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Preface

Arch structures, somehow inspired in nature-based forms since remote times,
provide examples of remarkable masterpieces of engineering art and skills. In what
concerns bridges, arch ones have lasted for centuries to present time in fairly good
conservation state and still coexisting with other modern and quite different bridge
typologies. By exploring the stable compression state of materials, arch bridges
clearly remain competitive as evidenced by recent examples near 400-m span built
under highly demanding requirements.

Arch bridges’ science and technology therefore persist as a key issue in
engineering as shown by the high-quality and successful eight previous interna-
tional conferences on arch bridges held in UK 1995, Italy 1998, France 2001, Spain
2004, Portugal 2007, China 2010, Croatia 2013, and Poland 2016.

Stemming from such heritage, the 9th International Conference on Arch Bridges
(ARCH 2019) is held in Porto, Portugal, during October 2–4, 2019, organized the
Faculty of Engineering of the University of Porto. This conference provides an
international forum for all those who deal with arch bridge structures, namely
scientists, designers, technicians, stakeholders, and contractors, seeking for related
knowledge, experience, and specialized information exchange and diffusion.

The conference addresses key topics related to arch bridges, such as historical,
analytical, numerical, and experimental investigations, design and construction,
rehabilitation, maintenance and condition assessment, and future trends. Three
special sessions were organized and included in the program, focusing on
“Experimental and numerical assessment,” “Design and Construction,” and
“Structural rehabilitation and maintenance.”

Full contributions presented in ARCH 2019, including five invited keynote
papers and 99 research and technical papers, were prepared by authors from 26
countries and are assembled in the conference proceedings published in this volume
of the Springer Structural Integrity book series. Papers are distributed in six parts
covering the following topics: (i) heritage arch bridges; (ii) analytic and numerical
studies of arch structures; (iii) analytic and numerical studies of arch structures;
(iv) design and construction of arch bridges; (v) rehabilitation, maintenance, and
condition assessment of arch bridges, and (vi) new and future trends in arch bridges.
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Abstract. Due to the large number of masonry bridges in the European
Infrastructural network, the maintenance and retrofitting of this kind of bridges
is an up-to-date issue of Structural Engineering. In this paper, the Mechanics of
masonry bridges is discussed starting from the definition of load carrying
structure, which is much wider than the arch itself. Once proper similarity
criteria for reduced scale laboratory testing are discussed, the results of some
tests are used to outline the basic features of the mechanical response of
masonry bridges. Arch-Fill interaction turns out to be crucial for the l.c.c. of the
bridge since it is responsible also for the span of the structural arch. The concept
of Limit Load is discussed, which is not so trivial to be defined as usually
assumed since it does not correspond to the Ultimate Load that activates a
collapse mechanism. Once the basic issues of the dynamic and seismic response
of masonry bridges are discussed, showing unexpected good seismic perfor-
mances of these massive bridges, new trends in retrofitting of the bridges are
discussed.

Keywords: Masonry bridge � Load carrying structure � Retrofitting

1 Introduction

Masonry bridges play a crucial role in the railway and road networks of the European
Union, where they are estimated to be something in-between 200.000 and 250.000, and
in the railway and road networks of many other countries, such as India and Japan. The
age of these bridges, accounting for degradation of the materials, the past and present
changes in the service standards (speed and load) and the reduced, if any, maintenance
put forward the importance of assessing and retrofitting this kind of bridges. Their
mechanical response were not completely understood till the scientific and technical
research of the last three decades explained the basic aspects of their structural
response. The I/03/U/285 Research Project by the International Railway Union
(UIC) and the E.U. Sustainable Bridges Project (6th Framework Program, project 1653)
are two relevant examples [1, 2].

The scientific research was reactivated by some tests on reduced scale bridge
models studying the mechanics and the collapse of masonry bridges [3–5]. These tests
showed that the collapse of a masonry arch bridge could be activated by a 4 hinge

© Springer Nature Switzerland AG 2020
A. Arêde and C. Costa (Eds.): ARCH 2019, SI 11, pp. 3–30, 2020.
https://doi.org/10.1007/978-3-030-29227-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29227-0_1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29227-0_1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29227-0_1&amp;domain=pdf
https://doi.org/10.1007/978-3-030-29227-0_1


mechanism, apparently corroborating the Kinematic Approach discussed by Heymann
[6]. Unluckily, the tests were biased by the reduced scale of the samples: since no
similarity criterion was set, reduction of the geometric scale only made the model-to-
prototype similarity to be lost. If the model-to-prototype similarity is retained [7], either
increasing the gravity loads (tests performed in centrifuge) [5] and reducing the
compressive strength for masonry [8], the outcomes of the tests show that brickwork
crushing may play a crucial role in the collapse of a masonry bridge, which is sig-
nificantly different from a pure Kinematic Approach.

In spite of the recent outcomes of scientific research, some approaches are still used
in professional Engineering, such as the MEXE-MOT method [9], proposed in the
‘60s, assuming that the limit load of single and multi-span bridges can be deduced from
the load carrying capacity of the arch barrel only. Some important parameters, such as
masonry strength, mechanical characteristics of the fill, span interaction, pier stiffness,
etc., are taken into account by means of corrective factors of uncertain origin [10].

More recent approaches estimate of the load carrying capacity of arches based on
the Static (safe) and Kinematic Theorems of Limit Analysis. Assuming brickwork as a
No Tensile Resistant material, a non linear constitutive model in compression for
brickwork is needed to represent the response of a bridge, till the ultimate load, by
means an incremental step-wise analysis in which convergence to the solution is
reached through an iterative procedure. The Mechanism Approach, derived from the
Kinematic Theorem, instead, assumes a compressive brittle behavior (with unbounded
or finite compressive strength) and sets collapse in advance as the activation of a
number of point-like hinges in the arch is large enough to turn the arch into a
mechanism.

The kinematic approach gives reasonable estimates of the limit load when the
collapse mechanism is activated at relatively low stress levels, i.e. for deep arches, for
which the non linear response of brickwork plays a minor role. When this is not so, i.e.
for shallow bridges, this approach seems to be somehow troublesome and a step-wise
incremental procedure has to be set. In this latter case, more accurate iterative schemes
and more detailed 1-D [11–16], 2-D [17–21 among the latest results] and 3-D models
[22–25 as some of the most recent examples] are needed to represent the mechanical
response of the bridge. Due to the large computational power that can be easily
accessed nowadays, non linear computational procedures are nowadays the tool for
studying a masonry bridge.

The analysis of post-seismic damage shows that these massive bridges show limited
damage, mainly related to local collapse mechanisms (overturning of the spandrels),
while the global collapse of the bridges is seldom recorded but for some specific case.
The dynamic tests, that are still far from giving a comprehensive understanding of the
dynamic response of masonry bridges, show that these structures have large damping
values, probably due to the frictional interfaces of the bridge (arch-fill and spandrel-fill)
and to the damping of the fill itself.

In this paper, the mechanical response of masonry bridges is discussed aiming at
the assessment and retrofitting of this kind of structures. In situ and laboratory tests and
theoretical results show that masonry bridges are complex structures in which all the
elements play a role in the load carrying capacity. Thus, assessing and retrofitting of a
bridge should take into account a complete model of the bridge looking into the inner
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mechanics of the structure. The assessment and retrofitting strategies are then discussed
addressing either some of the common retrofitting technique and the new trends.

2 Statistics

Table 1 and Fig. 1 give a summary of the in-service railway bridge stock in E.U. [26].
Even though 50% of the bridge stock is less than 2 m long, i.e. a kind of culvert, it is
evident the large number of masonry bridges and that 15% of the stock, at least, needs
assessing and some kind of retrofitting.

3 Laboratory and in Situ Tests

In order to retain the similarity of the tested model to the real prototype, we can recall
the Buckingam Theorem [27]. In general, the load carrying capacity Pu can be assumed
to depend on: (i) material compressive strength fM; (ii) arch span l; (iii) material density
q; (iv) the thickness s of the arch, the width w of the arch barrel, the thickness t of the
fill in crown and other geometrical parameters ai:

Pu ¼ g fM ; l; q; s; t;w; aið Þ ð1Þ

Assuming l and q as governing parameters, indicating the physical dimensions of
the parameters in square brackets, the following dimensional equation holds:

fM½ � ¼ F=L2 ¼ q½ � l½ �: ð2Þ

Table 1. Railway bridges in Europe [26] – any span.

Country Total length
[km]

Bridges
total

Bridges/km Mas.
bridges

% Oldest
bridge

Belgium 3.607 3400 0.9 60 18 1845
U.K. – Br. Rail 15.811 26.240 1.7 13.000 50 1825
Bulgaria 4.070 982 0.2 62 6 1867
Denmark 2.560 1500 0.6 135 9 1853
Germany 41.315 32.017 0.8 9.146 29 1837
Finland 8.816 1.905 0.4 60 3 1861
France 29.901 28.259 1.0 13.167 47 1840
Greece 2.238 2.100 0.9 710 34 1883
Italy 16.723 59.473 3.7 37.400 63 1850
Ireland 2.733 2.752 1.0 1.484 54 1839
Luxemburg 274 282 1.0 149 53 1859
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If we say a the geometric model-to-prototype ratio, b the compressive strength and
c the density m-to-p ratios, Eq. (2) shows that the similarity criterion may be set as:

ac=b ¼ const: ð3Þ

Equation (3) shows that the similarity of the model to the prototype bridge is
retained if the material strength of the model is reduced by the same amount as the
geometric ratio. Otherwise, if the material strength is kept constant, the material density
may be increased by a factor a as in a centrifuge [5].

If the model is given a 1:a geometric ratio and the materials are the same as for the
real prototype (b = 1 and c = 1) Eq. (3) may not be satisfied. The model-to-prototype
similarity is lost: the test results can be extended to a prototype which material has an
increased strength (or density) of a factor a. This explains why several tests on reduced
scale models showed that the collapse of an arch is due to the activation of a collapse
mechanism and not to a compressive crushing of some sections. The tests performed at
Bolton Institute [3, 4] used modern engineering bricks for solid clay brickwork
obtaining a compressive strength of 26 MPa on the average. Since the geometric ratio
of the Bolton tests was approx. 1:4 � 1:3, the similar prototype bridge should have
brickwork with a compressive strength of 26 MPa � 3�4 = 78–104 MPa, which is
surely not typical of bridge brickwork [28] and explains why those tests showed that
the material strength had a minor role in the collapse mechanics. Similar conclusions
can be derived also for other reduced scale tests.

CONDITION AGE

NUMBER OF SPANSSPAN LENGTH

Fig. 1. Statistics of the European Bridge Stock [26] – any span.
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In order to retain the model-to-prototype similarity, we can use for the arch a
different material than brickwork scaled by the same factor as the geometric ratio [7]
and with the same overall response as brickwork. This is the case of Aerated Auto-
claved Concrete, as Fig. 2 shows, which is characterized by fc = 3 MPA and
E = 500 MPa, i.e. a strength and stiffness ratio 1:4 with respect to solid clay brickwork.
Since a.a.c. has a reduced density (6.4 kN/m3), we need to take into account the global
mass when calculating the real scale ratio of the model. Besides, only non-cohesive
materials can be used for the fill since the friction coefficient is non-dimensional and is
not affected by the similarity criterion. A cohesive material, instead, would ask also
cohesion to be scaled, which is a rather challenging task.

To discuss the mechanical response of a masonry bridge let us consider the arch of
Fig. 3, where rise-to-span ratio r/s = 0.2 (spandrels and fill are not represented). Four
models have been tested: (i) arch only; (ii) arch + fill + load applied directly on the
arch, Fig. 3b; (iii) arch + fill + load applied on the fill, on a 20 cm wide strip;
(iv) arch + spandrel (10 cm thick). The fill used in the tests consists of a non-cohesive
granular material graded 8–10 mm (internal friction angle: 32°). The arches were an
assemblage of pre-cut blocks with no mortar: so that a perfectly No-Tensile-Resistant
material has been represented with compressive strength and behavior as in Fig. 2.

Figure 4 shows that the load carrying capacity of an arch accounts for approx. 9%
of the l.c.c. of a complete bridge model, while comparison of the two models with fill
(load on the arch, Fig. 3b, and load on the fill surface) shows that the fill contributes for
load distribution effect of the fill accounts for 70% of the global l.c.c. while the
distribution effect of the fill for the remaining 21%. Similar results were obtained on the
basis of experimental data by [29] and theoretically by [21].

Figures 5 and 6 show that the collapse mechanism at maximum load shows two
hinges only, while the remaining expected two hinges are not activated because the
compressive crushing of the material precedes the activation of the other two hinges.
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(a)

(b)

Fig. 2. Compressive response of: (a) aerated autoclaved concrete; (b) bridge brickwork, both
showing a Kent&Park type compressive response (dotted line in b).
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A four hinges mechanism is activated for deep arches, say with rise-to-span
ratio = 0.3 [30].

Fig. 3. (a) Arch model. Span 4.00 m, Thickness 25 cm, Width 45 cm, Rise: 80 cm => r/s = 0.2.
(b) Experimental setup and loading directly on the arch (case ii)

Spandrel: 
26 kN

arch: 
2.9 kN

Fill + Load on 
arch: 19 kN

Load on 
Fill: 33 kN

Load on 
Fill: 32 kN

Fig. 4. Load-displacement response of the shallow arch bridge of Fig. 3. Green line: bare arch,
Red line: Arch + Spandrel, Yellow line: Arch + Fill and Load directly on the fill, Blue lines:
Arch + Fill and Load on the fill surface
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1 
2 

3 
4 

Fig. 5. Collapse mechanism of the arch of Fig. 3, Load applied on the Fill surface. Hinges 1 and 2
were identified (see Fig. 6) and the expected hinges 3 and 4 were not identified.

Fig. 6. Detail of hinges 1 (left) and 2 (right) of Fig. 5 showing compressive crushing

springing

Collapse starts here

Fig. 7. Collapse of a span of a railway multi-span bridge
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4 The Load Carrying Structure of a Masonry Bridge

Figure 7 shows the collapsed span of a multi-span railway viaduct. As always happens
when the pier survives to the collapse of a single span, we can observe that a large part
of the arch from the geometrical springing did not collapse. This shows that the load
carrying arch (l.c.a) is much shorter than the geometric arch (g.a.). Figure 8 shows a
simple rule to calculate the load carrying arch once the geometry of the backfill is
known (from original drawings of the bridge). Table 2 shows a list of large railway
Italian multi-span viaducts (design drawings available) for which we can show that the
concept of “deep arch” does not apply being the l.c. arch a rather shallow arch instead
of the deep arch that is suggested by the external geometry.

backfilling
backfilling

Fig. 8. Actual springing of the arch in a multi-span bridge after Pauser [31]

Table 2. Railway bridges in North-Western Italy apparent and real rise-to-span ratio.
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If we consider that: (i) the load carrying arch in a bridge is always a shallow one, and
(ii) the collapse of a shallow arch is attained not due to the activation of a mechanism
(4 hinges) but the compressive crushing of the material (2 hinges + crushing in the
hinges) we deduce that a kinematic analysis of a masonry bridge does not represent the
actual collapse mechanism of the bridge and the ultimate load estimated on the basis of a
kinematic approach is a substantial overestimation of the load carrying capacity of the
bridge.

5 The Dynamic and Seismic Response

As for any structure, the dynamic identification of a masonry bridge is something rather
different from its seismic response because, in the first case, the displacements, either
induced by the service loads or by specifically applied forces, remain in the “in-
finitesimal field” while under seismic actions the expected displacements are much
higher.

Figure 9 shows a multi-span railway bridge during demolition that was available
for dynamic identification. Its geometry is quite standard but for the fact that it had two
internal spandrels at 1/3rd and 2/3rd of the bridge width. Since the arch barrel consisted
of 3 parallel barrels, Fig. 10, the internal spandrels where just on the interface between
adjacent barrels.

Fig. 9. Multi-span railway bridge on the Tanaro, Alessandria (IT) during demolition.
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The bridge has been tested [32] in two configurations: with internal spandrels and
without internal spandrels. The acting force was a rope pulled by an excavator till it
breaks (3.5 kN) in several different locations. Table 3 summarizes frequencies and
damping ratios of the first 4 natural modes for the two geometries that were tested and
Fig. 11 shows two natural modes (1st and 3rd) as reassembled from the acceleration
measurements.

We can see that the arch barrel, either with and without internal spandrels, exhibits
rather high damping ratios probably due to the friction between adjacent barrels and to
the high damping value of masonry itself. For the complete bridge we could expect
similar values since the fill and the other frictional surfaces (fil-spandrel and fill-barrel
interfaces) could account for higher damping ratios.

Fig. 10. Bridge of Fig. 9: the arch consisted of 3 parallel arches connected by transversal ties.

Table 3. First 4 natural frequencies and damping ratios for the bridge of Fig. 9.

Mode WITH internal
spandresl

WITHOUT internal
spandrels

Freq. [Hz] Damping f Freq. [Hz] Damping f

1 8.02 9.8 7.07 9.4
2 12.03 6.5 10.90 11.3
3 17.08 7.7 15.09 9.0
4 21.18 3.1 19.34 5.5
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Is the high damping the reason for the general good performance of masonry
bridges under seismic actions? Damping could be just a part of the answer since
dynamic testing does not experience the much larger displacements induced by an
earthquake. As a matter of fact, we know that masonry bridges are seldom damaged by
earthquakes; the Irpinia earthquake (IT) in 1980 did not damage any arch bridge so that
the railway infrastructure could reopen to service few days after the event just after a
quick survey of the bridges.

Recordings from recent earthquakes show that the most common damage to
masonry bridges in the transversal direction is not the overturning of the piers, as one
could expect, but the overturning of the external spandrels only, Fig. 12. Damages due
to the longitudinal response of the bridge are limited to two cases, one in India to a poor
masonry bridge and the second in 2010 in Chile, Fig. 13, which is the only documented
collapse of a masonry bridges due to longitudinal seismic response. It has to be noted
that the longitudinal dynamic response of a bridge to an earthquake is due also to the
asynchronous response of the different piers due to different soils types under the
foundations and different stiffness of the piers.

Fig. 11. 1st (8.02 Hz) and 3rd (17.08) natural modes – one span only.

Fig. 12. Seismic damage to a road bridge in Preci (IT) 1997 earthquake (L. Gambarotta).
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6 Structural Models

A for all structures, also for masonry bridges there is no optimal structural model, since
there is a best model for the specific aim of the structural analysis. In general we can
look at a bridge from two points of view.

1. Service Limit State: being far from the ultimate conditions either in static and
dynamic conditions, the stress state under the service loads is the main concern. If
the bridge had been properly designed (as in the majority of the cases) the stress
state in masonry is a substantial compressive state, with low tensile stresses limited
to small parts of the bridge, which implies that sometimes also elastic models may
be used. The only non linear response may come from the reduced tensile strength
of the material, so that the most detailed non linear model should take into account a
No-Tensile-Resistant model only for the material, being material crushing of minor
relevance. Dynamic identification, that is compared to modal analysis of the bridge,
needs just an elastic model to be set.

2. Ultimate Limit State: seeking for the ultimate load, all the main non linear sources
should be represented, so that also material crushing and crack propagation through
a wide part of the bridge should be considered. Limit Analysis and Incremental
Stepwise non linear procedures pertain to this approach. While a masonry bridge, as
previously discussed, may not fulfill the assumptions for Limit Analysis procedures
to be applied, and this is specifically true for kinematic approaches, also Incremental
Stepwise analysis needs to know the initial stress state that is unknown depending
on the building phases and the subsequent events (settlement of the foundations,
material degradation and time-dependent phenomena).

The use of 1-D, 2-D or complete 3-D models, Fig. 14, depends on the detail of the
information that is needed and on the mechanical problem that needs to be investigated.

Fig. 13. Collapse of a masonry bridge on the Claro river (Chile) due to longitudinal seismic
action, 27th of February 2010.
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Figure 15 shows a 1-D non-linear model for arches and piers obtained using
standard beam elements which are given: (i) No-Tensile-Resistance by means of
iterative adaptive meshing following a classical Castigliano scheme; (ii) Elasto-Plastic
capabilities obtained adding to an elastic material adding external forces ΔNEP

equivalent to the plastic part of the section (red triangle of Fig. 15) [16]. Such an
element fits an iterative Predictor-Corrector scheme and allows to study the response of
arch-type structures. The effect of the fill and of the external loads is represented by
external forces applied to the nodes of the model. Such an approach allows an iterative
stepwise procedure to be set, based on the assumption that the only loads on the bridge
are the dead loads and the axle load. Any kind of distress due to foundation settlement
and/or time dependent (creep of the mortar) or degradation phenomena cannot be
considered.

Fig. 14. Structural models for a masonry bridge.

Fig. 15. 1-D model for a No-Tensile-Resistant, Elastic-Perfectly-Plastic model for arch-type
structures [16].
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Figure 16 shows the model of a three-span bridge, with different rise-to-span ratios,
that makes use of the element of Fig. 15. The yellow areas represent the open joints
(traction areas) while Fig. 17 shows the Load-Displacement (central crown section)
response of the model compared to those of a single arch model. The incremental
procedure allows the identification of the load at which the compressive strength of the
material is reached (black dots in Fig. 17) and, in a more detailed model, to follow the
increase of plastic strains till the material ductility is reached (for solid clay brickwork
ductility is limited to 1.4 at maximum). As we can easily see in Fig. 17, in all the
models the compressive strength in the first hinge to be activated (i.e. the section below
the load) is reached far before the collapse mechanism is activated, being the black dots
slightly outside the non-linear part of the diagram. This observation sets a question:
which should be the limit load for a real bridge: the one that activates a collapse
mechanism (if any, as discussed in Sect. 3) or the load that activates the first permanent
strain (and, thus, irrecoverable damage) in some section?

1-D models are those used by the computer programs that makes use of Limit
Analysis Approaches, as the well known RING developed at the University of Sheffield
[33]. In Fig. 18 the collapse mechanism of a twin-span bridge represented by a RING
models is showed. Whatever the width of the bridge, also these models are able of
representing the in-plane response of the arch and some of the contributions of the fill.

Figure 19 shows a 2-D model for the fill coupled with a beam model for the arch.
The No-Tensile-Resistance and Elastic-Perfectly-Plastic response for the arch is rep-
resented by the Limit Surface of Fig. 18.b [34].This kind of model allows to take into
account the effect of the Arch-Fill interaction, as Fig. 20 shows for a well known case,
the Prestwood.

Fig. 16. 1-D models for a 3-span bridge model.
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Fig. 17. Load-displacement (crown) of the bridge model of Fig. 16.

Fig. 18. 1-D model for the collapse of a twin-span bridge following a kinematic approach –

from RING 3.0 user’s manual [33].
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The 2-D model for the fill allows to represent stresses and strains inside the fill and
to represent the fill as a geotechnical structure, i.e. a cohesive soil, Fig. 20, and perform
a parametric study on its effect on the ultimate load of the bridge. Looking at the Load-

Fig. 19. (a) 2-D model for the fill coupled with beam elements (Fig. 15) for the arch. (b) Elastic-
Perfectly-Plastic limit domain for the arch [34].

Fig. 20. 2-D model for the Prestwood bridge [35] – comparison with experimental outcomes.
(a) 2-D Fem model at ultimate load 254 kN; (b) photo of the collapse 228 kN exp.; (c) Static
approach (line of thrust) 209 kN [21, 34].
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Displacement diagram of Fig. 21, we note again that the collapse mechanism (4 hinges)
is activated far beyond the first plastic strains are activated in the first hinge. For a
perfectly brittle material (ductility = 1) the material strength in the arch is attained at a
load level that is 2/3rd of the ultimate value, while a ductility set to 2 (rather optimistic
for solid clay brickwork) is around 5/6th of the l.c.c. This sets again the basic question
on which should be considered the limit load to be used to assess the bridge.

3-D models, which are substantially FEM models only, may provide information
on the contribution to the load carrying mechanism of the spandrels and the effect of
load eccentricity. The computational effort for the model to be complete is rather high
since not only masonry and fill need to be represented but also the frictional interfaces
play a crucial role in the bridge response.

If the service conditions need to be investigated, the low stress level and the
reduced extension of the tensile stresses, if any, make a simple elastic model to be
acceptable. Friction on the interfaces is not activated due to the limited amount of
displacements and material non linearity does not play an important role on the stress
distribution inside the bridge. For similar reasons, the dynamic characterization of a
masonry bridge may be well represented by elastic FEM models due to the reduced
displacements of the bridge in the case of service vibrations.

If the ultimate load is the goal of the analysis, then 3-D models have a much worse
performance. The frictional interfaces need to be represented and all the non linear
features of the material need to be represented, such as No Tensile Resistance and
compressive crushing. Whatever the computational power available, the detailed con-
stitutive model for brickwork, the convergence strategy is used, 3-D FEMmodels fail in a
proper representation of the bridge response close to collapse. While the first stage of non
linear behavior, i.e. initial cracking of the joints, may be represented, the collapse is
characterized by a concentration of cracking, i.e. a diffused cracking in an area turns into a
large opening of a specific joint, that FEM models are unable to represent.

Fig. 21. Load displacement response of the bridge of Fig. 20 [21].

Masonry Bridges and Viaducts 19



Figure 22 shows the 3-D FEM model of a railway bridge. Figure 22c and d show
that non linear response is almost negligible (load-displacement diagram of Fig. 3c) in
spite of a rather diffused cracking (Fig. 3d). Convergence is lost at a load multiplier of
the max service loads equal to 2 due to the inability of FEM model of representing the
concentration of crack opening in specific joints.
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Fig. 22. 3-D FEM model for the Navile Bridge (km 5 + 707 on the Bologna circular line, built
1940 approx.) (a) view of the bridge; (b) 3-D FEM model; (c) load multiplier – displacement
response; (d) crack pattern at twice the service loads.
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7 Retrofitting

Several reasons ask for retrofitting a masonry bridge: degradation of the materials
and/or a relevant crack pattern, foundation settlement (if any), increase of the loads,
widening of the bridge deck (for road bridges). Due to several historical, technical and
cultural reasons, masonry bridges left the classrooms of Engineering Schools not later
than the ‘50s (usually much earlier) leaving space to the up-to-date reinforced concrete
and pre-stressed reinforced concrete structures and bridges. As a result, professional
engineers need to face a lack of knowledge on masonry bridges that has been inte-
grated, up to recent years, trying to apply the concepts of reinforced concrete to
masonry bridges. In the next figures some of the many examples are discussed out-
lining that the goal of retrofitting a bridge has not usually been achieved and, in many
cases, additional damage to the bridge has been produced.

Figure 23 shows a kind of “reinforced masonry”. Based on the assumption that the
collapse of a bridge takes place due to the activation of a 4 hinge mechanism, near
surface reinforcement aims at locking the opening of two of the four hinges. The
technique has a crucial problem in the connection to the arch since the curvature tends
to detach the reinforcement from the arch as it starts to be active. Besides, it has been
discussed that shallow arches collapse due to compressive crushing of some section, so
that this retrofitting technique could be of little, if any, help in retrofitting the bridge.
When retrofitting a masonry bridge, that is an ancient structure, almost a monument,
deserving respect we should always try to preserve the historic value of the bridge.
Near surface reinforcement is one of the techniques that makes the value of the
monument to be lost.

Figure 24 shows a rather widely used technique: shotcreting, which motivation is
substantially not clear and is usually applied to the existing intrados of the arch ring. If
the goal is that of connecting near-surface reinforcement to the arch, its adhesion to
brickwork is too poor to be successful in this task. If the goal is that of increasing the
thickness of the arch, the different stress state (already compressed the arch, zero

Fig. 23. Connection of stainless steel bars to the arch barrel [36]
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stresses in the added layer) vanish this goal. The only effect is that of encapsulate the
bridge in a waterproof skin. Since the water mainly comes into the bridge from above
(when the waterproofing systems in no more completely efficient), the outcome is that
of speeding up degradation of the material, mainly due to freeze and thaw mechanisms
in cold regions, Fig. 24a.

Figure 25 shows a typical damage of masonry bridges, i.e. the detachment of the
spandrel from the arch barrel, Fig. 25a, that is usually fixed by means of transversal
tendons, Fig. 25b. Sometimes, transversal tendons are used also if no damage appears
in the barrel in order to provide transversal confinement to the arch. In this latter use,
this idea comes directly from the basic knowledge of reinforced concrete but does to
apply to the arch since it provides lateral restraint to the arch barrel in one direction
only. Besides, it has to be noted that the drills needed to install the tendons produce a
damage inside the arch barrel.

Fig. 24. Shotcreting of a masonry bridge (a) extended to the spandrels; (b) limited to the arch.

Fig. 25. Transversal tie bars from one side of the arch to the opposite side (a) detachment of the
spandrel from the arch barrel and (b) Massarenti Bridge, Bologna (courtesy RFI).
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When widening of the bridge deck is needed, a common technique is that of setting
on the deck a r.c. slab supported by the spandrels, Fig. 26; the lateral cantilevers allow
the bridge deck to be widened.

This choice reverses the load path from the deck to the bridge. In amasonry bridge the
load is applied to the fill and the fill distributes the loads on a wider area on the arch barrel.
Such a strategy transfers the loads (also the dead load of the new slab) to the spandrels,
which is a loading condition that has never been experienced by the bridge and for which
the bridge had never been designed, Fig. 27. The outcome is an overloading of the
spandrels and the relief of the arch barrel. Due to compatibility issues, this is responsible
of the longitudinal cracks that appear in the arch barrel just below the spandrel (thus
underlining the position of the armilla), Fig. 28. The damage produced to the bridge may
be severe. In many bridges this kind of damage is facilitated by the fact that the arch is
thinner (usually 2/3rds) below the spandrel rather than in its central part [37].

Fig. 26. Viaduc de Pulvermuhle (Luxembourg). Widening of the bridge deck by means of an r.c.
slab (SNCF, courtesy of B. Plu) (a) design; (b) final slab - view from below

(a) (b)

Fig. 27. Load transfer from the deck to the bridge: (a) original arch bridges; (b) case of Fig. 26

Fig. 28. Longitudinal cracks below the spandrel to overloading of the spandrels
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Figure 29 shows the effect of a pier on an old bridge. It has to be noted that the
collapse pier is inclined with its lower part on the left, i.e. in the downstream part of the
river, upstream being on the right as the position of the trunks outlines. It should be
noted that the bridge remained undamaged for more than 100 years, during which it
experienced several floods, and collapsed in 2002. The reason should be identified in
the “protective” collars (reinforced concrete around the pier) that activated the wake
effect, Fig. 30, i.e. an increase of excavation not in front of the pier but in its rear side,
which is located downstream. This suggests that any kind of “protective collar”
(i) should be carefully evaluated since it could reduce the net hydraulic section of the
river (in correspondence with the bridge) thus increasing the speed of the flow;
(ii) should not be symmetrical with respect to the flow direction in order to move the
wake turbulence away from the pier foundation.

In the case of Fig. 29, the wake effect could have been activated/increased by the
misalignment between the flow and the pier axis due to a change, in time, of the river
longitudinal axis.

8 New Trends

In recent years some new approach has been proposed to retrofit masonry bridges
preserving their cultural and historical value as much as possible. Figure 31 shows the
widening of the deck: an r.c. slab is used but it is detached from the spandrels by means
of a layer (soft rubber or foam-rubber) with stiffness that is approx. 100 times less than
mortar. In this way, either the dead load of the slab and the live loads are transferred to
the fill and not to the spandrels, as in Fig. 29. This allows also to solve another
problem, anchoring of safety barriers, that can be easily connected to the slab.

Fig. 29. Excavation of a pier - 2002. Note that the base of the pier had been “protected by means
of a symmetrical r.c. collar. Bridge on the Scrivia river, District Road 141 – Val Borbera – IT
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In case of seismic event, the slab represented in Fig. 31 needs some external
restraint so as not to rely completely on the bridge, for which it would behave as a
relevant mass in its upper part. For this reason, the slab is restrained, with respect to
horizontal actions, by large anchorage concrete blocks located outside the bridge at its
ends; these blocks are usually connected to vertical and sub-vertical piles to the bed-
rock, Fig. 31b and c.

Another technique for increasing the load carrying capacity of a bridge is that
represented in Fig. 32: the backfill at springing may be extended injecting the fill. The
arch-fil interaction results, in this case, “expected hinges” (if any) would activate at
different locations, resulting in a reduced span of the arch. For a multi-span bridge the
injection would a large cap at top of the pier and would extend the skewbacks. This
technique may be successful for arches with rise-to-span ratio � 0.3, i.e. rather deep
arches, as showed in Fig. 33.

Fig. 30. Wake effect increases the excavation downstream

(a)

(c)

(b)

Fig. 31. Reinforced concrete slab enlarging a bridge: (a) load transfer. Bridge on the Borbera
river (retrofitting performed in 2014), (b) transversal and; (c) longitudinal section of the slab.
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Further details of these approaches are discussed in the papers of this Conference.
An alternative approach to masonry bridges aims at increasing their service life

strengthening the structure as much as possible also introducing new substitute
structures (under-ringing) or deeply modifying the structure and its mechanical
response. In this field, it is almost impossible to list all the techniques that have been
and are being tested. Some have been discussed in Sect. 7, some of the newest are
represented in Figs. 34, 35 and 36 but any listing would be somehow incomplete.

The common approach to these techniques is that they start from the concept of four
hinge mechanism (that is activated for deep arches only, as discussed in Sect. 3) and
increase the l.c.c. of the arch by locking some of the hinges. Besides, great confidence
is given to the effect of drilling piles to strengthen skewbacks, piers and, in general, the
foundations. This approach may fit the bridges that are severely damaged by pier scour,
material degradation, overloading, etc. since they deeply change the load carrying
structure of the bridge, thus loosing a large part of the historical value of the bridge.

Fig. 32. Uplift of the expected hinge as a result of injecion in the fill

Strengthened arch

Load on the fill

Load on the arch 1

Load on the arch 2

RING

RING retrofitted

Fig. 33. Load-displacement diagrams for the other models [38] and for the RING model. 4.0 m
span model bridge with rise-to-span ratio = 0.3.
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Fig. 34. Deep retrofitting of the Sandro Gallo bridge (Venice Lido – Excelsior canal) by
extrados reinforcement and piles [39].

Fig. 35. Deep retrofitting of the Rio Moline bridge (Trento – IT) by means of extrados
reinforcement and internal tendons [39].

Fig. 36. Deep retrofitting of the bridge over the Gresal river (Belluno – IT) by means of pile
drilling [39].
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9 Conclusions

The large number of masonry bridges on the European transportation network has put
forward the need for their maintenance, retrofitting and strengthening with the aim of
either keeping them in service and increasing their service life according to the modern
performance standards.

It has been discussed that the standard approach to the Mechanics of this kind of
bridges deeply relies on the kinematic approach by Heymann [6], i.e. on a collapse
mechanism that needs 4 hinges to be activated in an arch (or a larger number in a multi-
span bridge). The subsequent retrofitting works aim at locking the activation of some of
the hinges.

Other retrofitting procedures just try to apply some of the basic concepts of rein-
forced concrete to masonry bridges.

These procedures often destroy to a large extent the historical value of a masonry
bridge. Their effectiveness is not always guaranteed: the collapse mechanism of a
masonry arch bridge may not involve four hinges since the ultimate load may be
attained due to compressive crushing of the most stressed sections of the arch. If such a
mechanism, that laboratory tests on properly scaled bridge models showed to pertain
shallow arches, were activated many of the standard procedures for retrofitting masonry
bridges would partially fail in their goal. This is true also for seismic retrofitting, that is
a filed of research still in its youth.

Some of the new trends of the last research looks to retrofitting techniques that do
not alter the bridge and its historical value, taking into account the actual collapse
mechanism.

All these aspects have been discussed and motivated in this paper.
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Abstract. This work presents some arch bridges constructed in Portugal since
the Roman Empire period to recent times. For some masonry. Steel and concrete
bridges construction details are also presented. Bridges and all constructions
requires permanent maintenance. Some old bridges presents a reduced deck
width requiring its enlargement. Live loads increased along time requiring
strengthening interventions in existing bridges. The most severe action that led
to some bridge destruction is river flooding and foundation infraescavation.
Some examples of interventions are presented in the paper.
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1 Introduction

For centuries arch masonry bridges were the most used solutions to cross rivers and
other obstacles. With this structural solution the stones are subjected to compression for
which the material has a much higher strength than for tension.

The span of the vaults was, in general, less than 20 m and, so to cross large valleys,
multiple arches were needed.

From 1840, with the industrial revolution, new steel bridges were constructed. The
use of steel allowed much bigger spans and made much easier the transport and
elevation of structural elements.

In 1875 Monier constructed the first concrete arch bridge that still followed the
conceptual design for masonry bridges. Concrete arch bridges are being constructed to
the present day.

The objective of this work is to present some of the arch bridges constructed in
Portugal [2].

2 Masonry Bridges

During the period of the Roman Empire in Iberia several bridges were built in the road
network established to connect Portugal to Rome [9].

The masonry arch bridges had a cylindrical vault geometry.
Two of the most well-known bridges in Portugal are those presented in Figs. 1 and 2.
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The span of these bridges did not, in general, exceed 20 m and the thickness of the
piers were of the order of 1/3 to 1/5 of the span.

To build these bridges they developed technics for cutting stone blocks and for its
transportation and elevation, as shown in Figs. 3 and 4.

Fig. 1. Bridge over Ribeira de Seda in EN 369 between Ponte de Sôr and Alter do Chão [2]. a2p
archive

Fig. 2. Bridge over Ribeira de Seda in EN 369 between Ponte de Sôr and Alter do Chão [2]. a2p
archive

Fig. 3. Forfex used from antiquity to present time [2]. a2p archive. www.viasromanas.pt
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Irregular stones and rubble were placed over the arches and between spandrel walls,
as shown in Fig. 5.

Arch bridges continued to be constructed for centuries. In 1744, just some years
before the devastating earthquake that destroyed Lisbon, the Aqueduct of Alcântara
(with 35 arches, part of the project of a 14,1 km water supply) was erected. The main
arch has 28,86 m span and is 69,29 m high (Fig. 6). No significant damage occurred in
that structure during the 1775 earthquake.

Fig. 4. tripastos and pentapostos for elevation of big weights [11]. Rababeh Shaher

Fig. 5. Transverse section of a pier and abutment (left drawing ref. [3]), (photograph ref. [6])
JAE and IP. a2p archive

Fig. 6. Aqueduto das Águas Livres in Lisbon, [2] a2p archive
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Two of the main problems of the old arch bridges are the reduced deck width for
the present traffic needs and the reduced flood section capacity.

Figure 7 illustrates the River Ponsul bridge in EN 240 at km 12,2. Built in 1875,
that bridge had its deck enlarged from 7,20 m to 11,50 m in 2007. The bridge has 3
arches of 13,40 m span.

Figure 8 shows Barão Bridge, located at EM 526 between Loulé and Albufeira, that
has had the deck enlarged from 3,6 m to 8 m and the flood section increased by the
introduction of a new arch and lowering the river bed, with simultaneously strength-
ening of the foundations.

In Fig. 9 the railway Poço de S. Tiago Bridge designed by the French engineer
Séjourné and constructed in 1913 by a French company (François Mercier) is pre-
sented, together with the graphics for the calculation of the bridge. The bridge has a
total length of 168 m with a central arch of 55 m span and 24,70 m rise.

Fig. 7. Deck widening with a new prestressed concrete slab over the masonry bridge, [2] a2p
archive

Fig. 8. Deck widening with precast slabs longitudinal posttensioned [2] a2p archive
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Figure 10 illustrates a masonry arch bridge that has had a partial collapse due to the
rotting of the wooden piles. This accident was the result of the lowering of the river bed
due to sand exploration downstream of the bridge location. In this situation the wood
piles were dried and exposed to the environment in the drought period.

One of the last arch bridges constructed in Portugal was the Abragão Bridge in EN
320 with a 60 m span built in 1944 according to the design of Edgar Cardoso. Fig-
ure 11 illustrates this bridge (now submerged by a dam reservoir) and some of the tests
done to check the bridge design.

Fig. 9. Poço de S. Tiago bridge and calculation graphic JAE and IP. IP archive

Fig. 10. Partial collapse due to wooden pile rot [2] a2p archive
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3 Steel Bridges

The most important steel bridge in Portugal is the Maria Pia Arch Railway Bridge over
Douro River in Porto/Gaia. The bridge, built by the Eiffel Company according to the
structure design of T. Seyrig (Fig. 12), was inaugurated in 4/11/1877 [8].

The bridge has a hinged arch with 160 m span and 42,60 m rise. The arch has the
maximum thickness of 10 m at the crown. The width varies from 3,95 m at the crown
up to 15 m at the springing line, for transverse stability of the bridge (Fig. 13).

The execution of the arch was done by successive cantilevers supported by stays
fixed in the rock (right margin of Douro, Porto side) or at the abutment (Gaia side). The
deck was assembled at the abutments and pushed to the final position over the steel
columns (Fig. 14).

Fig. 11. Abragão Bridge in EN 320 and design models [5] JAE and IP. Edgar Cardoso

Fig. 12. Maria Pia Bridge over the Douro River Luxocolor Esmaltex
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The bridge was replaced in 2000 by the São João Bridge and, up to now, has not
been in use, which is negative for its future preservation.

Not far away from this bridge stands Luis I Bridge over Douro, a bridge with 2
decks, one at the top of the arch and another at the level of the springing line (Fig. 15).
This bridge was constructed by the Willebroek Company according to a design of
T. Seyrig, to replace the Porto Pensil bridge. The arch has a 172 m span and 45,10 m
rise. Recently the top deck was adapted to install a Porto Underground line.

Fig. 14. Construction stage of Maria Pia bridge in 15/8/1877 [10] Vasconcelos

Fig. 15. Luiz I Bridge over Douro river in Porto Not identified author of postcard

Fig. 13. Plan and elevation of Maria Pia Bridge [12] Eiffel
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In 1919 a bowstring bridge was built for the Algarve railway line in Portimão over
the Arade River. The bridge was constructed by “Empresa Industrial Portuguesa” and
has 6 spans of 50 m (Fig. 16).

In 1951 another bowstring bridge was built over Tagus Bridge at Vila Franca de
Xira for the Road Authority (JAE). It includes 4 � 103,50 m spans. This bridge was
constructed by the consortium Dorman Long & Loyd and the Portuguese Company
Seth. Each span was assembled over a simple supported truss, as shown in Fig. 17.

The first concrete pile tests in the Tagus River were performed for this bridge
(Fig. 18). The driven piles with 50 cm diameter and 32 m long were made of precast
reinforced concrete.

Fig. 16. The Portimão railway bridge over the Arade River, [2] a2p archive

Fig. 17. The Vila Franca de Xira Bridge and the provisional truss for the arch assembly [2] a2p
archive. JAE and IP [13]
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In these constructions, the steel structure elements were made of steel plates and L
sections assembled by rivets, as shown in Figs. 19 and 20.

The bearings were made with cast iron or steel, as shown in Fig. 21.
The execution of the first steel bridges in the 19th century and first half of the 20th

century is associated with the period of the industrial revolution and the need to create a
railway network and ameliorate the road network [7].

In the same period, an enormous progress occurs in the structure mechanics
modelling, in the structure scaled models and in situ evaluation of structure behaviour.
Further significant developments in structural mechanics only occurred later, in the 60s
of the 20th century, with the new computing facilities and structure numerical
modelling.

Fig. 18. Pile tests at the site of the Vila Franca de Xira Bridge [14] Lopes Alves

Fig. 19. Typical assembly of steel elements by rivets Edgar Cardoso
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The main anomalies in steel bridges are the deterioration of the surface protection,
the cracking due to fatigue and buckling of excessive compressed elements. Many old
bridges required strengthening interventions due to the increase of live loads or due to
insufficient deck width or the need to increase the vertical clearance.

The interventions in steel structures may be done with strengthening or replacement
of elements or the application of external prestressing.

4 Concrete Bridges

The first concrete bridges constructed in Portugal in the beginning of the 20th century
were arch bridges. One of these was the Luis Bandeira Bridge near Sejães (Oliveira de
Frades) on the Vouga River in the EN 333-3, recently submerged by a dam’s reservoir
(Fig. 22).

Fig. 20. Application of rivets in rehabilitation works a2p archive

Fig. 21. Steel Fixed and sliding bearings a2p archive
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It was constructed by Moreira de Sá e Malevez in 1907, according to the con-
struction procedures and patents of Hennebique Company. It has an arch of 44 m span.

Many arch bridges were constructed in the XX century, such as the Chaminé
Bridge over the Ribeira de Mora in EN2 km 474 between Montargil and Mora
(Fig. 23) built in 1934. This bridge with three arches of 27,20 m and 3,40 m rise has
had its deck enlarged from 6,75 m to 10,50 m in 1995 [6].

In Lisbon, for the new west road along the coast, the Duarte Pacheco Viaduct on
the Alcântara Valley was constructed in 1944 (Fig. 24). The viaduct (designed by
Barbosa Carmona from the JAE Bridge Department), with a total length of 355,10 m,
includes a central arch of 91,80 m. This arch was erected with a wood falsework
supported on the ground (Fig. 24).

Fig. 22. The Luiz Bandeira Bridge in EN 333-3 over the Vouga River near Sejães, [1] a2p
archive

Fig. 23. The Chaminé Bridge a2p archive
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In 1952, a reinforced concrete bowstring bridge was built over the Sado River with a
design of Edgar Cardoso, with two arches of 31,50 m span and a lower deck (Fig. 26).

Only in 1959 the first reinforced concrete arch bridge exceeding 100 m was con-
structed in Portugal. It was the Sousa Bridge with a main span of 115 m over the mouth
of the Sousa River. In Fig. 27 a general view of this bridge is presented together with
the wood falsework used for its construction.

Several multi-arch, bi-articulated bridges were constructed such as the Barca de
Alva Bridge over Douro River designed by Edgar Cardoso in 1955 with 6 spans of
37,50 m (Fig. 28) and in 1959 the bridge over Trancão at A1 in Sacavém with 5 spans
of 57 m, designed by Franco e Abreu and Rui Correia (Fig. 29). To note that in this
bridge the posts supporting the deck and connected to the arch are not vertical.

Fig. 24. The Duarte Pacheco Viaduct and some of its steel bearings. [2] a2p archive

Fig. 25. Construction of Duarte Pacheco Viaduct JAE and IP
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Fig. 26. Arch bridge and reinforced concrete structure details (photograph a2p archive,
Drawings [15] a2p archive. Edgar Cardoso

Fig. 27. The Sousa Bridge (photograph a2p archive, also in ref. [2] and falsework for the arch
Novopca archive) a2p archive. JAE and IP
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For the Trancão Viaduct the falsework was a steel structure (Fig. 30) used several
times to construct each of the 6 parallel arches in each span.

Figure 31 shows the longitudinal geotechnical profile and the results of the pile
tests carried on by LNEC (1 m diameter cast in situ reinforced concrete piles, 55 m
long). At that occasion horizontal load test were also performed.

Fig. 28. The Barca de Alva Bridge over the Douro River [10] Novopca

Fig. 29. The Trancão viaduct in A1, near Sacavém, a2p. [2] a2p archive

Fig. 30. Steel falsework for concreting the various arches [16] OE
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During the same period a flat arch bridge was built in 1957 over the Tua River with
a span of 92 m and rise of 9,20 m (Fig. 32). This bridge was designed by Correia de
Araujo and Campos e Matos.

The reference arch bridge in Portugal is still the Arrábida Bridge built in 1963 over
the Douro River between Porto and Gaia with 270 m span [4], a world record at the
time (Fig. 33).

Fig. 31. Geotechnical profile and pile vertical load test results [17] LNEC

Fig. 32. The Abreiro Bridge and its designers during a site visit António Fonseca (FEUP).
Matos Fernandes (FEUP)
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The 493,20 m continuous deck and highly hyperstatic structure required extensive
analytical and scaled model testing (Fig. 34), at the time the only possible methodology
to access the global structure response. The bridge was constructed by Pereira Zagalo,
according to the design of Edgar Cardoso.

A steel falsework was erected to construct one of the twin arches and afterwords
transversely moved to execute the other arch and moved again to construct the con-
necting truss between the arches (Fig. 35).

Fig. 33. The Arrábida Bridge over the Douro River (a2p archive, also in ref. [4])

Fig. 34. Structure elastic model [18] Edgar Cardoso

Fig. 35. Completion of the falsework for the execution of the first of the twin arches [19] JAE
and IP
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To avoid the cost of the falsework, the most recent arch bridges were executed
using the successive cantilever method with special temporary ties as used in the
Zêzere Bridge in 1993 with a span of 224 m (Fig. 36) and the Infante Bridge, a
stiffened deck arch, over the Douro River built in 2003 with 280 m span and a rise of
25 m (Fig. 37).

This bridge has a slender arch and a strong deck. The thickness of the arch is
1,50 m and the width varies from 10 m to 20 m at the springing line. At the crown, the
arch and the deck are join together and have a thickness of 6 m.

In Fig. 38 the relation, for a parabolic hinged arch, between the span/rise with the
horizontal thrust for a uniformly distributed load is shown (H/V = 4f/l), to stress the
importance of the arch geometry in the support reaction. Some arch bridges are hinged
in the supports during the construction stage.

Fig. 36. The Zêzere Bridge in EN348 Vitor Barata

Fig. 37. The Infante Bridge over the Douro River António Fonseca (FEUP)
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The main anomalies in reinforced concrete structures are the reinforcement cor-
rosion and the chemical expansive reactions in concrete (ASR and ISR).

Structure strengthening can be done with section jacketing and additional rein-
forcement. To strengthen the deck an effective technique is the external prestressing.

5 Final Considerations

Arch bridges are robust and beautiful constructions that gave also value to the
landscape.

Masonry arch bridges were constructed up to the middle of the XX century.
Steel bridges were very common in the end of the XIX century and beginning of

the XX century. The cost of execution in Portugal reduced its application, revitalised in
recent decades with mixed steel/concrete structure solutions.

Steel arch bridges over Douro continue to be some of the most beautiful bridges in
our country.

Concrete arch bridges were constructed during the XX century using a wood or
steel falsework. The development in prestressing and cable technology enabled the
recent construction of arch bridges by successive cantileevers and back stays.

Arrábida bridge and Infant bridges over Douro in Porto/Gaia are two important
landmarks and engineering achievements.

Figure 39 and adjacent table presents the relation between the arch span and the
date of construction for some of the masonry, steel and concrete arch bridges con-
structed in Portugal.

Span Rise Span/Rise
l (m) f (m) l/f

1 Trancão 51,6 18,6 2,77
2 Arrábida 270 52 5,16
3 Foz do Sousa 115 14,75 7,80
4 Abreiro 92 9,2 10.0

Nº Name

Fig. 38. Relation of arch thrust and its geometry [2] a2p archive
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Arch Bridges or Bridges with Arches, Elegant
and Efficient Solutions to Cross an Obstacle
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Abstract. For 2000 years, the basic material to build a bridge was wood or
stone. The typical shape of stone bridges was the semi-circular arch. The first
bridges made of metal were again arch bridges where the internal forces are
essentially compression forces. The industrial revolution and the progress of the
theoretical knowledge in the field of structural mechanics made it possible to
design bridges with different shapes. Bridges with large spans were mainly
suspended and also arch bridges. Today, the arched bridges are probably very
well suited for crossing very deep valleys or rivers in an area without relief.

Keywords: Arch bridges � Tied arch bridges � Design � Construction methods

1 Arches in the Nature

We can say that the first arches were built by nature, by the erosion. Some are quite
impressive as the Owachomo bridge or the Rainbow bridge (Fig. 1).

Until the 19th century, the basic material for building a bridge was stone and its
shape was the arch. The best known is the Pont du Gard (F), an ancient Roman
aqueduct bridge built in the first century AD. The Limyra footbridge (TR) is another
example of masonry bridge, built in the third century AD (Fig. 2). The stone or
masonry was the best material for this type of structure because their internal forces are
compression forces. The development of steel during the industrial revolution and the
progress of the theoretical knowledge in the field of structural mechanics made it

Fig. 1. Owachomo bridge and Rainbow bridge (US)
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possible to design bridges with different shapes, mainly suspension bridges and also
arch bridges.

2 Evolution of the Building Material and of the Bridge Shape

The Coalbrookdale bridge, also called Iron Bridge, on the Severn River (UK, 1779)
(Fig. 3) is the first metal bridge in the world. It is still used today for pedestrians. The
structural behaviour of cast iron multiple arches bridges is similar to arch bridges in
stone masonry. It develops only compression stresses. With the discovery of the iron, it
was possible to imagine structures in which there are tension forces. With this material,
bridges with larger spans appeared, essentially suspension bridges as the Menai bridge,
designed by Thomas Telford and completed in 1826.

But it enables also the development of large arches, by means of trusses composing
the arches, as for the two major viaducts of Gustave Eiffel, the bridge Maria Pia in
Porto (1877) and the viaduct of Garabit (1884) (Fig. 4).

Fig. 2. The Pont du Gard - 48 m (F) and the Limyra footbridge - 15 m (TR).

Fig. 3. Iron bridge - 60 m (UK) – The Menai bridge - 176 m (UK).
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With its mechanical characteristics far superior, steel gradually replaces iron in all
types of structures and allows more slender structures. Resistant to both traction and
compression, steel gives the possibility to imagine lattices whose overall stability is
ensured by only normal efforts. The advantage of this lattice-based design was to build
a large structure with elements of limited size, easy to transport and to assemble on site
(Fig. 5).

3 Bridges with Arches

3.1 Typologies

From that time on, the arch bridges were declined in different forms by arranging the
deck either above the arch (a), under the arch (b) or at mid-height (c). In the config-
uration (b), it is called tied-arch Bridge (Fig. 6).

The choice of one or the other configuration depends essentially on the obstacle to
be crossed:

– the arch below the deck (a): very hilly region
– the arch above the deck (b): area without relief
– the deck at mid-height (c): intermediate situation

Fig. 4. The Garabit bridge - 165 m (FR) – The Maria Pia bridge - 160 m (PT).

Fig. 5. Harbour bridge - 503 m (1932-AU) – Bayonne bridge - 510 m (1931-US).
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and the mechanical characteristics of the soil:

– for configurations (a) and (c), the critical aspect is the foundations of the arch which
require a soil with good mechanical properties to be able to take over important
compression inclined forces

– the tied-arch bridge is self-stable: the compression of the bow is taken up by the
deck and the only reactions are only vertical.

The span length/arch height ratio of the arch is often in the range of 5–6 for
economic reasons. The deck is positioned at the level of the abutments. Its thickness is
relatively limited because it is supported by the hangers (config b and c) or by the
columns (config a) that can be considered as multiple supports whose inter-distance is
small. It is therefore solicited by bending moments between these supports. In the case
of tied arch bridge, the deck will also be in tension.

3.2 Deck Above or at Mi-Height of the Arch

In the two configurations (a) and (c), even if the arches are in compression, the risk of
instability is reduced because of their connection with the deck. The arches can be
either restrained or articulated at the base.

3.3 Arch Above the Deck

In this case, we speak of tied-arch or bow-string bridge by analogy of form with a bow
with its stretched rope. The arches are not held by the deck. They are generally
connected in their upper part by a so-called bracing structure, often composed of
transverse beams. They ensure their transverse equilibrium, for example under the
action of the wind and to avoid the risk of instability.

3.4 The Size of Arch Bridges

The length of the main span is the most common way to rank bridges as it usually
correlates with the engineering complexity involved in designing and building the
bridge. Whatever the configuration, the main difficulty for this type of bridges is its
construction. Often,

– for tied arch bridge, the structure is often assembled with temporary piers on the
waterfront and transported to its final location with flat boats,

Fig. 6. Different configurations of bridges with arches
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– for other arch bridges, the arch is often constructed using the cantilever method
(Fig. 7)

The difficulty of its construction is one of the reasons of the maximum span length
of arch bridges effectively built and of its ranking among the different types of bridges
(Fig. 8), beam bridge, arch bridges, cable-stayed bridges or suspension bridges. The
Fig. 9 shows the main span length of the arch bridges and the year of the construction.
Only bridges with span length greater than 200 m are mentioned. It is clear that

– the evolution of the lengthis due to the method and not to the evolution of the
construction material

– today, the maximum length is 552 m for steel arches (Chaotianmen Bridge - CN),
445 m, for concrete arches (Qinglong Railway Bridge - CN) and 530 m for steel
arches with concrete inside (Bosideng bridge - CN) (Figs. 9 and 10).

Harbour Bridge (Fig. 5), in Sydney, with its 503 m, is well-known. It was the
world record during 45 years. The arch is composed of two 28-panel arch trusses.
Todays, the section of many arches are composed of steel or concrete beams as, for
example, as the Lupu Bridge (503 m) or the Quinglong railway bridge (445 m)
(Fig. 10).

Fig. 7. Construction methods for arch bridges

Beam bridge 
350 m

Arch bridge 
550 m

Cable-stayed bridge 
1100 m

Suspension    bridge 
2000 m         (3000 m)

Fig. 8. Maximum main span length of bridges
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4 Tied Arch Bridges

4.1 Interest of Tied Arch Bridges

The tied arch bridges are particularly well suited for crossing a pass in a flat landscape.
The deck is stretched over its entire length and bended between its hangers (Fig. 11). It
therefore has a low height; the access ramps have a shorter length than for a beam
bridge with a higher deck height (Fig. 12). The deck is suspended at one or two arches
arranged in vertical or inclined planes. Bowstring bridges are internally, statically
indeterminate systems and externally, determinate systems. They are supported on
simple bearings.

Fig. 10. Chaotianmen (steel-552 m) and Qinglong railway bridge (concrete-445 m)

552 m

445 m

530 m

Structure of arches
Steel concrete    
Concrete inside 
steel tubes

Fig. 9. Main span of arch bridges versus the arches structure and the year of construction
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4.2 Tied Arch Bridges on the Albert Canal

The Albert Canal, which connects the river port of Liege with the seaport of Antwerp
(Belgium), has been widened to allow traffic of push convoys of four barges with a
whole capacity of 9000 tons. This decision has required the replacement of the existing
bridges by new structures with a much longer span (roughly 150 m instead of 95 m). In
the vicinity of Liège (B), the choice was stay cables bridges (Lixhe, Lanaye and
Wandre) and tied arches bridges (Haccourt, Hermalle, Marexhe and Milsaucy –

Fig. 13).
In northern Belgium, a flat country, there are numerous examples of tied arches

bridges. They are entirely concrete bridges. The arches are braced over great length and
the hangers are vertical. The set of deck, arch and hangers works like a Vierendeel
beam. For the new bridges, the objectives were to obtain slender structures, easier to
build also with no (minimum) interruption of the boats river traffic. Designed in the
same period, they gave an opportunity to try to optimize each structure, to adapt each
one to the local configuration and to take advantage of the latest theoretical develop-
ments in the field of instability. Even their main span length was almost the same, each
bridge is different (Table 1).

The hangers are locked-coil cables. Crossed cables (Fig. 14) have been preferred to
vertical and parallel ones for two reasons: to ensure a better distribution of the traffic
loads to the arches (Fig. 13) and to obtain a truss behaviour of the set of deck, arches
and hangers. But, with this arrangement, it must be admitted that it also has some
disadvantages: all cables are not in the same plane and, when the arches are inclined, as
for the Hermalle bridge, the view of the suspension system is not clear (Fig. 13).

Fig. 12. Approach spans combined with two types of bridges

Fig. 11. Internal forces
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4.3 Behaviour of the Arches

The arches are in compression. Their stability must be verified. Often, the instability in
the arches plane is not preponderant; the first buckling mode appears transversally. For
this mode, the arch can be considered as a beam, with compression stresses, restrained
to the deck at each end. But in contrast with a simple compressed beam for which the
ratio of the first two critical loads is 4.0, in the case of tied arch bridges, this ratio is
around 1.0. The origin of this result is the stabilizing effect of the stretched hangers.
The transversal instability of the arches is equivalent to a compressed beam on elastic

Table 1. Main characteristics of the bowstring bridges on the Albert Canal

Location Main span
L (m)

L/f
(-)

Width
(m)

Arches Bracing shape Bracing location,
a = X/L

Haccourt (B) 139.5 6 20.90 2, parallel / /
Hermalle (B) 138.1 6 15.60 2, inclined 1 transversal

top beam
0.5

Marexhe (B) 100.18 5 18.30 2, parallel 2 transversal
beams

0.25/0.75

Misaucy (B) 145.0 6 15.50 2 parallel 2 St. Andrew’s
crosses

0.20/0.80

Fig. 13. Inclined/vertical hangers and traffic loads

Milsaucy Haccourt

Marexhe

Hermalle 

Fig. 14. Tied arches bridges on the Albert Canal.
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foundation. Based on several scientific papers and researches at the University of
Liège, the stabilizing effect of the tension hangers has been considered to better
understand this behaviour and also to optimize the rigidity and the location of the
transversal bracing between arches [1–4].

For a pre-design, it can be considered that the buckling length of the compression
arch is equal to 0.35 L*, with L*, the developed arch length. The first instability mode
shape is the same one as for the second buckling mode of a compression beam full
restrained at each support (Figs. 15 and 16). Based on a parametric analysis of the arch
bracing, a simple design method, [1–4], has been suggested which allows a satisfactory
accurate assessment of the critical out-of-plane buckling load of arches. This method
simply consists of evaluating analytically the instability of the set of bracing and arches
submitted to compression in the transversal plane of the arches supported by an elastic
foundation for which the rigidity is equivalent to NH/h (Fig. 15). Based on a parametric
analysis of the arch bracing, a simple design method, [4], has been suggested which
allows a satisfactory accurate assessment of the critical out-of-plane buckling load of
arches. This method simply consists of evaluating analytically the instability of the set
of bracing and arches submitted to compression in the arches transversally supported
by an elastic foundation. This simple approach compared to the numerical values
obtained by a finite element software shows that the understanding of the instability
phenomenon is correct. The Fig. 17 shows the value the first critical transversal mode
of the arches versus the location of the transversal bracing. The assumptions are: elastic
constitutive law (Euler assumption) bracing beams with hollow cross section, only two
bracing beams arranged symmetrically. It can be seen that the effect of the bracing
beams is optimum with a location of 0.21 L* or 0.41 L*, with L*, the developed length
of arches. With tacking into account the plasticity and the second order effects, the gain
is lower but the optimal location of the bracing is the same (Fig. 18).

The efficiency of the bracing is clear but it is also possible to ensure the stability
without it. For the four bridges on the Albert Canal (Fig. 13), four solutions to ensure
the transversal stability has been used:
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Fig. 15. Elastic foundation induced by hangers
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– Hermalle bridge: inclined arched ‘connected’ at the arches top
– Marexhe bridge: two transversal beams
– Milsaucy bridge: two St. Andrew’s cross beams
– Haccourt bridge: without bracing.
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Fig. 17. Buckling load versus the location of bracing (x/L*).
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The deck of the Haccourt bridge is larger. A bracing with transversal beams was
also possible but the dimensions of the beam cross section would be also greater to
obtain sufficient rigidity not only to ensure the stability but also to support its own dead
load. The solution was to suppress the bracing and to increase the bending rigidity of
each arch. It is clear that, in that case, the hollow cross section of the arches must be
larger to obtain the required stability.

For the Hermalle bridge (Fig. 17), with inclined arches, during their transversal
displacements, each arch leans against the other; this behaviour adds a rigidity effect to
the stabilizing effects of the stretched hangers. To incline arches seemed to be an
elegant solution; the stability is increased. After several years of its opening, despite a
comfortable road clearance, the trucks move laterally to the left of the traffic lanes when
entering the bridge. Apparently, the trucks drivers are afraid to touch the arches.
Perhaps, it would be interesting to increase the distance between the arch bases but, in
this case, the deck width would also be increased.

The main stresses in the arches are in compression and the plate buckling must be
verified. Thirty years ago, it was classical to ensure the plate stability by numerous
stiffeners. Moreover, the loss of efficiency under compression stresses is classical for
the webs. For the upper and bottom flanges, a supplementary loss of efficiency appears
due to the curvature of the plates (Fig. 19). Under compression stresses, S1 and S2, in
the plates plan, forces, TS, appear transversally. In the projects designed by the Belgian
administration, each plate was stiffened with a few T profiles along the whole length of
the arches (Fig. 19).

Researchers have been made in the University of Liège to design this type of plates,
[5, 6]. For the final design, it has been proposed to suppress each stiffener in order to
limit the final cost. Of course the double loss of efficiency due to the plate buckling and
to the transversal forces, TS, has been taken into account. It was more interesting to
increase the plate thickness than to weld stiffeners and so to decrease the cost of
construction. Nonlinear simulations have been made with a finite element program to
verify these assumptions.

S2

S2

S1
TS

S1

Fig. 19. Arch flanges in compression
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4.4 Erection Methods

After the brittle collapse of some steel bridges in Belgium between 1938 and 1940, the
welding of steel elements on the work site was prohibited until the mid-nineties.
Therefore, the final connections of the arches for the new tied arches bridge on the
Albert Canal have been made with bolts (Fig. 13).

Two of these tied arch bridges have been erected with temporary steel piers to
assemble the deck and the arches: Milsaucy and Marexhe bridges. The two other,
Hermalle (Fig. 20) and Haccourt bridges, have been assembled on the ground and after
that, transported on flat boats to install them on their final position.

4.5 Evolutions of the Design

Chanxhe and Chaudfontaine Tied Arch Bridges
After the design of the tied-arch bridges on the Albert Canal, some other bridges with
the same typology have been imagined and designed. The stability of the compression
was well-known and understood; we could focus on other details of the structure. Two
tied-arch bridges, with a span length around 50 m, have been designed in Chanxhe and
Chaudfontaine (Belgium) (Fig. 21).

Fig. 20. Hermalle bridge on flat boats (1985)

Fig. 21. Chanxhe bridge and Chaudfontaine bridge.
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The hangers are vertical and there is no bracing. With a ratio between the span
length, L, and the arch top level, f, equal to L/6, the road clearance would be difficult to
be respected with a transversal bracing. Moreover, its suppression gives the impression
of lightness. A red colour has been adopted for the arches and the hangers for the
Chanxhe bridge. For the Chaudfontaine bridge, the same red colour has been chosen
for the arches and the deck and the white colour, for the hangers. This choice highlights
the structural lines of the structure.

Hoge Brug in Maastricht
When it is possible to imagine tied-arch bridges with two arches without bracing, why
not a tied-arch bridge with a single arch?
The Hoge Brug in Maastricht (Fig. 22) is a footbridge and crosses the river Maas in the
centre of Maastricht (NL). It constitutes a link for pedestrians and cyclists between the
new modern Ceramique district and the old city. With a 164 m long main span without
supports in the river, the bridge is perfectly integrated in its both modern and natural
environment, but its elegance and its slenderness are also attractive. This impression of
slenderness is due to the little dimensions of the structural elements (deck, arch, sus-
pension cables) compared to their length, and is accentuated by the curve of the deck
section, a box girder shaped as a sector of a circle. It is constituted by 5 inner boxes and
is maximum 1.2 m high.

Fig. 22. Hoge Brig in Maastricht (NL)
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The main span is suspended by 14 crossed cables fixed to a single central arch
which its cross section has a variable geometry. So, at its basis, the cross section of the
arch is 1.2 m wide by 1.2 m high, and at its top 2.4 m wide by 0.8 m high. By this way,
the steel is distributed where it is efficient: a vertical rigidity at the basis to transmit the
longitudinal moment to the deck and a transversal rigidity at the mid-span of the arch to
ensure its stability. Its geometry reinforces yet the impression of slenderness. The
single plane of hangers, anchored in the middle of the deck serves as a separation
between the flow of pedestrians and cyclists. The main bridge was built on pontoons
near its definitive position and was placed by barges driven by cables.

The Sado Viaduct
The railway Sado viaduct (Fig. 23) is located in the south of Portugal. To limit the
number of piers in the river, the choice of a multiple tied-arch bridge has quickly been
adopted: three successive tied-arch bridges with main spans length equal to 160 m. For
the pre-design, two solutions were examined: tied arch bridges with two inclined arches
or one vertical arch. Of course, for this comparison, the deck shape was different for the
two solutions. With two longitudinal arches, the longitudinal rigidity is ensured by two
longitudinal beams located, each one, below each railway track. A transversely
eccentric vertical load is equilibrated by an alternated loading in each arch. For the case
of single arch, the deck cross section must be a composite box girder, with a sufficient
torsional rigidity to transmit the torsional moment to the bearings.

Both solutions were confronted with objective criteria on the basis of two pre-
liminary designs carried out in parallel. Finally, the choice was made on the second
design for different reasons. The single central arch is more effective. The critical load
is greater and the overall deflection of the structure is lower. The variation of stresses in
the hangers of the inclined arches is greater. This assessment is unfavourable for
fatigue. The solution with two arches increases the number of elements to be assem-
bled. The estimated cost for the two arches solution proved to be 10% higher. All these
conclusions led to the final choice of three bowstring bridges with a single arch [7].

The steel hollow cross section of the arch has a hexagonal shape of which the
height and the width are variable from the basis to the top. The width is increasing to
ensure the transversal stability of the arch and the height is decreasing to have the
maximum vertical bending rigidity at the connection with the deck. The ratio between
the length of the span and the height of the arch is 5.40. The deck is suspended to the
arch, every 8 m, by vertical and cylindrical solid bars. Their diameter is 200 mm with
S355 steel quality. One particularity of the main bridge, composed of three tied arch
bridges, is its continuity. Under the dead load, in spite of the continuity between the
bridges, the bending moment between two bridges is quasi null. Under the variable
load, it is not the case. This scheme doubtless distorts the behaviour of a real tied arch.
But the interest was double: to suppress the problem of the rail track movement at the
extremity of each tied arch bridge and also to have a single bearing device at the top of
the concrete piers.
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Assembled on temporary steel frames upwards of the river, the total length of the
three spans of the deck has been built by launching. For that, two steel temporary piers
have been installed in the river Sado between each final concrete pier. Temporary piers
were also used to assemble the arches pre-fabricated in three elements. To adjust the
internal bending moment in the deck due to the dead load after the launching, a vertical
displacement of 1.3 m high has been imposed after the final launching. The instability
of the arches has been verified with finite element simulations. The first critical eigen
values being not so high by comparison with the ULS load level (2.55 and 2.75 ULS),
nonlinear elasto-plastic computations have been realised with initial transversal
deformed shape and several combinations of loading, dead load, wind and UIC loads.

5 Arch Bridges

5.1 Eau-Rouge Viaduct

The structure (Fig. 24) is located between Francorchamps and Malmedy on the E42
motorway (Belgium) close to the border with Germany. The aggressiveness of the
valley bottom soil, required a central span of 270 m to avoid the area of ground with
bad mechanical properties. This central span is crossed with two arches made of steel
hollow rectangular cross sections with a distance of 14 m, supporting the composite
deck via vertical members and diagonals. The approach spans are 258.75 m long north
and 123.75 m south. The viaduct has a total length of 652.5 m. The composite steel-
concrete deck is 27 m wide with two carriageways, each with two traffic lanes and one
emergency stop lane. The two steel arches have a parabolic shape of minimum radius
150 m and a height of about 50 m. The two steel caissons are not interconnected by

Fig. 23. Sado Viaduct (Portugal)
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any bracing except during the assembly phases. At the top of the arch, the arch and the
deck are combined to form a single box of variable height (2.0 m up to 7.0 m) [8].

The special character of the structure, its lightness, its slenderness and the span
length of the arch have led engineers to realize a series of numerical simulations to
verify:

– for the whole structure, its behaviour under the effect of an earthquake and its safety
regarding the instability of the arches without transversal bracing. The first two
instability load factor are equal to 4.84 and 5.09 versus the SLS loading (Fig. 24).

– for certain structural elements, the effects of the second order effect such as the
vertical webs of the steel hollow caissons of the deck for which the phenomenon of
web breathing for the common caisson deck-arch at the top of the arches would
occurred.

First buckling mode of arches

Fig. 24. Eau-Rouge Viaduct
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5.2 Bridge on the Ravine Fontaine

The arch bridge on the Ravine Fontaine (Fig. 25) is a bridge on the road connection
called “Route des Tamarins’’ in the West of the Reunion Island (France). It is one of
the four civil engineering works qualified as exceptional on this road because of their
type, their dimensions and/or their location. The Tamarins road progresses on the sides
of a volcano, approximately one km away from the coast and at an altitude close to
300 m. It must consequently cross the innumerable ravines. The Ravine Fontaine has at
the level of the road, an opening of 200 m and a depth of 110 m. The deck is 20.1 m
width: 2 road lanes and an emergency lane in each direction [8].

As first approach, it was reasonable to consider (Fig. 25) [9]:

– for a bridge whose reactions would have been vertical, that the support zone must
lie a setback of 20 m relative to the edge of the cliffs and find a basalt layer
sufficiently thick to allow diffusion of the support reactions

– for a bridge with inclined reactions (arch type bridge), that it was necessary to
consider the zone following the natural balancing slope as unstable, and that a
support surface directly behind this zone was acceptable, as far as it was possible to
find one or more basalt layers which were able to balance the horizontal component.

The Reunion island is the seat of a very significant endemic flora of which many
species are protected. In particular, certain birds such as the “puffins of the baillon`̀ nest
and reproduce in the cracks and fractures of the basalt layers. It was not possible to
envisage a cable-stayed bridge that would have disrupted their flight.

In consequence, the best choice was a bridge with a support structure below the
deck: an arch bridge. The length of the structure is strictly limited to what is needed for
carrying out the crossing, this is 200 m. It is easily understood that if the geotechnical
conditions allow the construction of an arch bridge, this solution will be the most
interesting, as much as well as for the landscape, as technical and economic aspects.

The principle of an arch bridge is such that it is principally subjected to an almost
constant compression force. It is therefore logical to design a constant section. The
design takes account of this principle. However, to benefit from the possibilities of
restraining the arch in the foundations and in the basalt layers, the height of the section
was increased at the basis, which also made it possible to decrease it in the central part
and to give the impression of a large slenderness. Transversely, the arch is mainly
subjected to the forces of the wind (mean wind speed, 50 m/sec, in cyclone regions). It
behaves like a beam supported at its two ends, with a maximum bending moment in the
central part. The width of its section develops proportionally to this bending moment.
These principles have made it possible to fit the arch section between two inclined
planes (Fig. 26).

The geometry of the arch so defined was used as the basis for the geometrical
construction of the columns and the deck. The deck is composed of two small caissons
2 m high and 2 m wide. These two small caissons are braced every 4 m in order to
support the reinforced concrete slabs. They are in addition supported by the radiating,
thus inclined columns. The columns as well as the caissons of the deck fit in the planes
of the arch.
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The ratio L/f, height of the arch on span length, is usually guided by economic
considerations and lies between 5 and 6 (see tied arch bridges on the Albert Canal). In
addition, with the general rule, other parameters have to be considered. The founda-
tions must find a sufficiently rigid support on the basalt layers to take the compression
of the arch. The abrupt face of the cliffs makes the earthworks and the access to the
bottom of the excavation particularly delicate. It is necessary to limit their depth to the
minimum. But aesthetically, the economic ratio leads to a less dynamic aspect. This is
why we made the choice to decrease the slenderness ratio to 1/7.5, that is a deflection of
22.50 m for a span of 170 m.

The four sides of the box girder consist of stiffened panels (Fig. 26). These panels
were checked by means of Eurocode by taking account of the combined plate-column
behaviour.

Two by two and laid out every 16 m, the columns transfer the loads coming from
the deck onto the arch. They are provided with articulations at their two ends in order to
be subjected only to normal forces. Indeed, under the effect of the asymmetrical forces
(a longitudinally loaded half-bridge), the arch works exclusively in bending and sig-
nificantly deforms, inducing significant relative rotations, particularly at the foot of the

Fig. 26. Bridge on Ravine Fontaine – Elevation and cross sections

20 m20 m

50°

Fig. 25. Ravine Fontaine profile and the bridge.
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columns. An end restraint at this place would have imposed a bending of the columns
incompatible with their resistance to fatigue. In order to ensure this function and to
limit the maintenance (inspection, replacement), the supports at the interface with the
deck are carried out by means of steel grains on steel, and at the arch, by means of a
welded plate (Fig. 27).

After construction of the earthworks, foundations and support abutments, the
assembly of the metallic structure, with a total weight of 2000 tons, was erected by the
cantilever method (Fig. 28). Basic sections are manufactured in workshops in Italy
before being conveyed by boat to the Reunion. After assembly on site to reconstitute
elements of a maximum weight of 100 tons, the latter are set up one after the others by
means of a derrick built explicitly for this work.

6 Conclusions

Although numerous arch and tied-arch bridges have already been designed around the
world, it is yet possible to imagine innovative structures. But, the most important thing
is perhaps to design aesthetic and elegant structures with the respect of their
environment.

The beliefs of René Greisch about appropriateness of design in relation to effi-
ciency, economy and functionality have been expressed in a series of works which
have established the reputation and the references of his engineering office. His interest
in architecture has instilled his design team with a spirit of research and innovation and
has led to many collaboration ventures with architects. Collaboration between engi-
neers and architects is important in order to create an atmosphere where the design
team is constantly questioning and searching for new solutions, both formal and
technical. The attitude of quest, the determination to work through collaboration and

Fig. 27. Interface between counters and the deck and the arch.

Fig. 28. Erection stages of the steel structure
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synergy, constant innovation and dynamism, invention combined with imagination
must become the working methods and principles that must underpin the design of
structures and bridges.

The bridges must be designed to serve the city with the respect of three well-known principles:
the statics, the aesthetics and the politics.

Then, there will be many chances that citizens will be proud of “their’’ bridges.
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Abstract. As one of the most formidable challenges on long-span bridges,
recent development of arch bridges have been presented in the aspects of static
stability, dynamic characteristics and aerodynamic performance. Concrete, steel
and concrete-filled-steel-tube arch bridges have been numerically analyzed to
evaluate elastic structural buckling instability and plastic material yielding
instability. Concrete arch bridges may result in plastic material yielding insta-
bility during construction, especially under strong winds, although completed
bridges have quite high safety factor. Most long span bridges show good
dynamic characteristics, and have higher structural stiffness and natural fre-
quency than those of cable-stayed bridges with same span length. Steel box rib
arch bridges have been found with some aerodynamic problems due to very
bluff cross section, especially in vortex-induced vibration, but the increase in
span length of arch bridges should not be influenced by aerodynamic
performance.

Keywords: Arch bridge � Statics � Dynamics � Aerodynamics

1 Introduction

Human beings have been building bridges in girder, arch, cable-stayed and suspension
types in order to cross streams and rivers for thousands of years. Arch bridge is an
ancient bridge type originating from stone arch, which was firstly invented around
2,500 BC in the ancient Greeks, and developed most fully for arch bridges by the
ancient Romans. China has an ancient history of arch bridge construction for about
2,000 years, and the oldest existing bridge is Zhaozhou Bridge of 605 AD, which is the
world’s first wholly-stone open-spandrel segmental arch bridge. In the modern time of
1930’s, two famous long-span steel arch bridges were completed, namely the 504 m
Bayonne Bridge in the United States and the 503 m Sydney Harbour Bridge in Aus-
tralia, which remained to be the longest arches for about four decades, till the emer-
gence of 518 m New River Gorge Bridge of USA in 1977. After another four decades,
China has built several remarkable arch bridges with very long spans, including two
world record-breaking spans of 550 m Lupu Bridge in Shanghai and 552 m Chao-
tianmen Bridge in Chongqing. The top ten longest span steel arch bridges in the world
are listed in Table 1 [1].
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In addition to steel, concrete is another structural material that can also be used in
arch bridge construction since arches are mainly subjected to compressive forces. There
are many concrete arch bridges with long spans, and the top ten in the world are shown
in Table 2 [2].

As steel and concrete composite structure, concrete filled in steel tube (CFST) has
been used in arch ribs of long-span arch bridges, and CFST arch rib bridge construction
began with Russia, followed by Japan, and widely developed in China. Due to the
construction cost and duration, over 400 CFST arch bridges have already been built in
China. Table 3 lists the top ten longest span CFST arch bridges in the world, all of
which are in China [2].

Table 1. Top ten longest span steel arch bridges.

No. Bridge name Span(m) Arch rib Country Built year

1 Chaotianmen Bridge 552 Truss China 2009
2 Lupu Bridge 550 Box China 2003
3 New River Gorge Bridge 518 Truss USA 1977
4 Bayonne Bridge 510 Truss USA 1931
5 Sydney Harbour Bridge 503 Truss Australia 1932
6 Mingzhou Bridge 450 Box China 2011
7 Zhaoqing Xijiang Bridge 450 Box China 2013
8 Xinguang Bridge 428 Box China 2008
9 Caiyuanba Bridge 420 Box China 2007
10 Second Hengqin Bridge 400 Truss China 2015

Table 2. Top ten longest span concrete arch bridges.

No. Bridge name Span(m) Arch rib Country Built
year

1 Beipan River Bridge 450 Concrete China 2016
2 Wanxian Bridge 420 Concrete China 1997
3 Krk Bridge 416 Concrete Croatia 1980
4 Nanpan River Bridge 416 Concrete China 2016
5 Almonte River Railway Br. 384 Concrete Spain 2016
6 Zhaohua Jialing River Bridge 364 Concrete China 2012
7 Jiangjiehe Bridge 330 Concrete China 1993
8 Mike O’Callaghan-Pat Tillman

Memorial Bridge
323 Concrete USA 2010

9 Yongjiang Bridge 312 Concrete China 1996
10 Gladesville Bridge 305 Concrete Australia 1964
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With the increase of arch bridge span length, arch bridges are becoming more
flexible, which requires to investigate static stability, dynamic characteristics and
aerodynamic performance. The analysis of static stability has been carried out on
concrete, steel and CFST arch bridges to evaluate their elastic structural buckling
instability and plastic material yielding instability. Dynamic characteristics analysis
with finite element method (FEM) has been conducted on several long-span arch
bridges, and the natural frequencies of these bridges have been compared with those of
cable-stayed bridges. Considering aerodynamic performance of long span arch bridges,
Shanghai Lupu Bridge has been systematically investigated on vortex-induced
vibration.

2 Static Stability of Concrete, Steel and CFST Arch Bridges

Arch ribs are main force-bearing members of arch bridges. They are generally in an
eccentric compression state under static load and face the challenge of structural static
stability. The static stability analysis needs to consider not only vertical structural dead
load and live vehicle load but also static wind loads including vertical static wind lift,
lateral wind drag and torsional wind moment. Long-span arch bridges do not need to
consider vehicle loads under extreme static wind loads since the deck traffic may close
in that time, but static instability may still occur.

The static instability of arch bridges is generally divided into elastic structural
buckling instability (the first type of instability) and plastic material yielding instability
(the second type of instability). In the elastic structural buckling instability, static load
relies on structural deformation obviously and the load can be linear or nonlinear. The
static wind load produces a so-called aerodynamic stiffness (also known as load
stiffness). Due to the contribution of aerodynamic stiffness, the geometric stiffness can
be negative, and the compressed arch bridge system may lose its overall stability. The
mechanism of the second type of instability is different from the first one. It occurs
when structural effects of dead load, live load and static wind load are beyond the
ultimate bearing capacity of the arch bridge. Contribution of negative aerodynamic

Table 3. Top ten longest span CFST arch bridges.

No. Bridge name Span(m) Arch rib Country Built year

1 Bosideng Bridge 530 CFST China 2012
2 Wushan Bridge 460 CFST China 2005
3 Zhijinghe Bridge 430 CFST China 2009
4 Lianxiang Bridge 400 CFST China 2007
5 Daninghe Bridge 400 CFST China 2010
6 Maocaojie Bridge 368 CFST China 2006
7 Yajisha Bridge 360 CFST China 2000
8 Zongqihe Bridge 360 CFST China 2015
9 Zhunshuo Railway Bridge 357 CFST China 2018
10 Xiaohe River Bridge 338 CFST China 2010
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stiffness still cannot be ignored and nonlinear structure performance is also very
important in this type of instability [1].

Three arch bridges respectively with concrete, steel and CFST ribs have been taken
as examples to analyze their static stability, and the corresponding results are presented
below.

2.1 Reinforced Concrete Arch Bridge

Linking Yibin City and Zigong City over the Min River in Sichuan Province, the 2nd
Yibin Bridge is a three-span continuous reinforced concrete (RC) arch bridge with the
equal span length of 160 m, as shown in Fig. 1. The load-bearing main arch consists of
ten RC box-arch-ribs, 1.6 m wide and 2.2 m deep each, which are segmentally erected
with the sequence of one box rib by one box rib without any temporary supporters.
After two RC box ribs with the cross section show in Fig. 2 had been constructed
through all three spans, the central span and the side span near Zigong City were found
to have collapsed into the river during the night of June 6, 1997. The construction work
was stopped afterwards in order to investigate the accident. Unfortunately, the
remaining side span near Yibin City was collapsed again on August 29, 1997.

In order to investigate the collapse of the 2nd Yibin Bridge under construction,
theoretical analysis and wind tunnel tests were conducted, and static instabilities due to

Fig. 1. General arrangement of the 2nd Yibin Bridge

Fig. 2. The cross section of two RC box ribs erected

74 Y. Ge



static wind loading and dynamic wind loading were analyzed. Finally, the reason for
the collapse of the arch ribs was concluded [3].

Static Stability due to Static Wind Loading
Static wind loading or aerostatic force can be divided into three components, drag force
FD or horizontal force FH, lift force FL or vertical force FN and pitching moment MT,
and can be defined in the following equations and Fig. 3.

FD ¼ 1
2
qU2HCD or FH ¼ 1

2
qU2HCH ð1Þ

FL ¼ 1
2
qU2BCL or FN ¼ 1

2
qU2BCN ð2Þ

ML ¼ 1
2
qU2B2CM ð3Þ

where q is air mass density, q = 1.225 kg/m3; U is mean wind speed, U = 29 m/s at
the arch crown level of 60 m; B is section width, B = 3.2 m; H is section height,
H = 2.2 m; CD and CH are aerostatic drag and horizontal coefficients respectively; CL

and CN are aerostatic lift and vertical coefficients respectively; and CM is aerodynamic
pitching moment coefficient. The aerostatic force coefficients defined in Eqs. (1)–(3)
were identified through the sectional model force balance testing shown in Fig. 4.

According to the definition of aerostatic forces in Eqs. (1)–(3), the three compo-
nents of aerostatic loads can be expressed by

Ws
y;z;hðxÞ ¼ Wy;z;hay;z;hðxÞ ð4Þ

where Wy;z;h is the maximum values of aerostatic loads; ay;z;hðxÞ is the non-dimensional
distribution functions of aerostatic loads; y is for horizontal direction; z is for vertical
direction; and h is for pitch direction. The mean wind speed during construction stage
can be calculated by

HF

DF

NFLF

TM

Fig. 3. Aerostatic force components

Fig. 4. Sectional model force balance testing
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where z is height above the water; and a = 0.16. Therefore, the non-dimensional dis-
tribution functions of aerostatic loads are expressed as
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The maximum values of aerostatic loads during construction stage are

Wy ¼ 1
2
qU2HCH ¼ 1:53 kN/m ð8Þ

Wz ¼ 1
2
qU2BCN ¼ �0:0609 kN/m ð9Þ

Wh ¼ 1
2
qU2B2CM ¼ 0:0866 kN-m/m ð10Þ

Based on the dead load of arch ribs under construction and the aerostatic loads
described in Eq. (4), the incremental iteration method was used to analyze static sta-
bility on the three dimensional finite element method (FEM) model of the arch ribs.
The vertical and horizontal displacements at mid-span and quarter-span are shown in
Fig. 5 with the wind speed increment of 10 m/s. It can be concluded that the structural
static instability does not happen until the maximum wind speed of 150 m/s.
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Static Stability due to Dynamic Wind Loading
Since static wind loading does not include the force due to wind-induced structural
vibration, dynamic wind loading is defined with aerodynamic and aeroelastic responses
of a structure. For simplicity in static stability calculation, dynamic wind loading is
usually transferred to equivalent aerostatic loading, which is defined in the condition
that the displacements of bridge structures under this equivalent aerostatic loading are
equal to the maximum oscillation displacements. The equivalent aerostatic loading on
arch ribs can be determined by

Wy;z;h ¼ gWy;z;hrWy;z;h ¼ gWy;z;h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Wb y;z;h

þ r2Wr y;z;h

q
¼ gWy;z;h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ly;z;hrWr y;z;h

q
ð11Þ

where gw is peak factor; l is modification factor due to background response; and rw is
root-mean-square (RMS) of resonant response due to dynamic wind loading.

The most accurate method in determining the above-mentioned three parameters,
peak factor, modification factor and RMS, is wind tunnel testing with a full aeroelastic
model. Based on the experimental results of the aeroelastic model testing in Fig. 6, the
equivalent aerostatic loading of the arch ribs can be expressed by the following
expressions and Fig. 7.

WyðxÞ ¼ ð1� 0:673
x2

4l2
Þ0:32ð1:53� 0:75 cos

p
l
x� 0:55 sin

2p
l
xÞ ð12Þ

WzðxÞ ¼ ð1� 0:673
x2

4l2
Þ0:32ð�0:0609� 0:80 cos

3p
l
x� 2:10 sin

2p
l
xÞ � cos p

2l
x ð13Þ

WhðxÞ ¼ ð1� 0:673
x2

4l2
Þ0:32ð0:0866� 0:50 cos

p
l
x� 0:40 sin

2p
l
xÞ ð14Þ

Fig. 6. Full-scale aeroelastic model testing
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The dead load on the arch rib can be defined as

qz ¼ m � g ¼ 35:45 kN=m ð15Þ

The internal forces at different cross sections caused by the dead load, the aerostatic
loading and the equivalent aerostatic loading were calculated, and the influence of P-D
effect was also considered. The RC rib strength evaluation is conducted with the
condition that the axial force Np based on the load combinations is equal to the
structural ultimate resistance NR.

At the arch crown cross section, when Np = NR = 3390 kN, the structural in-plain
resistant bending moment MR = 24086 kN-m is much greater than the value of
Mp = 487.3 kN-m due to the code or the value of Mp = 848.7 kN-m due to the wind
tunnel tests, and the structural out-of-plain resistant bending moment MR = 4234 kN-m
is greater than the value of Mp = 2324 kN due to the code but much than the value of
Mp = 6612 kN due to the wind tunnel tests. Similarly, at the arch foot cross section,
when Np = NR = 4963 kN, the structural in-plain resistant bending moment
MR = 23976 kN-m is much greater than the value ofMp = 64.9 kN-m due to the code but
less than the value of Mp = 497.8 kN-m due to the wind tunnel tests, and the structural
out-of-plain resistant bending moment MR = 5534 kN-m is greater than the value of
Mp = 5192 kN due to the code but much less than the value ofMp = 12158 kN due to the
wind tunnel tests. Therefore, the two RC arch ribs of the 2nd Yibin Bridge may fail
under the joint action of structural dead loads and wind-induced loads including aero-
dynamic wind loading, aeroelastic wind loading and the loading based on P-D effects
which were not considered in the design of the bridge under construction.

2.2 CFST Arch Bridge

CFST is an advanced steel-concrete composite structure with an external steel tube and
internal filled plain concrete. The external steel tube works not only as a part of
structural material like in reinforced concrete but also to restrain lateral deformation of
the internal concrete so that it can behave under three-dimensional compressive state,

Fig. 7. Equivalent aerostatic loading
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which is the most effective, economical and desirable way for concrete. Compared with
steel or concrete arch ribs, CFST rib arch bridges can economize steel and concrete
consumption and reduce construction costs [4].

As shown in Fig. 8, Xiangshan North Gate Bridge is a basket-type CFST half-
through arch bridge with a central span of 270 m. The arch height is 54 m and the ratio
of height to span is 1/5. Each arch rib consists of four CFST members with a diameter
of 1 m, and these four members are connected by steel pipes, forming a truss arch rib.
Two inclined arch ribs are connected by several steel pipe bracings. The bridge girder
is made up of prestressed concrete with the deck width of 12.5 m. The first and the
second type of instability analysis were carried out based on the FEM model, where
steel pipe and internal concrete are individually simulated by different elements. The
reference wind speed at the arch crown height is set to be 65 m/s [5].

Elastic Structural Buckling Failure
Since the bridge is closed to traffic when wind speed is beyond a specific limit and no
vehicle load is there, the elastic structural buckling failure analysis needs to consider
merely structural dead load and static wind load. Assume that in the first iteration wind
speed U1 is 100 m/s, adopt corresponding static wind load and structure dead load to
the FEM model, and the first 5 eigen values and the critical wind speed can be
determined in Table 4. The first mode of elastic structural buckling failure is shown in
Fig. 9. The safety factor for elastic structural buckling failure is determined as 5.896
according to calculation results, which means that there will be elastic structural
instability when the total load (structural dead load + static wind load) is expanded by
5.859 times.

Through the second iteration with U2 = √5.859 � 100 = 242 m/s, and the third and
the fourth iterations, we can get the result of the first 5 eigen values and the critical
wind speeds shown in Table 4. With the fixed value of structural dead load, the safety
factor for elastic structural buckling failure is 6.081, which means that there will be
elastic structural instability when the static wind load is expanded by 6.081 times [5].

Fig. 8. General arrangement of Xiangshan North Gate Bridge
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