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Preface

It is a pleasure to complete this book that is devoted to the fundamental study of
vortex-induced oscillations. This study is borne of the desire to understand such
fluid–structure interactions at a fundamental level, and to derive mathematical
models within the framework of the flow-oscillator paradigm.

This monograph is a compendium of the efforts of the authors over two decades.
We view it as a preliminary effort that has many opportunities for extensions and
added insights by others who are so interested.

We find that the variational framework for such modeling efforts provides cer-
tain advantages for the derivation of the governing equations, but these equations
are not unique. Rather, the derived equations depend on the physical assumptions
made initially and throughout the analysis. Our primary goal has been to create a
modeling framework within which flow-oscillators can reside, and to show how a
number of well-known flow-oscillators, formulated by others, can be viewed as
being a part of this framework. An advantage of this framework is that assumptions
are explicit and can be removed or changed. Other assumptions can be added. Each
of these alterations leads to different governing equations, as one would expect. But
the assumptions are explicit, physical, understood, and open to debate.

We appreciate the work of many of our colleagues on this problem of
vortex-induced oscillations, and from whom we have learned much. We hope that
this effort by us resulting in a new perspective proves to be interesting and useful.

Piscataway, USA Haym Benaroya
June 2019
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Chapter 1
Introduction

Abstract This chapter introduces the focus problem of this monograph, vortex-
induced oscillations,which iswithin the fluid–structure interaction class of problems.
The organization of the monograph is provided.

1.1 Background and Overview

The problem of fluid–structure interaction (FSI) has long been one of the great
challenges in engineering. It is a crucial consideration in the design of many bluff-
body engineering structures, such as offshore structures, skyscrapers, aircraft, and
bridges. It is also a serious design consideration for aerodynamic bodies, such as
wings, but this is beyond our scope. While the importance of the subject has been
understood for well over a century, it has been only in the past few decades that
efforts have been made to analytically model the general behavior of such systems.
Parallel to analytical attempts, many experiments have been devoted to gathering
data and interpreting such interactions. Consequently, analytical dynamics-based
modeling of such problems has evolved with coupling to experimental data resulting
in various semi-analytical representations. Generally, attempts have been made to
model vortex-induced vibration (VIV) problems as few degrees-of-freedom (DOF)
oscillatory models; therefore, they are referred to as reduced-order models.

Due to the complexity of the interactions between fluid and structure, in particular
for vortex-induced vibration, a variety of efforts have been undertaken to explain the
physics of this coupling. Initially, the efforts were experimental so that “reality”
could be visualized, and then explained. Tremendous efforts have led to impressive
results by numerous experimentalists along with an extensive phenomenological
understanding of this behavior. The practical needs of industry required more than
just understanding; it required designs of structures and machines that could operate
safely for long periods of time in fluid environments where complex interactions
occur. For vortex-induced oscillations, this led to the need for design equations that
were representative of the experimental data, as well as technologies to minimize
the effects of shedding vortices. Physical theory lagged experimental data, of course,
but the need for governing design equations was there, resulting in the formulation

© Springer Nature Switzerland AG 2020
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2 1 Introduction

of governing equations that qualitatively mimicked the data and could be made to fit
the data in specific instances by the use of nonphysical “arbitrary” parameters. Such
semi-empirical equations have formed the backbone of reduced-order modeling for
VIV.

Our monograph represents a line of work with the goal of laying a fundamental
foundation for such reduced-order modeling. This effort is based on the variational
principles of mechanics. Before we go to that work in Chap. 4 and subsequent chap-
ters, we review the efforts of the community. In Chap.2, we provide a representative
reviewof the literature for bluff bodies. InChap.3,we summarize variationalmechan-
ics. In Chaps. 4–7, we provide detailed derivations of a sequence of our analytical
dynamics modeling efforts of VIV.

1.2 Introduction to the Model Problem

For experimental studies of VIV, certain types of structural configurations have been
preferred in the literature, where a rigid solid body with one or two degree(s)-of-
freedom is immersed in a flow. While the experiments have been conducted on a
variety of solid shapes (and occasionally on flexible bodies), reduced-order semi-
analytical models have been generally developed for single DOF rigid bluff bodies,
specifically for circular cylinders. The most commonly used model, called themodel
problem [5], is a type of inverted solid pendulum that is immersed in a flow, rests on
elastic supports and can onlymove transversely to the flow direction. A secondmodel
is the translating cylinder. Schematic diagrams of elements of two representative
configurations of the model problem are shown in Figs. 1.1 and 1.2. The model
problem has been widely used since it possesses a simple geometric configuration,
and yet, it exhibits the majority of the nonlinear behaviors observed in VIV systems.
Consequently, the majority of VIV experiments have been conducted based on the
model problem. Both in experimental and analytical studies, the flow is controlled
or considered to be two dimensional for all time, as are the shedding vortices.

The purpose of this work is to present our theoretical studies that derive reduced-
ordermodels fromfirst principles,where assumptions are explicitly stated. Therefore,
experimental observations are not the main focus of this research work. However, a
few key features observed in the experimental studies are summarized for those who
are not familiar with the subject. An in-depth review of experimental studies of VIV
can be found in [4].

Startingwith the stagnant fluid, if the speed of the flowpast a bluff-body cylinder is
increased, three different behavioral regimes are identified: pre-synchronization, res-
onant synchronization, and classical lock-in. Pre-synchronization is the first regime
where the structure starts oscillating and vortices are first observed. The amplitudes
of the structural oscillations are low and the vortices’ strength are weak to moderate.
Observed in this region is a beating behavior, that is, the peak amplitudes of structural
response increase and decrease gradually as the structure oscillates. Moreover, the
flow drives the structure in this region.
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Fig. 1.1 A representative
configuration of the model
problem: translating cylinder

Fig. 1.2 A representative
configuration of the model
problem: inverted pendulum
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As the average velocity of the flow is increased, vortices become stronger until
the frequency of the vortex shedding reaches the natural frequency of the structure,
where near-resonant behavior is observed. Thus, the structural response reaches a
maximum and this is called the resonant synchronization region. Similar to the pre-
synchronization region, beating behavior is noticeable but weaker, and the structure
remains driven by the flow.

If the flow velocity is increased further, constant structural oscillation ampli-
tude and frequency are observed for a range of flow velocities. This phenomenon
is called classical lock-in. Unlike the other two regions, the flow is modulated by
the structure and the observed vortices are the least organized. The existence of
three distinct regimes in the frequency–amplitude response curves of an inverted
pendulum is shown in Fig. 1.3. As in Fig. 2.1, many experiments show the exis-
tence of hysteretic behavior, where the maximum amplitude of the oscillations are
larger as the velocity is increased than when it is decreased. VIV is a complicated
phenomenon. The structural response depends on many factors, such as shedding
frequency, Reynolds number, material damping, structural stiffness, surface rough-
ness, cylinder length, density of the fluid, and mass of the cylinder, [4, 8]. Therefore,

Fig. 1.3 The frequency–amplitude response curves of an inverted pendulum, where A is the ampli-
tude of oscillation, D is the diameter of the cylinder, Fs is the frequency of oscillation, Fn is the
natural frequency of the cylinder,U represents the fluid velocity; �, © amplitude of oscillation for
two independent but identical experimental runs; × frequency of oscillation and vortex shedding
frequency in which VIV was observed; ♦ frequency of vortex shedding where the cylinder was
stationary; I pre-synchronization; I I resonant synchronization; I I I classic lock-in [2]. Reprinted
with permission
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reduced-order modeling of VIV has evolved in parallel to experiments in order to
quantify our understanding of this phenomenon.

Efforts tomodel VIV as reduced-order systems can be divided into two categories:
empirical models and first-principles models. Moreover, the empirical models can be
divided into two subcategories: wake-oscillator (wake-body) models and experimen-
tal force-coefficient models. Thewake-oscillatormodels are based on the assumption
that an immersed structure in a flow experiences nonlinear oscillator-like hydrody-
namic forces. Therefore, the aim is to obtain nonlinear fluid force equations from
the experimentally acquired data that can be coupled with the structural equation of
motion. One of the early models is the one proposed by Hartlen and Currie [6]. They
used a van der Pol-type fluid oscillator to model the fluid–structure system,

ẍ + 2ζ ẋ + x = aω2
0CL (1.1)

C̈L − αω0ĊL + γ

ω0
Ċ3

L + ω2
0CL = β ẋ , (1.2)

where a, ω0, and ζ are the known structural parameters, and the fluid parameters α,
β, and γ are found experimentally.

The experimental force-coefficient models are single degree-of-freedom models.
They only include a single forcing function obtained experimentally. Generally, the
empirical models have relative success in capturing the features of VIV. However,
thesemodels neglect the dynamic coupling between the flowand the structure by only
considering the forces as they are seen by the structure. Therefore, they do not provide
much understanding of the physics of the problem, as the fluid and structure exchange
energy. These ad hoc methods are outside the scope of this work that is focused on
first-principles models, specifically, using variational principles. Useful reviews of
the empirical models can be found in [1, 3, 4].While variational principles have been
known for well over a century, it was not until 1973 that McIver was among the first
researchers to propose the use of variational methods in modeling fluid–structure
interaction problems [7]. Also, the work by Benaroya and Wei in 2000 is one of
the earliest attempts to use such methods for VIV problems [2]. Consequently, the
literature on the subject is very limited.

In the next chapter, we provide an overview of the literature on VIV. The field is
vast and our review should be considered to be representative rather than compre-
hensive. This review is intended to provide the reader a feel for the physics of the
dynamic behavior, and a summary of relevant modeling efforts.
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Chapter 2
Literature in Vortex-Induced Oscillations

Abstract A literature review is provided in this chapter of vortex-induced oscilla-
tions.While the literature is vast, our review is selective but representative of the field.
Reviewed are: (i) experimental studies on: fluid forces, three-dimensionality and
free-surface effects, vortex-shedding modes and synchronization regions, frequency
dependence of the added mass, the dynamics of cylinders with low mass-damping;
(ii) semi-empirical models: wake-oscillator, single degree-of-freedom, force decom-
position; (iii) variational approaches; and (iv) numerical approaches.

2.1 Introduction

Vortex-induced vibration (VIV) occurs when shedding vortices (a von Kármán vor-
tex street) exert oscillatory forces on a cylinder in the direction perpendicular to both
the flow and the structure. The structure starts to oscillate due to these forces if it is
not fixed. For fixed cylinders, the frequency of shedding is related to the nondimen-
sional Strouhal number, defined as S = fvD/U , where fv is the frequency of vortex
shedding, U is the steady velocity of the flow, and D is the diameter of the circular
cylinder. The Strouhal number is found to be nearly constant with a value of 0.2 for
a large range of Reynolds numbers. This range is often called the subcritical range
and spans the Reynolds number range from 300 to 2 × 105 [19].

For flow past cylinders that are free to vibrate, the phenomenon of synchronization
or lock-in is observed. For low flow speeds, the cylinder will initially respond at the
frequency fv. This frequency is fixed by the Strouhal number. As the flow speed
is increased, the shedding frequency approaches the fundamental natural frequency
of the cylinder, fn. In this regime of flow speeds, the vortex-shedding frequency no
longer follows the Strouhal relationship. Rather, the shedding frequency becomes
“locked-in” to the natural frequency of the cylinder. Within the lock-in regime large
body motions are observed (the structure undergoes near-resonance vibration).

It is alsowell known that a hysteresis behaviormay exist in the amplitude variation
and frequency capture depending on the approach to the resonance range—whether
from a low velocity or from a high velocity [88]. As will be discussed later, the
two branches of this hysteresis loop are associated with different vortex-shedding
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Fig. 2.1 Oscillation characteristics for a freely vibrating circular cylinder with light damping. N
is the body oscillation frequency, n is the vortex-shedding frequency, V = D is the normalized
maximum amplitude of oscillation measured at a particular value of the reduced velocity, and
φo is the phase angle between the fluid force and the cylinder displacement. O, vortex-shedding
frequency; +, cylinder frequency; �, phase angle; x, oscillation amplitude [4]. Reprinted with
permission of the author

modes and transition between these branches is associated with a phase jump of
∼180◦ [65]. Shown in Fig. 2.1 is a typical response in the lock-in region of a freely
vibrating circular cylinder with light damping. The hysteresis effect is clearly seen,
with higher amplitudes achievedwhen the reduced velocity is increased over a certain
range. Here, N is the body oscillation frequency, n is the vortex-shedding frequency,
Ȳ is the maximum amplitude of oscillation measured at a particular value of the
reduced velocity, and φ◦ is the phase angle between the fluid force and the cylinder
displacement. The straight line S = 0.198 is the line of constant Strouhal number.
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The amplitude of the structural response during lock-in and the band of fluid
velocities over which the lock-in phenomenon exists is strongly dependent on a
reduced dampingparameter expressing the ratio of the damping force to the excitation
force. The Scruton number, Sc = 4πmζ/ρD2, is but one of many representations for
this reduced damping parameter found in the literature. As the reduced damping
parameter increases, lock-in becomes characterized by a decreasing peak structural
amplitude and occurs over a decreasing band of velocities. It is also worth noting that
different phenomena are seen in structures with high and low structure–fluid density
ratiosM ∗ = m/ρD2, where m is the cylinder mass per unit length and ρ is the fluid
density. For systems with high M ∗ , the vortex-shedding frequency is entrained by
the structural frequency. For systems with low M ∗, it is the fluid oscillation which
sets the frequency, and the entrainment frequency instead tends toward the shedding
frequency fv.

The engineering implications of VIV have been well documented in the literature.
Structures such as tall buildings, chimneys, stacks, and long-span bridges develop
pronounced vibrations when exposed to fluid flow. For example, studies focusing
on the VIV of these structures are found in references [18, 22, 59, 74]. The length
and higher flexibility of some of these structures further aggravates the problem.
In offshore applications, VIV of long slender structures such as pipelines, risers,
tendons, and spar platforms challenge engineering designers [17]. Some examples
of fundamental studies on the nature of the VIV of marine structures are included in
references [25, 30, 50, 100, 105]. Extensive research has also been done in the area
of VIV assessment [21, 69, 72] and suppression [3, 49] .

In this review, both experimental and theoretical investigations of the fundamental
aspects of vortex-induced vibration of circular cylinders are discussed in some detail.
The goal has been to be thorough without being exhaustive. The main focus is on
the semi-empirical models used to predict the response of the cylinder to the forces
from the flow. These models are not rigorous and generally provide minimal insights
into the flow field. To understand the flow effect on a structure, it is important that
the actual flow field be described. Consequently, a secondary focus of this review is
to discuss the flow characteristics around the cylinder. The flow field generated by
flow separation around a body is a very complex fluid dynamics problem. However,
much progress has been made toward the understanding of flow around bluff bodies.
This is especially true in the field of computational fluid dynamics (CFD), and in
keeping with the primary focus of this review, only selected papers highlighting this
progress have been included.

Many reviews of the subject have been written that primarily focused on the
experimental data [4, 7, 8, 64, 73, 88]. A recent one is by Sarpkaya [92]. While
there continues to be extensive work on VIV, this work is still an excellent repre-
sentation of our understanding. At about the same time, a review paper by two of
us [34] focused on semi-empirical, reduced-order, modeling efforts. Since that time,
additional review papers have appeared: Williamson and Govardhan [109], Bearman
[5], and Wu et al. [111].

While VIV continues to be the subject of intensive research efforts and is quickly
evolving, the need for reduced-order models continues to this day. Among their
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attractions is the fact that they can be used in higher Reynolds number flows than
CFD models and they have been solved in both the time and frequency domains.
In addition, an alternative new method for the modeling of VIV is discussed, an
approach that is the basis for this monograph. The method is based on the variational
principles of mechanics and leads to a more fundamental (without ad hoc assump-
tions) derivation of the reduced-order equations of motion, yet remains inexorably
linked to physical data. Experimental data helps to verify the model predictions, thus
leading to the most advantageous model framework.

2.2 Experimental Studies

There are innumerable experimental studies on the vortex-induced vibration of bluff
bodies, especially circular cylinders. These studies have examined a multitude of
phenomena, from vortex shedding from a stationary bluff body to vortex shedding
from an elastic body. The vibration caused by vortices generated by the flow past a
structure depends on several factors. The correlation of the force components, the
Reynolds number, the shedding frequencies, and the added mass effects are just a
few of these. The literature is rich with experiments in which many of these factors
have been considered, usually by varying one or two factors and holding the rest
fixed. Here, key papers highlighting the influences of some of these factors on the
structural response are discussed. Attention is focused mostly on results pertaining
to the structural response. However, since VIV is indeed a coupled phenomena, some
mention must be made of the hydrodynamics.

Before proceeding, it is worthwhile to define those variables that consistently
appear in the equations developed in this section of the review. The outer diameter
of a circular cylinder is designated by D, the length of the cylinder by L, the free-
stream velocity of the flow by U , and the fluid density by ρ. The Strouhal number,
S, is defined as S = fvD/U , where fv is taken to be the natural vortex-shedding
frequency of a fixed cylinder. The reduced velocity is defined as Vr = U/fnD, where
fn is the natural frequency of the structure. The normalized damping is defined as
ζ = csys/ccrit , where csys is the system damping, and ccrit is the critical damping.

Bearman [4] presents a comprehensive review of experimental studies related to
vortex shedding from bluff bodies. He addresses the important question of the role
of afterbody shape in vortex-induced vibration and results pertaining to a variety
of afterbody shapes are included. Bearman first examines the mechanism of vortex
shedding from a fixed bluff body. The presence of two shear layers is primarily
responsible for vortex shedding. The presence of the body does not directly cause
the vortex shedding, but it instead modifies the vortex- shedding process by allowing
feedback between the wake and the shedding of circulation at the separation points.

Another important point discussed is the absence of two-dimensionality in the
vortices shed from a two-dimensional bluff body in uniform flow. The spanwise
coupling between the two shear layers that lead to the generation of vortex shedding is
generally weak. This implies that unsteady quantities related to vortex shedding (e.g.,
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surface pressure) are not constant along the span of the body. However, continuous
regions of similar properties are characterized in terms of correlation lengths. Small
departures from two-dimensionality, in the form of a taper along the axis of the bluff
body or the presence of shear flow, leads to significant reductions in the vortex-
shedding correlation length.

Bearman also examines vortex shedding from oscillating bluff bodies. The fun-
damental difference between fixed and oscillating bluff bodies is that the motion of
the cylinder can take control of the instability mechanism that leads to vortex shed-
ding. This is manifested in the capture of the vortex-shedding frequency by the body
natural frequency over a range of reduced velocities. The vortex-shedding correla-
tion length is significantly increased when the vortex-shedding frequency coincides
with the body oscillation frequency. The range of reduced velocities over which the
vortex-shedding frequency coincides with the natural frequency of the body depends
on the oscillation amplitude. Larger ranges of frequency capture result from larger
oscillation amplitudes.

It is worth pointing out that the capture range will always include the reduced
velocity value corresponding to the inverse Strouhal number, and that maximum
amplitude is attained near to (but not exactly) this value. In other words, the reduced
velocity for maximum amplitude is close to 1/S. The location of this resonant point
within the capture range depends on the shape of the afterbody.

In the capture range, flow conditions around a bluff body change rapidly. The
fluctuating lift coefficient increases due to the improved two dimensionality of the
flow. This improved two dimensionality (increased correlation length) increases
the strength of the shed vortices. The increase in the lift coefficient can also be
attributed to the influence of the body motion, which manifests itself through the
reduction of the length of the vortex-formation region and the formation of stronger
vortices near the base of the body. The mechanism governing the phase of the vortex-
induced force relative to the body motion has also been explored by Bearman. The
changes in phase angle through the capture range occur in a progressive and not
discontinuous fashion. In the lower end of the lock-in range, a vortex formed on
one side of the cylinder is shed when the cylinder is near to attaining its maximum
amplitude on the opposite side (Mode 1). As the reduced velocity is increased, the
timing of vortex shedding suddenly changes, and the same vortex is now shed when
the cylinder reaches its maximum amplitude on the same side (Mode 2). Clearly, the
point in an oscillation cycle at which the cylinder receives its maximum transverse
thrust changes drastically over a narrow range of reduced velocities. Zdravkovich
[113] discusses in detail the modification of vortex shedding in the synchronization
range. The existence of the two modes, Mode 1 and Mode 2, is used to explain the
existence of the hysteresis effect.

Bearman [4] discusses free versus forced vibrations in experiments. Forced vibra-
tion experiments offer the advantage that the reduced velocity and amplitude ratios
can be independently varied. In free vibration experiments, these two parameters
are inseparable, since varying the reduced velocity leads to changes in the ampli-
tude ratio. The major disadvantage of forced vibration experiments is that only a
very limited range of reduced velocities and amplitude ratios studied will actually
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correspond to those encountered in a free vibration. Bearman states that free and
forced vibration flows are the same, provided that one assumes that the exact history
of motion is inconsequential.

2.2.1 Fluid Forces on an Oscillating Cylinder

Vortex shedding from a circular cylinder produces alternating forces on the cylinder
and it is these forces that cause the cylinder to vibrate if it is free to do so. Experiments
by Sarpkaya [87] determine the in-phase and out-of-phase components of the time-
dependent force acting on a rigid circular cylinder undergoing forced transverse
oscillations in a uniform stream. These force components are used in the prediction
of the dynamic response of an elastically mounted cylinder in the synchronization
range. The details of this aspect of the investigation are relegated to the section
of this review describing semi-empirical models. Preliminary experimental work
measures the mean fluid-induced force on the cylinder in the direction of flow for
various amplitudes and frequencies of cylinder oscillation in the transverse direction.
The in-line force is found to increase as A/D increases, where A is the transverse
oscillation amplitude. For a given value of A/D, the in-line force reaches a maximum
for D = VT (mathematically similar to a Strouhal number) in the range 0.18–0.20,
where T is the oscillation period and V has the same meaning as U . Furthermore,
synchronization is found to occur at a frequency slightly lower than the Strouhal
frequency for a stationary cylinder, 0.21, corresponding to the range of Reynolds
numbers considered by Sarpkaya, 5000–25,000.

In considering the transverse force on the cylinder, the lift coefficient CL is
expressed in terms of an in-phase inertia force and an out-of-phase drag force. The
inertia coefficient Cml characterizes the in-phase force, while the out-of-phase force
is characterized by the drag coefficient Cdl . The drag and inertia coefficients are
assumed independent of the Reynolds number in the range considered, 5000–25,000.
Synchronization ismanifested by a rapid decrease in the inertia coefficient and a rapid
increase in the absolute value of the drag coefficient. The experiments also confirm
that the net effect of the cylinder–flow interaction near synchronization, forA/D < 1,
is the same as for periodic flow over a cylinder at rest. This suggests that the fluid
becomes the oscillator under these conditions.

Themajor implication is then that use of themaximum inertia coefficient obtained
by oscillating the cylinder in a fluid otherwise at rest, Cml = 1, does not give the cor-
rect results sinceCml has been shown to reach a value of about 2 near synchronization.
There is a range of Vr = VT/D near perfect synchronization, Vr ∼ 5, where the drag
coefficient is found to be in-phase (negative) with the direction ofmotion of the cylin-
der. In this range, the drag coefficient actually helps to magnify the oscillations, and
for this reason the range is often referred to as the negative damping region.

Gopalkrishnan [36] measures the vortex-induced lift and drag forces on a smooth
circular cylinder undergoing forced sinusoidal oscillations transverse to the free
stream. Themeasurements are conducted inwater. The lift force phase angle (defined
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in the same way as φo in Fig. 2.1) is found to be very different for large oscillation
amplitudes than for small oscillation amplitudes. This is partially responsible for
the amplitude-limited nature of VIV. The range of reduced velocities where the
cylinder is excited into oscillations by the flow (the lift coefficient excitation region)
is found to not coincide with the lock-in region. Furthermore, the excitation region
is found to be dependent on the phase, while lock-in is found to be a frequency-
dependent effect. The author also measures the lift and drag forces on a cylinder
subjected to an amplitude-modulated force causing beating motions. The presence
of beating is found to cause a reduction in the mean drag coefficient, an increase in
the rms oscillating drag coefficient, and increased extent of the primary excitation
regions (vs. sinusoidal excitation). The overall magnitude of the lift coefficient was
comparable to that corresponding to sinusoidal forcing.

2.2.2 Three-Dimensionality and Free-Surface Effects

Three-dimensional features naturally arise in the VIV problem, where elastic
structures are characterized by their eigenmodes and wake flows show secondary
instabilities [30]. The transition to three dimensionality in the near wake of a cir-
cular cylinder is discussed by Williamson [106]. Three-dimensional structures in
the wake were found to occur for Reynolds numbers greater than about 178. These
three-dimensional structures are attributed directly to the deformation of the pri-
mary wake vortices, and were not the result of any secondary (Kelvin–Helmholtz)
vortices caused by high-frequency oscillations within the separating shear layers.
The transition to three dimensionality is found to involve two successive transitions,
each characterized by a discontinuity in the Strouhal–Reynolds number relationship.
These discontinuities can be seen in Fig. 2.2. The first discontinuity (Re: 170–180) is
associated with the transition from periodic and laminar vortex shedding to shedding
involving the formation of vortex loops. The second discontinuity (Re: 225–270) is
related to the transition from the vortex loops to finer scale streamwise vortices. The
first discontinuity is found to be hysteretic, while the second discontinuity is not.
A more comprehensive discussion on these discontinuities (so-called Mode A and
Mode B secondary 3D instabilities), and vortex dynamics in bluff body wakes in
general, can be found in two review papers by Williamson [107, 108]. Specifically,
comparisons of measurements and theoretical predictions of spanwise instabilities
for modes “A” and “B” are given in Fig. 10 of Williamson [108].

The question of three dimensionality in the wake of a surface-piercing rigid cylin-
der mounted as an inverted pendulum is examined in detail by Voorhees and Wei
[102]. The cylinder is characterized by a low mass ratio, m∗ = 1.90, and high mass-
damping,m∗ζ = 0.103.Themass ratio is defined as themass of the cylinder assembly
divided by the mass of water displaced by the cylinder, m∗ = m/ρπr2L. The ratio
of mechanical to critical damping is represented by ζ . This study, for Re: 2300–
6800, found that the response characteristics of the cylinder are similar to those
seen in elastically mounted cylinders of similar m∗ and m∗ζ . Strong axial flows
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Fig. 2.2 a Variation in Strouhal number as a function of Reynolds number; b frequency spectra at
first discontinuity; c frequency spectra at second discontinuity [114]. Reprinted with permission

associated with the Kármán vortices are observed, and these flows are generally
directed upwards toward the free surface. Below the free surface, these axial flows
can be predominantly attributed to the linearly increasing oscillation amplitude along
the span. Near the free surface, however, there is an equal probability of upflow and
downflow. These upflows and downflows are shown to bewell correlated to the quasi-
periodic beating of the cylinder amplitude at the reference reduced velocityU ∗ = 4.9
(Re: 3400) in the synchronization range. In essence, the effect of the free surface is
to disrupt the primary upflow mechanism and also to induce lateral spreading of the
top portions of the Kármán vortices.

Regarding free surfaces, several fundamental aspects of vortex-formation are
found to depend on the gap between the cylinder and the free surface, as discussed
by Lin and Rockwell [71] for the case of a fully submerged cylinder oriented parallel
to the free surface. The influence of a free surface on the wake structure has also
been investigated by Sheridan et al. [94, 95].

2.2.3 Vortex-Shedding Modes and Synchronization Regions

The character of the vortex shedding is important in that it influences lift force phase
and, consequently, the energy transfer between the fluid and the body. Williamson
and Roshko [110] explore the existence of regions of vortex synchronization in the
wavelength–amplitude plane. From the outset, the Reynolds number is not treated
as an independent parameter in this study. The Reynolds number is kept within a
certain range, 30 < Re < 1000, but is never held fixed. The amplitude ratio equals


