulators (e.g. TET2, ASXL1) and components
of the spliceosome machinery (e.g. SF3B1,
SRSF2, U2AF1) also appear to converge on innate
immune pathways, resulting in excessive
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inflammasome activation and inflammatory cyto-
kine production, including IL-6 (Basiorka et al.
2016; Smith et al. 2019; Pollyea et al. 2019).

The expression of at least thirty cytokines,
chemokines and growth factors in the peripheral
blood and bone marrow have been implicated in
MDS pathogenesis and clinical outcomes
(Banerjee et al. 2019; Xin et al. 2019; Yang et al.
2015; Wang et al. 2018; Glenthoj et al. 2016;
Kornblau et al. 2010; Ganan-Gomez et al. 2015).
Increased levels of cell death in bone marrow are a
hallmark of lower risk disease. On the contrary, in
higher risk MDS, with more aggressive clonal
expansion, decreased levels of apoptosis are
observed (Yang et al. 2015; Glenthoj et al. 2016;
Kerbauy and Joachim 2007). Levels of IFN-γ and
IL-6 are associated with apoptosis induction in the
bone marrow of MDS patients and higher IFN-γ
and IL-6 secretion is generally related to lower-risk
MDS. In contrast, immunosuppressive cytokines
like IL-10 are more strongly secreted in high-risk
MDS (Wang et al. 2018). These studies reflect the
importance of inflammatory cytokines in
dysregulation of the immunological environment
in the pathogenesis of MDS. While they show a
range in cytokine profiles between different types
of MDS and different studies, they importantly
also demonstrate convergence in critical innate
immune pathways. Increased intramedullary apo-
ptosis and pyroptosis are important contributors to
cytopenias in MDS. Additionally, it is very proba-
ble that these immunologic aberrations and
pressures play a central role in the course of
MDS evolution from low- to high-risk MDS or
to AML (Banerjee et al. 2019; Glenthoj et al. 2016;
Steensma et al. 2015; Valka et al. 2019; Sallman
and List 2019).

The role of adaptive immunity in MDS patho-
genesis and progression has been considered,
although not as extensively as the molecular
connections with innate immunity. CD8+
T-cells may become activated and expanded in
response to epitopes on MDS stem cells, resulting
in suppression of both malignant and normal
hematopoiesis, as reviewed by Wang et al.
(2018). This is exemplified in lower-risk MDS
with trisomy 8, where the Wilms tumor 1 antigen
(WT1) is overexpressed by HPSC, WT1 triggers

T-cell suppression of hematopoiesis, and this may
be ameliorated by T-cell directed immunosup-
pressive therapy (Sloand et al. 2011). However,
as MDS progresses to high-risk and later stages,
there is expansion of regulatory T-cell subsets
(Treg) and increased expression of inhibitory
checkpoint proteins, which likely facilitate eva-
sion of adaptive immunity by mutant MDS clones
(see recent reviews (Wang et al. 2018; Barreyro
et al. 2018; Sallman and List 2019; Winter et al.
2020)).

Indeed, it is well described that the tumor
microenvironment in MDS and other cancers is
immunosuppressive, both inhibiting activated
immune cells and activating cells with a suppres-
sive phenotype. Multiple cell types contribute to
tumor mediated immune suppression, including
Treg, type 2 NKT cells, and tumor associated
macrophages (TAMs) (Najjar and Finke 2013).
More recently, a group of cells named myeloid-
derived suppressor cells (MDSCs) has been con-
sidered as responsible for suppressing adaptive
immunity and mediating pathological effects
seen in MDS (Sica and Massarotti 2017; Chen
et al. 2013; Kittang et al. 2015; Eksioglu et al.
2017; Sarhan et al. 2018).

2 MDSC: Pathways of Activation
and Pathogenesis in MDS

Myeloid-derived suppressor cells (MDSCs) are a
heterogeneous population of immune cells that
are defined by their myeloid origin. This group
of cells strongly expands in pathological
situations such as chronic infections and solid
tumors, suppressing immune mediated tumor sur-
veillance and T cell polarization (Marvel and
Gabrilovich 2015; Gabrilovich et al. 2007).
MDSCs also share other non-immunological
functions such as promotion of angiogenesis,
tumor local invasion and metastases (Filipazzi
et al. 2012; Chesney et al. 2017).

Despite the fact that MDSCs are a phenotypi-
cally heterogeneous population of myeloid cells
at different stages of maturation, one feature com-
mon to all MDSCs is that they show remarkable
activity to suppress various non-myeloid immune
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cells, such as T-cells, B-cells and natural killer
(NK) cells (Filipazzi et al. 2012; Salminen et al.
2019a). MDSCs have also been reported to regu-
late innate immune responses by modulating the
cytokine production of macrophages (Raza and
Galili 2012; Lopez-Bujanda and Drake 2017).
Three main subdivisions of MDSC have been
proposed (Bronte et al. 2016): PMN-MDSCs or
G-MDSCs (polymorphonuclear or granulocytic)
which account for 70–80% of the MDSC popula-
tion, M-MDSCs (monocytic) which account for
20–30% of MDSCs, and a smaller fraction of
early-stage MDSC (eMDSC) (Lopez-Bujanda
and Drake 2017; Bronte et al. 2016). There are
some phenotypical differences when human and
murine markers are compared. In humans,
PMN-MDSCs are identified by the
CD11b+CD14�CD15+ expression pattern or
CD11b+CD14�CD66b+, while M-MDSC are
characterized by CD11b+CD14+HLAlow/-CD15�

and eMDSC as lineage (CD3/14/15/19/56)-nega-
tive/HLA-DR�/CD33+ (Filipazzi et al. 2012;
Bronte et al. 2016; Safarzadeh et al. 2019).

Physiologically, MDSCs are present predomi-
nantly in the bone marrow (Nadal et al. 2018). In
pathological conditions, such as with cancer,
chronic inflammation or autoimmunity, a
sustained and aberrant differentiation of myeloid
cells occurs, leading to MDSC expansion. Inflam-
matory factors can modulate myeloid cells in the
tumor microenvironment, and having them deliv-
ered distantly to hematopoietic organs can change
normal myelopoiesis and skew the differentiation
of myeloid cells in favor of MDSCs (Umansky
et al. 2016). The expansion and activation of
MDSC are controlled by a complex network of
soluble factors like IL-6, IL-10, IL-1β and IFN-γ,
granulocyte-macrophage colony stimulating fac-
tor (GM-CSF), M-CSF, G-CSF, vascular endo-
thelial growth factor (VEGF) and TLR ligands
(Gabrilovich and Nagaraj 2009; Veglia et al.
2018; Kumar et al. 2016a). Under pathological
conditions and mediated by these factors, MDSC
can be found in higher proportions in the blood
circulation and may be also recruited back to the
tumor microenvironment (Kumar et al. 2016b).
Moreover, a tumor-microenvironment (TME)
that is hypoxic, nutrient-deprived and enriched

in pro-inflammatory and suppressive cytokines,
chemokines, and oxidative agents such as reac-
tive oxygen species (ROS), nitric oxide (NO) and
peroxynitrite, further induces the activation of
local MDSCs (Tcyganov et al. 2018; Wang
et al. 2013; Consonni et al. 2019; Weber et al.
2018).

MDSC are also defined by their functional
ability to suppress immune cell responses (Bronte
et al. 2016). This is achieved through the expres-
sion of many immune suppressive factors as, for
instance, arginase (ARG1), NO and ROS. Unre-
strained MDSC activation may, in turn cause
DNA mutations and genetic instability.

The specific types of MDSCs use different
mechanisms of immunosuppression. The essential
difference is that the suppressive PMN-MDSCs
produce ROS and ARG1, whereas M-MDSCs
predominantly express the inducible nitric oxide
synthase (iNOS). However, the common andmain
mechanism of action associated with the immuno-
suppressive activities of PMN-MDSCs and
M-MDSCs is the metabolic conversion of
L-arginine (L-Arg) through either iNOS or
ARG1. Because both promote the depletion of
the amino acid L-Arg and down-regulation of T
cell receptor (TCR) ζ-chain expression, this leads
to suppression of the cell cycle and T-cell immu-
nosuppression as a result (Consonni et al. 2019).

MDSC expansion therefore inhibits prolifera-
tion and antitumor activity of T cells, decreasing
cytokine secretion, recruiting regulatory T cells,
and consequently, prohibiting natural killer cell
(NK cell) activation, thus hampering the host
anti-tumor immune response. Furthermore,
MDSC also induce Treg differentiation by secret-
ing IL-10 and TGF-β as well as stimulating tumor
angiogenesis by secreting VEGF and basic fibro-
blast growth factor (Gabrilovich and Nagaraj
2009; Gabrilovich et al. 2012; Schmid and Varner
2012).

Clinical and experimental evidence has shown
an association between MDSCs and cancer. A
significant increase in MDSCs provokes a propi-
tious immune microenvironment associated with
high cancer prevalence, poor prognosis and resis-
tance to therapy (Marvel and Gabrilovich 2015;
Kirkwood et al. 2018; Lisha et al. 2018). On the
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other hand, the impact of age on MDSCs in
humans is not well documented. The mechanisms
involved in age-related increase of MDSCs seems
to be, at least partly, determined by well-known
aging-associated processes, including cellular
senescence and chronic low-grade inflammation
(“inflammaging”), and likely the skewing of
hematopoiesis away from the lymphoid toward
the myeloid lineage (Kirkwood et al. 2018;
Pawelec et al. 2019; Salminen et al. 2019b).
However, the recognition of expanded MDSC in
MDS may offer a further genetic connection to
aging (Chen et al. 2013).

In 2013, it was reported that MDSC were
markedly expanded in the blood (Jiang et al.
2013) and bone marrow (Chen et al. 2013) of
MDS patients. The latter study also demonstrated
a suppressive effect of MDS MDSC on human
erythroid and myeloid progenitor cell growth
in vitro, implicating MDSC in the ineffective
hematopoiesis associated with MDS (Chen et al.
2013). Moreover, with murine models, it was
demonstrated that MDSC expansion is driven by
pro-inflammatory S100A9, signalling through
CD33 and mediated by the induction of immuno-
suppressive IL-10 and TGF-β (Chen et al. 2013).
Independent studies subsequently revealed
associations between MDSC and Treg expansion
and higher MDS clinical risk (Kittang et al.
2015). Novel therapies are now under consider-
ation, directed towards MDSC and with the goal
of ameliorating immunosuppression and improv-
ing hematopoiesis (Eksioglu et al. 2017; Sarhan
et al. 2018). However, the relationship between
these immune cell populations, inflammatory sig-
naling and recurring mutations in MDS is not
completely understood. The influence of different
factors in expansion and activation of MDSCs
such as PGE2, VEGF, IL-6, IL-10 and S100A8-
A9 has been shown (Rosenberg and Sinha 2009;
Marvel and Gabrilovich 2015; Najjar and Finke
2013; Gabrilovich and Nagaraj 2009; Pawelec
et al. 2019). Due to the profile of inflammatory
cytokine changes with the course of disease, cur-
rent studies have focused on understanding the
abnormalities in immunologic profile in different
myeloid disorders, mainly in MDS and AML, and
other proposals to deplete the key innate immune

cellular effectors, MDSC, are still currently in
development (Sallman and List 2019; Pawelec
et al. 2019).

3 Considerations for Clonal,
Pre-MDS States: CHIP
and CCUS

Major breakthroughs in the molecular and genetic
basis of MDS have recently been achieved.
Genetic lesions, namely recurrent somatic point
mutations and/or small insertions/deletions in >40
different genes, have now been associated with
MDS pathogenesis (Cazzola 2020; Cull and Rauh
2017; Claus and Lubbert 2003; Issa 2010;
Sperling et al. 2017). These mainly occur in
genes regulating RNA splicing (e.g., SF3B1,
SRSF2, U2AF1, ZRSR2), DNA methylation
(e.g., TET2, DNMT3A, IDH1/IDH2) and chroma-
tin accessibility (e.g., ASXL1, EZH2, STAG2,
RAD21), transcription factors (e.g. RUNX1,
GATA2, ETV6), signal transduction (e.g. CBL,
JAK2, NRAS) and the response to DNA damage
(e.g. TP53, PPM1D). In the case of SF3B1, the
presence of mutations is incorporated into the
current iteration of the World Health Organiza-
tion classification of MDS, with a recent proposal
to recognized SF3B1-mutant MDS as an even
more distinct diagnostic entity (Malcovati et al.
2020).

Presently, other MDS-associated mutations
are not considered diagnostic of MDS on their
own. This is because at least 10–15% of healthy
older persons with no hematologic disease
acquire somatic mutations that overlap with
MDS, drive clonal expansion and, eventually,
what is now called clonal hematopoiesis of inde-
terminate potential (CHIP) (Steensma et al.
2015). Although most individuals who acquire
CHIP during aging will never develop MDS, the
presence of an MDS-associated somatic muta-
tion, such as in DNMT3A, ASXL1 or TP53 is a
strong predictor of the development of
subsequent hematologic malignancy and is
associated with worse overall survival (Park
et al. 2019; Yoshizato et al. 2015). The presence
of a recurrent mutation and otherwise
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unexplained cytopenias (clonal cytopenias of
undetermined significance, CCUS) can be sug-
gestive of progression to MDS, although in this
case more specific morphologic criteria are man-
datory (Sperling et al. 2017; Cargo et al. 2015;
Kwok et al. 2015). A subsequent study with lon-
gitudinal follow-up suggests it may be possible to
predict patients with CCUS at greatest risk of
progression to MDS or other myeloid neoplasm
and that, effectively, CCUS patients with particu-
lar mutational features may have presumptive
evidence of early MDS (Malcovati et al. 2017).

As described, there is a complex process
involved in the pathogenesis of MDS, especially
mechanisms directly correlated with myeloid-
mediated inflammation, the accumulation of
genetic damage, immunosuppression and related
selective pressures during the evolution of malig-
nant clones (Steensma et al. 2015; Hosono 2019)
(Fig. 1). Although we have mainly focused on
these aspects in the context of MDS, these pro-
cesses are likely at play as early as the CHIP
phase and into CCUS. For example, common
drivers of CHIP and MDS, mutations in TET2
and DNMT3A, have been associated with inflam-
mation and immune cell alterations in humans
and murine models, as recently reviewed (King
et al. 2020; SanMiguel et al. 2020; Ferrone et al.
2020; Cook et al. 2020). Moreover, spliceosomal

mutations (e.g. SF3B1, SRSF2, U2AF1) also
appear to converge on innate immune pathways,
resulting in excessive inflammasome activation
and inflammatory cytokine production, including
IL-6 (Smith et al. 2019; Pollyea et al. 2019).
Finally, our group has demonstrated increased
ARG1 expression in Tet2-mutant macrophages
(Cull et al. 2017) and in MDS patients with
DNMT3A and TET2 mutations (Cull et al.
2018). This could signify a myeloid suppressive
phenotype (reminiscent of MDSCs) in response
to chronic inflammation but more studies are
required to map the relationship between immune
dysregulation and mutations in the progression
from CHIP to CCUS and MDS. The comprehen-
sion of genetic lesions, genomic instability and
dysregulated immune response are important to
better understand MDS pathogenesis, progression
and predictive factors of response to therapy.

4 Conclusions

Though the pathogenesis in MDS is now much
more understood, the factors involved in this het-
erogeneous process are still an attractive and con-
stant focus of research. Clinical and experimental
evidence suggest an important link between
genetic, epigenetic, and immune systems in the

Fig. 1 Some of the main pathways involved in MDS
pathogenesis and progression. An aging and inflamma-
tory bone marrow microenvironment induced by cellular
senescence and chronic immune stimulation leads to
MDSC accumulation and activation. Inflammatory
cytokines and soluble factors, such as ROS and iNOS,
contribute to increased apoptosis and pyroptosis of
HSPCs as well as genomic instability. Somatic mutations
contribute to further dysregulation of immune system,

suppression of normal hematopoiesis, clonal evolution
and susceptibility to leukemic transformation. HSPC
Hematopoietic stem and progenitor cells, IMCs Immature
myeloid cells; MDSCs Myeloid-derived suppressor cells,
ROS Reactive oxygen species, iNOS Inducible nitric oxide
synthase, TNF-ɑ Tumor necrosis factor-alpha, IFN-γ Inter-
feron gamma, TET2 Tet methylcytosine dioxygenase
2, DNMT3A DNA methyltransferase 3A, ASXL1 Addi-
tional sex combs like 1, JAK2 Janus Kinase 2
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pathogenesis and progression of MDS. Ongoing
studies are looking at more specific molecular and
immune pathways and targets with potential clin-
ical significance, notably the role of the inflam-
matory marrow environment and MDSCs in
MDS. Translation from understanding the com-
plex molecular and immunological pathophysiol-
ogy of MDS to the identification of new targets
and novel treatment options are long awaited.
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Abstract

Stem cells are a promising source for regener-
ative medicine to cure a plethora of diseases
that are currently treated based on either palli-
ative or symptomatic relief or by preventing
their onset and progression. Aging-associated
degenerative changes in stem cells, stem cell
niches, and signaling pathways bring a step by
step decline in the regenerative and functional
potential of tissues. Clinical studies and
experiments on model organisms have pointed
out checkpoints that aging will inevitably
impose on stem cell aiming for transplantation
and hence questions are raised about the age of
the donor. In the following discourse, we
review the fundamental molecular pathways
that are implicated in stem cell aging and the
current progress in tissue engineering and
transplantation of each type of stem cells in
regenerative medicine. We further focus on the
consequences of stem cell aging on their clini-
cal uses and the development of novel
strategies to bypass those pitfalls and improve
tissue replenishment.

Keywords

Aging · Regeneration · Regenerative
medicine · Senescence · Stem cells

Abbreviations

ADSC Adipose tissue-derived stem cell
ASC Adult stem cell
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BMDSC

Bone marrow-derived mesenchy-
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CSC Cardiac stem cell
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EPC Endothelial progenitor cell
ESC Embryonic stem cell
G-CSF Granulocyte colony-stimulating
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stimulating factor
GSC Germline stem cell
GVHD Graft versus host disease
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HIF Hypoxia-Inducible Factor
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iPSC Induced pluripotent stem cell
ISC Intestinal stem cell
LDHA Lactate dehydrogenase A
MDSC Muscle-derived stem cell
MSC Mesenchymal stem cell
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