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Preface to the Second Edition 

It has been thirteen years since the first edition was published, with its subtitle 
"a new approach." While the book has had some success, there are still almost 
no other books that use the same approach. (See however the recent book by 
K. Bichteler [17].) There are nevertheless of course other extant books, many 
of them quite good, although the majority still are devoted primarily to the 
case of continuous sam pIe paths, and others treat stochastic integration as 
one of many topics. Examples of alternative texts which have appeared since 
the first edition of this book are: [34], [46], [90], [115], [202], [196], [224], [235], 
and [248]. While the subject has not changed much, there have been new 
developments, and subjects we thought unimportant in 1990 and did not 
include, we now think important enough either to include or to expand in this 
book. 

The most obvious changes in this edition are that we have added exercises 
at the end of each chapter, and we have also added Chap. VI which intro­
duces the expansion of filtrations. However we have also completely rewritten 
Chap. III. In the first edition we followed an elementary approach which was 
P. A. Meyer's original approach before the methods of Doleans-Dade. In or­
der to remain friends with Freddy Delbaen, and also because we now agree 
with hirn, we have instead used the modern approach of predictability rather 
than naturality. However we benefited from the new proof of the Doob-Meyer 
Theorem due to R. Bass, which ultimately uses only Doob's quadratic martin­
gale inequality, and in passing reveals the role played by totally inaccessible 
stopping times. The treatment of Girsanov's theorem now includes the case 
where the two prob ability measures are not necessarily equivalent, and we 
include the Kazamaki-Novikov theorems. We have also added a section on 
compensators, with examples. In Chap. IV we have expanded our treatment 
of martingale representation to include the Jacod-Yor Theorem, and this has 
allowed us to use the Emery-Azema martingales as a class of examples of mar­
tingales with the martingale representation property. Also, largely because of 
the Delbaen-Schachermayer theory of the fundamental theorems of mathe­
matical finance, we have included the topic of sigma martingales. In Chap. V 
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we added a section which includes some useful results about the solutions of 
stochastic differential equations, inspired by the review of the first edition by 
E. Pardoux [207]. We have also made small changes throughout the book; 
for instance we have included specific examples of Levy processes and their 
corresponding Levy measures, in Sect. 4 of Chap. 1. 

The exercises are gathered at the end of the chapters, in no particular 
order. Some of the (presumed) harder problems we have designated with a 
star (*), and occasionally we have used two stars (**). While of course many 
of the problems are of our own creation, a significant number are theorems 
or lemmas taken from research papers, or taken from other books. We do not 
attempt to ascribe credit, other than listing the sources in the bibliography, 
primarily because they have been gathered over the past decade and often 
we don't remember from where they came. We have tried systematically to 
refrain from relegating a needed lemma as an exercise; thus in that sense the 
exercises are independent from the text, and (we hope) serve primarily to 
illustrate the concepts and possible applications of the theorems. 1 

Last, we have the pleasant task of thanking the numerous people who 
helped with this book, either by suggesting improvements, finding typ os and 
mistakes, alerting me to references, or by reading chapters and making com­
ments. We wish to thank patient students both at Purdue University and 
Cornell University who have been subjected to preliminary versions over the 
years, and the following individuals: C. Benes, R. Cont, F. Diener, M. Di­
ener, R. Durrett, T. Fujiwara, K. Giesecke, L. Goldberg, R. Haboush, J. Ja­
cod, H. Kraft, K. Lee, J. Ma, J. Mitro, J. Rodriguez, K. Schürger, D. Sezer, 
J. A. Trujillo Ferreras, R. Williams, M. Yor, and Yong Zeng. Th. Jeulin, 
K. Shimbo, and Yan Zeng gave extraordinary help, and my editor C. Byrne 
gives advice and has patience that is impressive. Over the last decade I have 
learned much from many discussions with DarreIl Duffie, Jean Jacod, Tom 
Kurtz, and Denis Talay, and this no doubt is refiected in this new edition. 
FinaIly, I wish to give a special thanks to M. Kozdron who hastened the ap­
pearance of this book through his superb help with Jb.1EX, as weIl as his own 
advice on all aspects of the book. 

This postscript concerns the Corrected Second Edition. Since the appear­
ance of the second edition, Marc Yor has read the book with care and made 
many suggestions which have been incorporated in this corrected edition. 
Many are subtle, but without doubt the reader will benefit greatly from them, 
and we wish to thank hirn for this gift. I am also grateful for help received 
from others, including K. Asrat, K. Shimbo, and Y. Zeng. 

Ithaca, NY 
February 2005 

Philip Protter 

1 Solutions of some of the exercises are posted on the author's web page, URL 
http://www.orie.comell.edu/rvprotter/books.html (July, 2004). 



Preface to the First Edition 

The idea of this book began with an invitation to give a course at the Third 
Chilean Winter School in Probability and Statistics, at Santiago de Chile, in 
July, 1984. Faced with the problem of teaching stochastic integration in only 
a few weeks, I realized that the work of C. Dellacherie [44] provided an outline 
for just such a pedagogic approach. I developed this into aseries of lectures 
(Protter [217]), using the work of K. Bichteler [16], E. Lenglart [158] and 
P. Protter [218], as well as that of Dellacherie. I then taught from these lecture 
notes, expanding and improving them, in courses at Purdue University, the 
University of Wisconsin at Madison, and the University of Rouen in France. 
I take this opportunity to thank these institutions and Professor Rolando 
Rebolledo for my initial invitation to Chile. 

This book assurnes the reader has some knowledge of the theory of stü­
chastic processes, including elementary martingale theory. While we have re­
called the few necessary martingale theorems in Chap. I, we have not pro­
vided proofs, as there are already many excellent treatments of martingale 
theory readily available (e.g., Breiman [25], Dellacherie-Meyer [47, 48], or 
Ethier-Kurtz [74]). There are several other texts on stochastic integration, 
all of which adopt to some extent the usual approach and thus require the 
general theory. The books of Elliott [66], Kopp [138], Metivier [174], Rogers­
Williams [226] and to a much lesser extent Letta [162] are examples. The books 
of McKean [169], Chung-Williams [34], and Karatzas-Shreve [129] avoid the 
general theory by limiting their scope to Brownian motion (McKean) and to 
continuous semimartingales. 

Our hope is that this book will allow a rapid introduction to some of the 
deepest theorems of the subject, without first having to be burdened with the 
beautiful but highly technical "general theory of processes. " 

Many people have aided in the writing of this book, either through dis­
cussions or by reading one of the versions of the manuscript. I would like to 
thank J. Azema, M. Barlow, A. Bose, M. Brown, C. Constantini, C. Dellache­
rie, D. Duffie, M. Emery, N. Falkner, E. Goggin, D. Gottlieb, A. Gut, S. He, 
J. Jacod, T. Kurtz, J. de Sam Lazaro, R. Leandre, E. Lenglart, G. Letta, 
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S. Levantal, P. A. Meyer, E. Pardoux, H. Rubin, T. Sellke, R. Stockbridge, 
C. Stricker, P. Sundar, and M. Yor. I would especially like to thank J. San Mar­
tin for his careful reading of the manuscript in several of its versions. 

Svante Janson read the entire manuscript in several versions, giving me 
support, encouragement, and wonderful suggestions, all of which improved 
the book. He also found, and helped to correct, several errors. I am extremely 
grateful to him, especially for his enthusiasm and generosity. 

The National Science Foundation provided partial support throughout the 
writing of this book. 

I wish to thank J udy Snider for her cheerful and excellent typing of several 
versions of this book. 

Philip Pratter 
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Introduction 

In this book we present a new approach to the theory of modern stochas­
tic integration. The novelty is that we define a semimartingale as a stochastic 
process which is a "good integrator" on an elementary dass of processes, rather 
than as a process that can be written as the sum of a local martingale and an 
adapted process with paths of finite variation on compacts: This approach has 
the advantage over the customary approach of not requiring a dose analysis of 
the structure of martingales as aprerequisite. This is a significant advantage 
because such an analysis of martingales itself requires a highly technical body 
of knowledge known as "the general theory of processes." Our approach has a 
further advantage of giving traditionally difficult and non-intuitive theorems 
(such as Stricker's Theorem) transparently simple proofs. We have tried to 
capitalize on the natural advantage of our approach by systematically choos­
ing the simplest, least technical proofs and presentations. As an example we 
have used K. M. Rao's proofs of the Doob-Meyer decomposition theorems 
in Chap. III, rat her than the more abstract but less intuitive Doleans-Dade 
measure approach. 

In Chap. I we present preliminaries, induding the Poisson process, Brown­
ian motion, and Levy processes. Naturally our treatment presents those prop­
erties of these processes that are germane to stochastic integration. 

In Chap. II we define a semimartingale as a good integrator and establish 
many of its properties and give examples. By restricting the dass of integrands 
to adapted processes having left continuous paths with right limits, we are 
able to give an intuitive Riemann-type definition of the stochastic integral as 
the limit of sums. This is sufficient to prove many theorems (and treat many 
applications) induding a change of variables formula ("Ita's formula"). 

Chapter III is devoted to developing a minimal amount of "general the­
ory" in order to prove the Bichteler-Dellacherie Theorem, which shows that 
our "good integrator" definition of a semimartingale is equivalent to the usual 
one as a process X having a decomposition X = M + A, into the sum of a 
local martingale M and an adapted process A having paths of finite variation 
on compacts. Nevertheless most of the theorems covered en route (Doob-
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Meyer, Meyer-Girsanov) are themselves key results in the theory. The core 
of the whole treatment is the Doob-Meyer decomposition theorem. We have 
followed the relatively recent proof due to R. Bass, which is especially simple 
for the case where the martingale jumps only at totally inaccessible stopping 
times, and in all cases uses no mathematical tool deeper than Doob's quadratic 
martingale inequality. This allows us to avoid the detailed treatment of nat­
ural processes which was ubiquitous in the first edition, although we still use 
natural processes from time to time, as they do simplify some proofs. 

Using the results of Chap. III we extend the stochastic integral by continu­
ity to predictable integrands in Chap. IV, thus making the stochastic integral 
a Lebesgue-type integral. We use predictable integrands to develop a theory of 
martingale representation. The theory we develop is an L2 theory, but we also 
prove that the dual of the martingale space 11.1 is EMD and then prove the 
Jacod-Yor Theorem on martingale representation, which in turn allows us to 
present a dass of examples having both jumps and martingale representation. 
We also use predictable integrands to give a presentation of semimartingale 
local times. 

Chapter V serves as an introduction to the enormous subject of stochastic 
differential equations. We present theorems on the existence and uniqueness 
of solutions as weIl as stability results. Fisk-Stratonovich equations are pre­
sented, as weIl as the Markov nature of the solutions when the differentials 
have Markov-type properties. The last part of the chapter is an introduction 
to the theory of flows, followed by moment estimates on the solutions, and 
other minor but useful results. Throughout Chap. V we have tried to achieve 
a balance between maximum generality and the simplicity of the proofs. 

Chapter VI provides an introduction to the theory of the expansion of 
filtrat ions (known as "grossissements de filtrations" in the French literature ). 
We present first a theory of initial expansions, which indudes Jacod's The­
orem. Jacod's Theorem gives a sufficient condition for semimartingales to 
remain semimartingales in the expanded filtration. We next present the more 
difficult theory of progressive expansion, which involves expanding filtrat ions 
to turn a random time into a stopping time, then analyzing what happens 
to the semimartingales of the first filtration when considered in the expanded 
filtration. Last, we give an application of these ideas to time reversal. 
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Preliminaries 

1 Basic Definitions and Notation 

We assume as given a complete prob ability space (0, F, P). In addition we are 
given a filtration (Ft)o<t<oo. By a filtration we mean a family of a-algebras 
(Fdo~t~oo that is increasing, i.e., Fs C Ft if s ::; t. For convenience, we will 
usually write lF for the filtration (Ft)o<t<oo. 

Definition. A filtered complete prob ability space (0, F, lF, P) is said to sat­
isfy the usual hypotheses if 

(i) Fo contains all the P-null sets of F; 
(ii) Ft = nu>t Fu, all t, 0::; t < 00; that is, the filtration lF is right continuous. 

We always assume that the usual hypotheses hold. 

Definition. A random variable T : ° --+ [0,00] is a stopping time if the 
event {T ::; t} E Ft , every t, 0 ::; t ::; 00. 

One important consequence of the right continuity of the filtration is the 
following theorem. 

Theorem 1. The event {T < t} E Ft, 0 ::; t ::; 00, if and only if T is a 
stopping time. 

Praof. Since {T ::; t} = nt+c:>u>t{T < u}, any c > 0, we have {T ::; 
t} E nu>t Fu = Ft , so T is a stopping time. For the converse, {T < t} = 
Ut>c>o{T::; t - c}, and {T::; t - c} E F t - c , hence also in F t . 0 

A stochastic process X on (0, F, P) is a collection of JR-valued or JRd_ 
valued random variables (Xt )09<oo. The process X is said to be adapted if 
X t E Ft (that is, is Ft measurable) for each t. We must take care to be precise 
about the concept of equality of two stochastic processes. 

Definition. Two stochastic processes X and Y are modifications if X t = yt 
a.s., each t. Two pro ces ses X and Y are indistinguishable if a.s., for all t, 
X t = yt. 
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If X and Y are modifications there exists a null set, Nt, such that if W tJ. Nt, 
then Xt(w) = yt(w). The null set Nt depends on t. Since the interval [0, (0) 
is uncountable the set N = Uo<t<oo Nt could have any probability between 0 
and 1, and it could even be non-=measurable. If X and Y are indistinguishable, 
however, then there exists one null set N such that if w tJ. N, then Xt(w) = 
yt (w), for all t. In other words, the functions t f-+ X t (w) and t f-+ yt (w) are 
the same for all w tJ. N, where P(N) = o. The set N is in Ft , all t, since Fo 
contains all the P-null sets of:F. The functions t f-+ Xt(w) mapping [0, (0) 
into lR. are called the sampie paths of the stochastic process X. 

Definition. A stochastic process X is said to be cadlag if it a.s. has sam­
pIe paths which are right continuous, with left limits. Similarly, a stochastic 
process X is said to be caglad if it a.s. has sample paths which are left 
continuous, with right limits. (The nonsensical words cadlag and caglad are 
acronyms from the French for continu a droite, limite a gauche and continu 
a gauche, limite a droite, respectively.) 

Theorem 2. Let X and Y be two stochastic processes, with X a modifica­
tion of Y. If X and Y have right continuous paths a.s., then X and Y are 
indistinguishable. 

Proof. Let A be the null set where the paths of X are not right continuous, 
and let B be the analogous set for Y. Let Nt = {w : Xt(w) =1= yt(w)}, and 
let N = UtEQ Nt, where <Ql denotes the rationals in [0, (0). Then P( N) = O. 
Let M = Au B U N, and P(M) = o. We have Xt(w) = yt(w) for all t E <Ql, 
w tJ. M. If t is not rational, let t n decrease to t through <Ql. For w tJ. M, 
XtJw) = ytn(w), each n, and Xt(w) = limn-tooXtn(w) = limn-too ytn(w) = 

yt(w). Since P(M) = 0, X and Y are indistinguishable. 0 

Corollary. Let X and Y be two stochastic processes which are dtdlag. If X 
is a modification of Y, then X and Y are indistinguishable. 

Cadlag processes provide natural examples of stopping times. 

Definition. Let X be a stochastic process and let A be a Borel set in R 
Define 

T(w) = inf{t > 0 : X t E A}. 

Then T is called the hitting time of A for X. 

Theorem 3. Let X be an adapted cadlag stochastic process, and let A be an 
open set. Then the hitting time of A is a stopping time. 

Proof. By Theorem 1 it suffices to show that {T < t} E F t , 0 ::; t < 00. But 

{T < t} = U {Xs E A}, 
sEQn[O,t) 

since A is open and X has right continuous paths. Since {X s E A} = X; 1 (A) E 
F s , the result follows. 0 
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Theorem 4. Let X be an adapted cadlag stochastic process, and let ..1 be a 
closed set. Then the random variable 

T(w) = inf{t > 0 : Xt(w) EA or Xt_(w) E A} 

is a stopping time. 

Proof. By Xt-(w) we mean lims-->t,s<tXs(w). Let An = {x: d(x,A) < I/n}, 
where d(x, ..1) denotes the distance from a point x to A. Then An is an open 
set and 

{T :S: t} = {Xt E ..1 or X t - E A} U {n D 

n sEQn[O,t) 

It is a very deep result that the hitting time of a Borel set is a stopping 
time. We do not have need of this result. 

The next theorem collects elementary facts about stopping timesi we leave 
the proof to the reader. 

Theorem 5. Let S, T be stopping times. Then the following are stopping 
times: 

(i) S A T = min(S, T); 
(ii) Sv T = max(S, T); 
(iii) S + T; 
(iv) aS, where a > 1. 

The u-algebra F t can be thought of as representing all (theoretically) ob­
servable events up to and including time t. We would like to have an analogous 
not ion of events that are observable before a random time. 

Definition. Let T be a stopping time. The stopping time u-algebra FT 
is defined to be 

{A E F: ..1 n {T :S: t} E Ft , all t '2. O}. 

The previous definition is not especially intuitive. However it does weIl 
represent "knowledge" up to time T, as the next theorem illustrates. 

Theorem 6. Let T be a finite stopping time. Then FT is the smallest u­
algebra containing all cadlag adapted processes sampled at T. That is, 

FT = u{ XTi X all adapted cadlag processes}. 

Proof. Let 9 = U{XTiX all adapted dLdlag processes}. Let ..1 E FT. Then 
X t = lAl{t~T} 1 is a cadlag process, and X T = lA. HenceA E g, and FT C g. 

1 lA is the indicator function of A: lA(w) = {I, 
0, 

wEA, 

w~A. 
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Next let X be an adapted cadlag process. We need to show X T is FT 
measurable. Consider X(s,w) as a function from [0,00) x n into IR. Construct 
ep: {T::; t} ---+ [0, (0) x n by ep(w) = (T(w),w). Then since X is adapted and 
cadlag, we have X T = X 0ep is a measurable mapping from ({T ::; t}, Ftn{T ::; 
t}) into (lR., 13), where 13 are the Borel sets of lR.. Therefore 

{w: X(T(w),w) E B} n {T::; t} 

is in F t , and this implies X T E FT. Therefore 9 c FT· o 

We leave it to the reader to check that if S ::; T a.s., then Fs C FT, and 
the less obvious (and less important) fact that Fs n FT = FSAT· 

If X and Y are cadlag, then X t = yt a.s. each t implies that X and Y are 
indistinguishable, as we have already noted. Since fixed times are stopping 
times, obviously if X T = YT a.s. for each finite stopping time T, then X and 
Y are indistinguishable. If X is cadlag, let D-X denote the process !j,.xt = 
X t - X t-. Then D-X is not cadlag, though it is adapted and for a.a. w, 
t 1-+ D-Xt = 0 except for at most countably many t. We record here a useful 
result. 

Theorem 7. Let X be adapted and cddldg. If D-XT l{T<oo} = 0 a.s. fOT each 
stopping time T, then D-X is indistinguishable from the zero process. 

Proof. It suffices to prove the result on [0, tol for 0 < to < 00. The set {t : 
ID-Xtl > O} is countable a.s. since X is cadlag. Moreover 

00 1 
{t: ID-Xtl > O} = U {t : ID-Xtl > -} 

n=l n 

and the set {t : ID-Xt I > l/n} must be finite for each n, since to < 00. Using 
Theorem 4 we define stopping times for each n inductively as folIows: 

. 1 
Tn,l = mf{t > 0 : ID-Xtl > -} 

n 
1 

Tn,k = inf{t > Tn,k-l : ID-Xtl > -}. 
n 

Then Tn,k > Tn,k-l a.s. on {Tn,k-l < oo}. Moreover, 

{ID-Xtl > O} = U{ID-XTn,d{Tn,k<oo} I > O}, 
n,k 

where the right side of the equality is a countable union. The result folIows. 0 

Corollary. Let X and Y be adapted and cadlag. If for each stopping time 
T, D-XT l{T<oo} = D-YT l{T<oo} a.s., then D-X and D-Y are indistinguishable. 
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A much more general version of Theorem 7 is true, but it is a very deep 
result which uses Meyer's "section theorems," and we will not have need of 
it. See, for example, Dellacherie [43] or Dellacherie-Meyer [47]. 

A fundamental theorem of measure theory that we will need from time 
to time is known as the Monotone Class Theorem. Actually there are several 
such theorems, but the one given here is sufficient for our needs. 

Definition. A monotone vector space H on aspace 0 is defined to be 
a collection of bounded, real-valued functions f on 0 satisfying the three 
conditions: 

(i) H is a vector space over ~; 
(ii) In E H (i.e., constant functions are in H); and 
(iii) if (fn)n2I eH, and 0 ~ h ~ 12 ~ ... ~ fn ~ ... , and limn -+oo fn = f, 

and f is bounded, then f E 1t. 

Definition. A collection M of real functions defined on aspace 0 is said to 
be multiplicative if f, 9 E M implies that f 9 E M. 

For a collection of real-valued functions M defined on 0, we let O"{M} 
denote the space of functions defined on 0 which are measurable with respect 
to the O"-algebra on 0 generated by {J-I(A); A E ß(~), fE M}. 

Theorem 8 (Monotone Class Theorem). Let M be a multiplicative class 
of bounded real-valued functions defined on aspace 0, and let A = O"{M}. If 
H is a monotone vector space containing M, then H contains all bounded, A 
measurable functions. 

Theorem 8 is proved in Dellacherie-Meyer [47, page 14] with the additional 
hypothesis that H is closed under uniform convergence. This extra hypothesis 
is unnecessary, however, since every monotone vector space is closed under 
uniform convergence. (See Sharpe [233, page 365].) 

2 Martingales 

In this section we give, mostly without proofs, only the essential results from 
the theory of continuous time martingales. The reader can consult any of 
a large number of texts to find excellent proofs; for example Dellacherie­
Meyer [48], or Ethier-Kurtz [74]. Also, recall that we will always ass urne as 
given a filtered, complete prob ability space (0, F, IF, P), where the filtration 
IF = (Ft)o«;t«;oo is assumed to be right continuous. 

Definition. A real-valued, adapted process X = (Xt)o«;t<oo is called a mar­
tingale(resp. supermartingale, submartingale) with respect to the filtra­
tion IF if 

(i) X t E L I (dP); that is, E{IXtl} < 00; 
(ii) if s ~ t, then E{XtIFs} = X s, a.s. (resp. E{XtIFs} ~ XS) resp. 2: X s). 



8 I Preliminaries 

Note that martingales are only defined on [0,00); that is, for finite t and not 
t = 00. It is often possible to extend the definition to t = 00. 

Definition. A martingale X is said to be closed by a random variable Y if 
E{IYI} < 00 and X t = E{YI.1't}, 0 ~ t < 00. 

A random variable Y closing a martingale is not necessarily unique. We 
give a necessary and sufficient condition for a martingale to be closed (as weH 
as a construction for closing it) in Theorem 12. 

Theorem 9. Let X be a supermartingale. The junction t f-+ E{Xt} is right 
continuous if and only if there exists a modification Y of X which is cadlag. 
Such a modification is unique. 

By uniqueness we mean up to indistinguishability. Our standing assump­
tion that the "usual hypotheses" are satisfied is used implicitly in the state­
ment of Theorem 9. Also, note that the process Y is, of course, also a super­
martingale. Theorem 9 is proved using Doob's upcrossing inequalities. If Xis 
a martingale then t f-+ E{Xt} is constant, and hence it has a right continuous 
modification. 

Corollary. If X = (Xth:;t<oo is a martingale then there exists a unique 
modification Y of X which is cadlag. 

Since all martingales have right continuous modifications, we will always 
assume that we are taking the right continuous version, without any special 
mention. Note that it follows from this corollary and Theorem 2 that a right 
continuous martingale is cadlag. 

Theorem 10 (Martingale Convergence Theorem). Let X be a right 
continuous supermartingale such that sUPo<t<oo E{IXtl} < 00. Then the ran­
dom variable Y = limt---+oo X t a.s. exists, and E{IYI} < 00. Moreover if X 
is a martingale closed by a random variable Z, then Y also closes X and 
Y = E{ZI VO"5.t<oo.1't }.2 

A condition known as uniform integrability is sufficient for a martingale 
to be closed. 

Definition. A family ofrandom variables (UoJaEA is uniformly integrable 
if 

lim sup! IUaldP = o. 
n---+oo a {IU"I:2: n } 

Theorem 11. Let (Ua)aEA be a subset of LI. The following are equivalent: 

(i) (Ua)aEA is uniformly integrable. 
(ii) sUPaEA E{IUal} < 00, and for every E: > 0 there exists 8 > 0 such that 

A E .1', P(A) ~ 8, imply E{IUalAI} < €. 

2 VO'5.t<=:Ft denotes the smallest a-algebra generated by (:Ft ), all t, 0 ~ t < 00. 
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(iii) There exists a positive, increasing, convex function G(x) defined on 

[0,00) such that limx --+ oo G~x) = +00 and sUPa E{G 0 [Ual} < 00. 

The assumption that G is convex is not needed for the implications (iii) =} 

(ii) and (iii) =} (i). 

Theorem 12. Let X be a right continuous martingale which is uniformly 
integmble. Then Y = limt--+oo X t a.s. exists, E{IYI} < 00, and Y closes X as 
a martingale. 

Theorem 13. Let X be a (right continuous) martingale. Then (Xt)t>o is 
closed if and only if (Xtk~o is uniformly integmble, and if and only if Y = 
limt--+oo X t exists a.s., E{IYI} < 00, and (Xt)o:s;t:s;oo is a martingale, where 
X oo = Y. 

If Xis a uniformly integrable martingale, then X t converges to X oo = Y in 
LI as weH as almost surely. The next theorem we use only once (in the proof 
of Theorem 28), but we give it here for completeness. The notation (Xn)n:s;O 
refers to a process indexed by the non-positive integers: ... ,X~2, X~l, X o. 

Theorem 14 (Backwards Convergence Theorem). Let (Xn)n<O be a 

martingale. Then limn--+~oo X n = E{Xol n~=~oo f n } a.s. and in P. ~ 
A less probabilistic interpretation of martingales uses Hilbert space theory. 

Let Y E L 2 (n,F,p). Since F t ~ F, the spaces L 2 (rl,Ft ,P) form a family of 
Hilbert subspaces of L2 (n, F, P). Let 7rty denote the Hilbert space projection 
of Y onto L2 (n, F t , P). 

Theorem 15. Let Y E L 2 (0" F, P). The process X t = 7rt Y is a uniformly 
integmble martingale. 

Proof. It suffices to show E{YIFt} = 7r t Y. The random variable E{YIFt} 
is the unique F t measurable r.v. such that JA Y dP = JA E{YIFt}dP, for 
any event A E F t . We have JA YdP = JA 7rtYdP + JA(Y _ 7r t Y)dP. But 
JA (Y - 7rtY)dP = J lA(Y - 7rtY)dP. Since lA E L2 (rl, F t , P), and (Y - 7r t Y) 
is in the orthocomplement of L 2 (n,Ft ,p), we have J lA(Y - 7r t Y)dP = 0, 
and thus by uniqueness E{YIFt} = 7r t Y. Since II7r t YIIL2 ::::; 11Y11u, by part (iii) 
of Theorem 11 we have that X is uniformly integrable (take G(x) = x 2 ). 0 

The next theorem is one of the most useful martingale theorems for 
our purposes. A supermartingale X is closed by a random variable X oo if 
X t 2 E{XooIFt} for each t 2 0, with X oo E LI. Note that a nonnegative 
supermartingale can always be closed by X oo = 0. 

Theorem 16 (Doob's Optional Sampling Theorem). Let X be a right 
continuous martingale (respectively a supermartingale), which is closed by a 
mndom variable Xoc;. Let Sand T be two stopping times such that S ::::; T a.s. 
Then Xs and X T are integmble and 

X s = (2)E{XT IFs } a.s. 
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Theorem 16 has a general version for supermartingales, if we take the 
stopping times bounded. 

Theorem 17. Let X be a right continuous supermartingale (resp. martin­
gale), and let Sand T be two bounded stopping times such that S ::; T a.s. 
Then X s and XT are integmble and 

Xs 2: E{XTIFs} a.s. (resp. =). 

If T is a stopping time, then so is t 1\ T = min(t, T), for each t 2: o. 
Definition. Let X be a stochastic process and let T be a random time. X T 

is said to be the process stopped at T if xi = X tAT . 

Note that if X is adapted and cadlag and if T is a stopping time, then 

xi = X tAT = X t 1{vT} + X T 1{t::::T} 

is also adapted. A martingale stopped at a stopping time is still a martingale, 
as the next theorem shows; see its corollary. 

Theorem 18. Let X be a uniformly integmble right continuous martingale, 
and let T be a stopping time. Then X T = (XtAT )o<t<oo is also a uniformly 
integmble right continuous martingale. 

Pmof. X T is clearly right continuous. By Theorem 16 

Xtl\T = E{XTIFtI\T} 

= E{XT 1{T<t} + X T 1{T::::t} I Ftl\T } 

= X T 1{T<t} + E{XT 1{T::::t}IFtl\r}. 

However for HEFt we have H1{T::::t} E FT. Thus, 

Therefore 

Xtl\T = X T 1{T<t} + E{XT IFt}l{T::::t} 

= E{XT 1Ft} , 

since X T 1{T<t} is F t measurable. Thus X T is a uniformly integrable F t mar­
tingale by Theorem 13. 0 

Observe that the difficulty in Theorem 18 is to show that X T is a martin­
gale for the filtration (Ft)o<t<oo. It is a trivial consequence of Theorem 16 that 
X T = Xtl\T is a martinga~ for the filtration (Qtk,,;t:O:;oo given by gt = FtI\T. 
The next corollary to Theorem 18 follows easily. 

Corollary. Let M be a martingale, and T a finite valued stopping time. Then 
MT, the martingale stopped at T, is still a martingale. 
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Corollary. Let Y be an integrable random variable and let 5, T be stopping 
times. Then 

E{E{YIFs}IFT} = E{E{YIFT}IFs} 

= E{YIFsI\T}' 

Proof. Let yt = E{YIFtl. Then y T is a uniformly integrable martingale and 

YSI\T = YI = E{YTIFs} 

= E{E{YIFT }IFs}. 

Interchanging the roles of T and 5 yields 

YSI\T = Y,f = E{YsIFT} 

= E{E{YIFs}IFT}' 

Finally, E{YIFsI\T} = YSI\T. D 

The next inequality is elementary, but indispensable. 

Theorem 19 (Jensen's Inequality). Let r.p : IR -+ IR be convex, and let X 
and r.p(X) be integrable random variables. For any (J-algebra g, 

r.p 0 E{Xlg} ~ E{r.p(X)Ig}. 

Corollary 1. Let X be a martingale, and let r.p be convex such that r.p(Xt ) 

is integrable, 0 ~ t < 00. Then r.p(X) is a submartingale. In particular, if M 
is a martingale, then IMI is a submartingale. 

Corollary 2. Let X be a submartingale and let r.p be convex, non-decreasing, 
and such that r.p(Xt)o<t<oo is integrable. Then r.p(X) is also a submartingale. 

We end OUT review of martingale theory with Doob's inequalities; the most 
important is when p = 2. 

Theorem 20. Let X be a positive submartingale. For all p > 1, with q con­
jugate to p (i.e., ~ + i = 1), we have 

For areal valued process, we let X* denote sUPsiXsl. Note that if M is a 
martingale with M oo E L 2 , then IMI is a positive submartingale, and taking 
p = 2 we have 

This last inequality is called Doob's maximal quadratic inequality. 
An elementary but useful result concerning martingales is the following. 
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Theorem 21. Let X = (Xt)o<t<oo be an adapted process with cadlag paths. 
Suppose E{IXTI} < 00 and E{XT } = 0 for any stopping time T, finite or 
not. Then X is a uniformly integrable martingale. 

Proof. Let 0:::; u < 00, and let A E F u . Let 

{
U' 

UA = 
00, 

if W E A, 

if W ~ A. 

Then UA is a stopping time and therefore E{XUA } = 0 by hypothesis. More­
over, 

E{Xu1A} + E{Xoo 1Ac} = 0 

But, E{Xoo 1A} + E{Xoo 1Ac} = 0, 

E{Xu1A} = E{Xoo 1A} 

whieh yields X u = E{XooIFu}, whieh gives that X = (XU)U>O is a uniformly 
integrable martingale. 0 

Definition. A martingale X with X o = 0 and E{Xl} < 00 for eaeh t > 0 
is ealled a square integrable martingale. If X is a uniformly integrable 
martingale (so that X t = E{XooIFd), and E{X!,} < 00 as well, then Xis 
ealled an L 2 martingale. 

Clearly, any L 2 martingale is also a square integrable martingale. Note 
furt her that if Xis a uniformly integrable martingale then limt--->oo E{Xl} = 
E{X!,} :::; 00 and it is finite if X is an L2 martingale. See Exercise 32 of 
Chap. II, and also Seet. 3 of Chap. IV. 

3 The Poisson Process and Brownian Motion 

The Poisson proeess and Brownian motion are two fundamental examples in 
the theory of eontinuous time stoehastic proeesses. The Poisson proeess is the 
simpler of the two, and we begin with it. We reeall that we assume given a 
filtered probability spaee (D, F, 1F, P) satisfying the usual hypotheses. 

Let (Tn )n2:0 be a strictly inereasing sequenee of positive random variables. 
We always take To = 0 a.s. Reeall that the indieator function l{t2:Tn } is defined 
as 

if t ;::: Tn(w), 
if t < Tn(w). 

Definition. The proeess N = (Nt )o$.t5,oo defined by 

Nt = L l{t2:Tn} 
n2:1 

with values in NU{ oo} where N = {O, 1,2, ... } is ealled the counting process 
associated to the sequenee (Tn)n>l. 
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If we set T = sUPn Tn , then 

[Tn , 00) = {N ~ n} = {(t,w): Nt(w) ~ n} 

as weH as 

[Tn, Tn+d = {N = n}, and [T,oo) = {N = oo}. 

The random variable T is the explosion time of N. 1fT = 00 a.s., then N is a 
counting process without explosions. For T = 00, note that for 0 :::; s < t < 00 

we have 
Nt - N s = L l{s<Tn :<::;t}. 

n2':l 

The increment Nt - N s counts the number of random times Tn that occur 
between the fixed times sand t. 

As we have defined a counting process it is not necessarily adapted to the 
filtration lF. Indeed, we have the following. 

Theorem 22. A counting process N is adapted if and only if the associated 
random variables (Tn )n>l are stopping times. 

Prooj. If the (Tn )n2':O are stopping times (with To = 0 a.s.), then the event 

for each n. Thus Nt E Ft and N is adapted. If N is adapted, then {Tn :::; t} = 
{Nt ~ n} E Ft , each t, and therefore Tn is a stopping time. D 

Note that a counting process without explosions has right continuous paths 
with left limits; hence a counting process without explosions is cadHl,g. 

Definition. An adapted counting process N is a Poisson process if 

(i) for any s, t, 0 :::; s < t < 00, Nt - N s is independent of F s ; 

(ii) for any s, t, u, v, 0 :::; s < t < 00, 0 :::; u < v < 00, t - s = v - u, then the 
distribution of Nt - N s is the same as that of Nv - Nu. 

Properties (i) and (ii) are known respectively as increments independent of 
the past, and stationary increments. 

Theorem 23. Let N be a Poisson process. Then 

n = 0,1,2, ... , for some A ~ O. That is, Nt has the Poisson distribution with 
parameter At. Moreover, N is continuous in probabilit,!/, and does not have 
explosions. 

3 N is continuous in probability means that for t > 0, limu~t Nu = Nt where the 
limit is taken in probability. 
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Proof. The proof of Theorem 23 is standard and is often given in more ele­
mentary courses (cf., e.g., Qinlar [35, page 71]). We sketch it here. 

Step 1. For an t ~ 0, P(Nt = 0) = e->-.t, for some constant A ~ O. 

Since {Nt = O} = {Ns = O} n {Nt - N s = O} for 0 ~ s < t < 00 by the 
independence of the increments, 

P(Nt = 0) = P(Ns = O)P(Nt - N s = 0) 

= P(Ns = O)P(Nt- s = 0), 

by the stationarity of the increments. Let a(t) = P(Nt = 0). We have a(t) = 
a(s)a(t - s), for an 0 ~ s < t < 00. Since a(t) can be easily seen to be right 
continuous in t, we deduce that either a(t) = 0 for an t ~ 0 or 

a(t) = e->-.t for some A ~ O. 

If a( t) = 0 it would follow that Nt (w) = 00 a.s. for alt t which would con­
tradict that N is a counting process. Note that limu->t P(INu - Ntl > E) = 
limu->t P(lNu-tl > E) = limv->ü P(Nv > E) = limv->ü 1 - e->-'v = 0; hence N 
is continuous in probability. 

Step 2. P(Nt ~ 2) is o(t). (That is, limt->ü tP(Nt ~ 2) = 0.) 

Let ß(t) = P(Nt ~ 2). Since the paths of N are non-decreasing, ß is 
also non-decreasing. One readily checks that showing limt->ü tß(t) = 0 is 
equivalent to showing that limn->cxo nß( ~) = O. Divide [0, 1] into n subintervals 
of equal length, and let Sn denote the number of subintervals containing at 
least two arrivals. By the independence and stationarity of the increments Sn is 
the sum of n i.i.d. zero-one valued random variables, and hence has a Binomial 
distribution (n,p), where p = ß(~). Therefore E{Sn} = np = nß(~). 

Since N is a counting process, we know the arrival times are strictly 
increasing; that is, Tn < Tn+l a.s. Since Sn ~ N 1 , if E{ Nd < 00 we 
can use the Dominated Convergence Theorem to conclude limn->cxo nß( ~) = 
limn->cxo E{Sn} = O. (That E{N1 } < 00 is a consequence of Theorem 34, 
established in Seet. 4). 

Also note that E{ Nd < 00 implies N 1 < 00 a.s. and hence there are no 
explosions before time 1. This implies for fixed w, for n sufficiently large no 
subinterval has more than one arrival (otherwise there would be an explosion). 
Hence, limn->cxo Sn(w) = 0 a.s. 

Step 3. limt->ü tP{Nt = I} = A. 

Since PiNt = I} = 1 - PiNt = O} - PiNt ~ 2}, it follows that 

. 1 . l-e->-.t+ o(t) 
hm - P{ Nt = I} = 11m = A. 
t->ü t t->ü t 

Step 4. Conclusion. 
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We write cp(t) = E{ aN,}, for 0 :::; a :::; 1. Then for 0 :::; s < t < 00, 

the independence and stationarity of the increments implies that cp( t + s) = 
cp(t)cp(s) which in turn implies that cp(t) = et.p(a). But 

cp(t) = L an P(Nt = n) 
n=O 

00 

= P(Nt = 0) + aP(Nt = 1) + L an P(Nt = n), 
n=2 

and 'IjJ(a) = cp'(O), the derivative of cp at O. Therefore 

.I.() l' cp(t) - 1 l' {P(Nt = 0) - 1 aP(Nt = 1) 1 ()} 
'f/ a = 1m = 1m + + -0 t 

t--+O t t--+O t t t 

=-'x+'xa. 

Therefore cp(t) = e-At+Aat, hence 

Equating coefficients of the two infinite series yields 

for n = 0,1,2, .... 

P(Nt = n) = e-At ('xt)n, 
n! 

o 

Definition. The parameter ,X associated to a Poisson process by Theorem 23 
is called the intensity, or arrival rate, of the process. 

Corollary. A Poisson process N with intensity ,X satisfies 

E{Nt} = ,Xt, 

Variance(Nt ) = Var(Nt ) = 'xt. 

The proof is trivial and we omit it. 
There are other, equivalent definitions of the Poisson process. For example, 

a counting process N without explosion can be seen to be a Poisson process 
iffor all s, t, 0:::; s < t < 00, E{Nt } < 00 and 

Theorem 24. Let N be a Poisson process with intensity'x. Then Nt -'xt and 
(Nt - ,Xt)2 - ,Xt are martingales. 
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Proof. Since At is non-random, the process Nt - At has mean zero and inde­
pendent increments. Therefore 

E{Nt - At - (Ns - As)IFs } = E{Nt - At - (Ns - AS)} = 0, 

for ° ::; s < t < 00. The analogous statement holds for (Nt - At)2 - At. D 

Definition. Let H be a stochastic process. The natural filtration of H, 
denoted lFo = (J1)O$t<oo, is defined by 11 = a{Hs ; s ::; t}. That is, 11 is the 
smallest filtration that makes H adapted. 

Note that natural filtrations are not assumed to contain all the P-null sets 
ofF. 

Theorem 25. Let N be a counting process. The natural filtration of N is 
right continuous. 

Proof. Let E = [0,00] and B be the Borel sets of E, and let r be the path 
space given by 

sE[O,oo) 

Define the maps 7r t : 0 --+ r by 

sE[O,oo) 

Thus the range of 7rt is contained in the set of functions constant after t. The 
a-algebra 11 is also generated by the single function space-valued random 
variable 7r t . 

Let A be an event in nne::1 F?+-?;-. Then there exists a set An E ®SE[O,OO) Bs 

such that A = {7rt+1. E An}. Next set Wn = {7rt = 7rt +1.}. For each w, 

there exists an n su;h that s f--+ Ns(w) is constant on [t, t + t]; therefore 
0= Une::1 W n , where Wn is an increasing sequence of events. Therefore 

A = lim(Wn n A) 
n 

= lim(Wn n {7rt+1. E An}) 
n n 

= lim(Wn n {7rt E An}) 
n 

which implies A E 11. We conclude nn>l F?+1. c 11, which implies they are 
equal. - n D 

We next turn our attention to the Brownian motion process. Recall that 
we are assuming as given a filtered prob ability space (0, F, lF, P) that satisfies 
the usual hypotheses. 
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Definition. An adapted process B = (Bt )o.5,t<oo taking values in jRn is called 
an n-dimensional lF' Brownian motion if 

(i) for 0::; 8 < t < 00, Bt - B s is independent of T s (increments are indepen­
dent 01 the past); 

(ii) for 0 < 8 < t, B t - B s is a Gaussian random variable with mean zero and 
variance matrix (t - 8)C, for a given, non-random matrix C. 

The Brownian motion starts at x if P(Bo = x) = 1. 

Often one takes the filtration lF' to be the filtration generated by the Brown­
ian motion itself: that is, for each t ~ 0, T t = a{Bs ; s ::; t} V N, where N are 
the null sets of T. In this case we call it simply a Brownian motion without 
the modifier of the filtration lF'. (It could also be called an "intrinsic Brownian 
motion" in analogy with Levy processes, but this is not used in practice.) 
The existence of Brownian motion is proved using a path-space construction, 
together with Kolmogorov's Extension Theorem. It is simple to check that a 
Brownian motion is a martingale as long as E{IBol} < 00. Therefore by The­
orem 9 there exists aversion which has right continuous paths, a.s. Actually, 
more is true. 

Theorem 26. Let B be a Brownian motion. Then there exists a modification 
01 B which has continuous paths a.s. 

Theorem 26 is often proved in textbooks on probability theory (e.g., 
Breiman [25]). It can also be proved as an elementary consequence of Kol­
mogorov's Lemma (Theorem 73 of Chap. IV). We will always assume that we 
are using the version 01 Brownian motion with continuous paths. We will also 
assume, unless stated otherwise, that C is the identity matrix. We then say 
that a Brownian motion B with continuous paths, with C = I the identity 
matrix, and with Bo = x for some x E jRn, is a standard Brownian motion. 
Note that for an jRn standard Brownian motion B, writing Bt = (Bi, ... , Hi), 
o ::; t < 00, then each Bi is an jRl Brownian motion with continuous paths, 
and the Bi's are independent. 

We have already observed that a Brownian motion B with E{IBol} < 00 

is a martingale. Another important elementary observation is the following. 

Theorem 27. Let B = (Bdo<t<oo be a one dimensional standard Brownian 
motion with B o = O. Then Mt- = B; - t is a martingale. 

Proof. E{Md = E{B; - t} = O. Also 

E{Mt - MsITs} = E{B; - B; - (t - 8)ITs}, 

and 
E{BtBsITs} = BsE{BtITs} = B;, 

since B is a martingale with B s, B t E L2 • Therefore 
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E{Mt - MsIFs} = E{B; - 2BtB s + B; - (t - s)IFs} 

= E{(Bt - B s)2 - (t - s)IFs} 

= E{(Bt - B s )2} - (t - s) 

=0, 

due to the independence of the increments from the past. o 

Theorem 28. Let 7rn be a sequence ofpartitions of[a, a+t]. Suppose 7rm C 7rn 
if m > n (that is, the sequence is a refining sequence). Suppose mOTe­
over that limn->oo mesh(7rn) = O. Let 7rnB = E t iE7rn (Bti+1 - BtJ2. Then 
limn-+oo 7rnB = t a.s., for a standard Brownian motion B. 

Proof. We first show convergence in mean square. We have 

where Yi are independent random variables with zero means. Therefore 

E{(7rnB - t)2} = E{(L Yi)2} = L E{Y?}. 
i i 

Next observe that (Bti+l - BtJ2 j(ti+l - ti) has the distribution of Z2, where 
Z is Gaussian with mean 0 and variance 1. Therefore 

which tends to 0 as n tends to 00. This establishes L 2 convergence (and hence 
convergence in probability as weH). 

To obtain the a.s. convergence we use the Backwards Martingale Conver­
gence Theorem (Theorem 14). Define 

Nn(w) = 7r_nB = L (Bti+l(W) - Bdw))2, 
ti E7r- n 

for n = -1, -2, -3, .... Then it is straight forward (though notationaHy 
messy) to show that 

Therefore Nn is a martingale relative to (in = O"{Nk , k ::; n}, n = -1, -2, .... 
By Theorem 14 we deduce limn->_oo N n = limn-+ oo 7rn B exists a.s., and since 
7rnB converges to t in L2, we must have limn-+oo 7rnB = t a.s. as weH. 0 
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Comments. As noted in the proofs, the proof is simple (and half as long) if we 
conclude only L 2 convergence (and hence convergence in probability), instead 
of a.s. convergence. Also, we can avoid the use of the Backwards Martingale 
Convergence Theorem (Theorem 14) in the second half of the proof if we 
add the hypothesis that Ln mesh( 1fn) < 00. The result then follows, after 
having proved the L 2 convergence, by using the Borel-Cantelli Lemma and 
Chebsyshev's inequality. Furthermore to conclude only L 2 convergence we do 
not need the hypothesis that the sequence of partitions be refining. 

Theorem 28 can be used to prove that the paths of Brownian motion 
are of unbounded variation on compacts. It is this fact that is central to 
the difficulties in defining an integral with respect to Brownian motion (and 
martingales in general). 

Theorem 29. For almost all w, the sample paths t f---+ Bt(w) of a standard 
Brownian motion Bare of unbounded variation on any interval. 

Proof. Let A = [a, b] be an interval. The variation of paths of B is defined to 
be 

where P are all finite partitions of [a, b]. Suppose P(VA < 00) > O. Let 1fn 

be a sequence of refining partitions of [a, b] with li mn mesh(1fn ) = O. Then by 
Theorem 28 on {VA< oo}, 

b - a = lim "(Bti+1 - Bd 2 
n----+CXJ ~ 

tiE7rn 

=0, 

since SUPtiE7rn IBt '+l - B t , I tends to 0 a.s. as mesh(1fn ) tends to 0 by the a.s. 
uniform continuity of the paths on A. Since b - a ::; 0 is absurd, by Theorem 27 
we conclude VA = 00 a.s. Since the null set can depend on the interval [a, b], 
we only consider intervals with rational endpoints a, b with a < b. Such a 
collection is countable, and since any interval (a, b) = U~=dan, bn] with an, 
bn rational, we can omit the dependence of the null set on the interval. D 

We conclude this section by observing that not only are the increments 
of standard Brownian motion independent, they are also stationary. Thus 
Brownian motion is a Levy process (as is the Poisson process), and the the­
orems of Sect. 4 apply to it. In particular, by Theorem 31 of Sect. 4, we can 
conclude that the completed natural filtration of standard Brownian motion is 
right continuous. 
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4 Levy Processes 

The Levy processes, which indude the Poisson process and Brownian motion 
as special cases, were the first dass of stochastic pro ces ses to be studied in 
the modern spirit (by the French mathematician Paul Levy). They still pro­
vide prototypic examples for Markov processes as weIl as for semimartingales. 
Most of the results of this section hold for lRn-valued processes; for notational 
simplicity, however, we will consider only lR-valued processes. 4 Once again 
we recall that we are assuming given a filtered probability space (0, F, lF, P) 
satisfying the usual hypotheses. 

Definition. An adapted process X = (Xtk:~o with X o = 0 a.s. is a Levy 
process if 

(i) X has increments independent of the past; that is, X t - X s is independent 
of F s , 0 :s; s < t < 00; and 

(ii) X has stationary increments; that is, X t - X s has the same distribution 
as X t - s , 0 :s; s < t < 00; and 

(iii) X t is continuous in probability; that is, limt-->s X t = X s , where the limit 
is taken in probability. 

Note that it is not necessary to involve the filtration lF in the definition of 
a Levy process. Here is a (less general) alternative definition; to distinguish 
the two, we will call it an intrinsie Levy process. 

Definition. A process X = (Xt)t>o with X o = 0 a.s. is an intrinsic Levy 
process if 

(i) X has independent increments; that is, X t - X s is independent of Xv - X u 
if (u,v) n (s,t) = 0; and 

(ii) X has stationary increments; that is, X t - X s has the same distribution 
as Xv - X u if t - s = v - U > 0; and 

(iii) X t is continuous in probability. 

Of course, an intrinsic Levy process is a Levy process for its minimal 
(completed) filtration. 

If we take the Fourier transform of each X t we get a function f (t, u) = ft ( u) 
given by 

ft(u) = E{eiuX,}, 

where fo(u) = 1, and ft+s(u) = ft(u)fs(u), and ft(u) i= 0 for every (t,u). 
Using the (right) continuity in probability we condude ft(u) = exp{ -t'ljJ(u)} , 
for some continuous function 'ljJ(u) with 'ljJ(0) = O. (Bochner's Theorem can 
be used to show the converse. If 'ljJ is continuous, 'ljJ(0) 0, and if for all 
t ~ 0, ft(u) = e-t'!j;(u) satisfies Li,j O'.i'Cijft(Ui - Uj) ~ 0, for all finite 

4 lRn denotes n-dimensional Euclidean space. lR+ = [0,00) denotes the non-negative 
real numbers. 
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(Ul, ... , un; al, ... , an), then there exists a Levy process corresponding to 
j.) 

In particular it follows that if X is a Levy process then for each t > 0, X t 

has an infinitely divisible distribution. Inversely it can be shown that for each 
infinitely divisible distribution JL there exists a Levy process X such that f.L is 
the distribution of Xl. 

Theorem 30. Let X be a Levy process. There exists a unique modification 
Y of X which is cadlag and which is also a Levy process. 

iuX t 
Proof. Let M tU = f,(u) . For each fixed u in Q, the rationals in ~, the process 

(Mt)o<t<= is a complex-valued martingale (relative to lF). 
We first show that the paths of X cannot explode a.s. For any real u, 

(Mt)t>ü is a (complex-valued) martingale and thus for a.a. w the functions 
t f--7 MtU(w) and t f--7 eiuXt(w) , with t E Q+, are the restrictions to Q+ of 
cadlag functions. Let 

A = {(w u) E D x ~ . eiuX,(w) t E Ifl\ , . ,,\[+, 

is not the restriction of a cadlag function}. 

One can check that A is a measurable set. Furthermore, we have seen that 
J 1A(w, u)P(dw) = 0, each U E R By Fubini's Theorem 

J I: 1A(w, u)duP(dw) = I: J 1A(w,u)P(dw)du = 0, 

hence we conclude that for a.a. w the function t f-+ eiuX,(w), t E Q+ is the 
restriction of a cadlag function for almost all u E R We can now conclude 
that the function t f--7 X t (w), t E Q+, is the restriction of a cadlag function 
for every such w, with the help of the lemma that follows the proof of this 
theorem. 

Next set yt(w) = limsE!Q+,sltXs(w) for all w in the projection onto D of 
{D x ~} \ A and yt = ° on A, all t. Since Ft contains all the P-null sets 
of Fand (Fth:;t<= is right continuous, yt E Ft. Since X is continuous in 
prob ability, P{yt =I- Xt} = 0, hence Y is a modification of X. It is clear that 
Y is a Levy process as well. 0 

The next lemma was used in the proof of Theorem 30. Although it is a 
pure analysis lemma, we give a proof using prob ability theory. 

Lemma. Let X n be a sequence of real numbers such that eiuxn converges as 
n tends to 00 for almost all U E R Then X n converges to a finite limit. 

Proof. We will verify the following Cauchy criterion: X n converges if far any 
increasing sequences nk and mk, then limk-+= x nk - x mk = 0. Let U be a 
random variable which has the uniform distribution on [0,1]. For any real t, 
by hypothesis a.s. eitUxnk and eitUxmk converge to the same limit. Therefore, 
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lim eitU(Xnk -xmk ) = 1 
k->oo 

a.s. 

so that the characteristic functions converge, 

lim E{ eit(xnk -Xmk )U} = 1, 
k->oo 

for all t E IR. Consequently (xnk - xmk)U converges to zero in probability, 
whence limk->oo Xnk - X mk = 0, as claimed. 0 

We will henceforth always assume that we are using the (unique) dtdlag 
version of any given Levy process. Levy processes provide us with examples 
of filtrations that satisfy the "usual hypotheses," as the next theorem shows. 

Theorem 31. Let X be a Levy process and let gt = :F{vN, where (:F{)o~t<oo 
is the natural filtration 01 X, andN are the P-null sets 01 F. Then Wd09<oo 
is right continuaus. 

Prao/. We must show gt+ = gt, where gt+ = nu>t gu' Note that since the 
filtration g is increasing, it suffices to show that gt = nn>l gt+l. Thus, 
we can take countable limits and it follows that if Sl, ... , s;: ::; t, then for 
(Ul, ... ,un ) 

E{ ei(u1X81 +··+unX8n ) Igt} = E{ ei(u1X81 +·.+unX8n ) IgH} 
= ei(u1X81 + ... +unX8n ). 

For V1,"" Vn > t and (U1,"" un ), we give the proof for n = 2 for nota­
tional convenience. Therefore let z > v > t, and suppose given U1 and U2. We 
have 

E{ ei(u1XV+U2X.) Igt+} = lim E{ ei(u1Xv+U2X.) Igw} 
wH 

eiU2X• 
= limE{eiU1XV_I ( ) IAu2)lgw} 

wH z U2 
eiU2Xv 

= limE{eiU1XV_j ( ) IAu2)lgw}, 
wlt v U2 

using that M:;2 = ~v7u~) is a martingale. Combining terms the above becomes 

= limE{ei(U1+U2)Xv Iz-v(u2)lgw} 
w!t 

and the same martingale argument yields 

= limei(U1+U2)Xw Iv-w(U1 + u2)/z-v(U2) 
wlt 

= ei(U1+U2)Xt Iv-t(U1 + u2)/z-v(U2) 
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It follows that E{eiEujXSjI9t+} = E{eiEujXSjl9d for all (Sl, ... ,Sn) and 
all (Ul,""Un ), whence E{ZI9t+} = E{ZI9t} for every bounded Z E 

VO<s<oo :Pj. This implies 9t+ = 9t except possibly for events of probabil­
ity zero. However since both u-algebras contain N, we conclude 9t+ = 9t for 
each t ;::: O. D 

The next theorem shows that a Levy process "renews itself" at stopping 
times. 

Theorem 32 . . Let X be a Levy process and let T be a stopping time. On 
the set {T < oo} the process Y = (Yt)o<t<oo defined by Yt = X T+t - X T is a 
Levy process adapted to 1ft = F T+t , Y is independent of FT and Y has the 
same distribution as X. 

Proof. First assume T is bounded. Let A E FT and let (Ul,"" Un ; to, ... , tn) 
be given with Uj in a countable dense set (for example the rationals Q) and 
t j E lR.+, t j increasing with j. 

RecaH that MtUj = ~t~~:; is a martingale, where ft(Uj) = E{ eiujX,}. Then 

E {lA exp{i ~ "i (XT +., - X THH )} } 

= E {lA rr ~;~tj hHj (Uj) } 
j MT~tj_l h+tj- 1 (Uj) 

= P(A) rr ftj-t j- 1 (Uj) 
j 

by applying the Optional Sampling Theorem (Theorem 16) n times. Note that 
this shows the independence of Yt = X T+t - X T from F T as weH as showing 
that Y has independent and stationary increments and that the distribution 
of Y is the same as that of X. 

If T is not bounded, we let Tn = min(T, n) = T!\ n. The formula is valid 
for An = An{T:S; n} when A E F T , since then An E FTtm' Taking limits and 
using the Dominated Convergence Theorem we see that our formula holds for 
unbounded T as well, for events A = An {T < oo}, A E FT. This gives the 
result. D 

Since a standard Brownian motion is a Levy process, Theorem 32 gives 
us a fortiori the strong Markov property for Brownian motion. This allows 
us to establish a pretty result for Brownian motion, known as the refiection 
principle. Let B = (Btk;~_o denote a standard Brownian motion, B o = 0 a.s., 
and let St = sUPo<s<t B s , the maximum process of Brownian motion. Since 
B is continuous, S~ ;; sUPo:"::u:"::t,uEIQ! B u , where Q denotes the rationals; hence 
St is an adapted process with non-decreasing paths. 
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Theorem 33 (Refleetion Principle for Brownian Motion). Let B = 

(Bt)t>o be standard Brownian motion (Bo = 0 a.s.) and St = sUPo<s<t B s , 

the B-;'ownian maximum process. For y ~ 0, Z > 0, - -

P(Bt < Z - Yi St ~ z) = P(Bt > Y + z). 

Proof. Let T = inf {t > 0 : Bt = z}. Then T is a stopping time by Theorem 4, 
and P(T < (0) = 1. We next define a new process X by 

The process X is the Brownian motion B up to time T, and after time T it is 
the Brownian motion B "reflected" about the constant level z. Since Band 
- B have the same distribution, it follows from Theorem 32 that X is also a 
standard Brownian motion. 

N ext we define 
R = inf{t > 0: X t = z}. 

Then clearly 

P(R ~ ti X t < z - y) = P(T ~ ti B t < z - y), 

since (R, X) and (T, B) have the same distribution. However we also have 
that R = T identically, whence 

{R ~ ti X t < z - y} = {T ~ ti Bt > z + y} 

by the construction of X. Therefore 

P(T ~ ti Bt > z + y) = P(T ~ ti Bt < z - y). 

The left side of (*) equals 

P(St ~ ZiBt > z+y) = P(Bt > z+y), 

where the last equality is a consequence of the containment {St ~ z} ~ {Bt > 
z + y}. Also the right side of (*) equals P(St ~ zi Bt < z - y). Combining 
these yields 

P(St ~ ZiBt < Z -y) = P(Bt > z+y), 

which is what was to be proved. D 

We also have a reflection principle for Levy processes. See Exercises 30 
and 31. 

Corollary. Let B = (Bt)t>o be standard Brownian motion (Bo = 0 a.s.) and 
St = sUPo<s:-:;t B s . For Z > 0, 

P(St > z) = 2P(Bt > z). 
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Praof. Take y = 0 in Theorem 33. Then 

P(Bt < Z; St 2: z) = P(Bt > z). 

Adding P(Bt > z) to both si des and noting that {Bt > z} = {Bt > z}n{St 2: 
z} yields the result since P(Bt = z) = O. D 

A Levy process is dtdlag, and hence the only type of discontinuities it can 
have is jump discontinuities. Letting X t - = limsit X s , the left limit at t, we 
define 

ßXt = X t - X t-, 

the jump at t. If SUPt IßXtl :s; C< 00 a.s., where Cis a non-random constant, 
then we say that X has bounded jumps. 

Our next result states that a Levy process with bounded jumps has finite 
moments of all orders. This fact was used in Sect. 3 (Step 2 of the proof of 
Theorem 23) to show that E{Nd < 00 for a Poisson process N. 

Theorem 34. Let X be a Levy process with boundedjumps. Then E{IXtl n } < 
00 foT' all n = 1,2,3, .... 

Praof. Let C be a (non-random) bound for the jumps of X. Define the stop­
ping times 

Tl = inf{t : IXti 2: C} 

Tn +l = inf{t > Tn : IXt - XTn! 2: C}. 

Since the paths are right continuous, the stopping times (Tn )n21 form 
a strictly increasing sequence. Moreover IßXTI :s; C by hypothesis for any 
stopping time T. Therefore sUPs IX;n I :s; 2nC by recursion. Theorem 32 im­
plies that Tn - Tn - l is independent of FTn _ 1 and also that the distribution 
of Tn - Tn - l is the same as that of Tl. 

The above implies that 

for some ü, 0 :s; ü < 1. But also 

which implies that X t has an exponential moment and hence moments of all 
orders. D 

We next turn our attention to an analysis of the jumps of a Levy process. 
Let A be a Borel set in lR bounded away from 0 (that is, 0 rt A, where A is 
the closure of A). For a Levy process X we define the random variables 
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Tl = inf{t > 0 : ,0;.xt E A} 

T;;+l = inf{t > T;; : 6.xt E A}. 

Since X has cadlag paths and 0 rt A, the reader can readily check that {TA 2: 
t} E Ft+ = Ft and therefore each TA is a stopping time. Moreover 0 rt A and 
cadlag paths furt her imply Tl > 0 a.s. and that limn->oo TA = 00 a.s. We 
define 

00 

and observe that NA is a counting process without an explosion. It is straight­
forward to check that for 0 :::; s < t < 00, 

NtA - N: E a{Xu - Xv; s:::; v < u:::; t}, 

and therefore N f - N:- is independent of F s ; that is, NA has independent 
increments. Note furt her that NtA - N:- is the number of jumps that Zu = 

X s+u - X s has in A, 0 :::; u :::; t - s. By the stationarity of the distributions of 
X, we conclude NtA - N:- has the same distribution as N{l_ s . Therefore NA is 
a counting process with stationary and independent increments. We conclude 
that NA is a Poisson process. Let v(A) = E{Nf} be the parameter of the 
Poisson process NA (v( A) < 00 by the proof of Theorem 34). 

Theorem 35. The set junction A f---t Nf(w) dejines a a-jinite measure on 
lR \ {O} jor each jixed (t, w). The set junction v( A) = E {N f} also dejines a 
a-jinite measure on lR \ {O}. 

Proof. The set function A f---t NtA(w) is simply a counting measure: p,(A) 
{number of s :::; t: 6X s (w) E A}. It is then clear that v is also a measure. D 

Definition. The measure v defined by 

v(A) = E{Nf} = E{ L lA(6Xs )} 

O<s::;l 

is called the Levy measure of the Levy process X. 

We wish to investigate furt her the role the Levy measure plays in governing 
the jumps of X. To this end we establish a preliminary result. We let Nt(w, dx) 
denote the random measure of Theorem 35. Since Nt(w, dx) is a counting 
measure, the next result is obvious. 

Theorem 36. Let A be a Borel set oj lR, 0 rt A, j Borel and jinite on A. 
Then ! j(x)Nt(w,dx) = L j(6Xs )lA(6Xs )' 

A O<s::;t 
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Just as we showed that Nl has independent and stationary increments, 
we have the following consequence. 

Corollary. Let A be a Borel set of lR with 0 (j. A, and let f be Borel and 
finite on A. Then 

is a Levy process. 

For a given set A (as always, 0 (j. A), we defined the associated jump 
process to be 

Jl = L LlXsIA(LlXs). 
O<s::;t 

By Theorem 36 and its corollary we conclude that 

Hence, Jl is a Levy process itself, it is defined, and Jl < 00 a.s., each t 2:': o. 
Theorem 37. Given A, 0 (j. A, the process X t - Jf is a Levy process. 

Proof. It is clear that we need only check the independence and stationarity 
of the increments. But 

X t - Jl- (Xs - J~) = X t - X s - L LlXulA(LlXu) 
s<u::;t 

which is clearly a{Xv - X u ; s ~ u < v ~ t} measurable, and due to the 
stationarity of the increments of X it has the same law as X t - s - Jts. 0 

We are now in a position to consider 

~a = X t - L LlXsl{l.,ClX81~a}, 
0<s9 

for some constant a > o. The advantage of doing this is that ya then has jumps 
bounded by a, and hence has finite moments of all orders (Theorem 34). We 
can choose any a > 0; we arbitrarily choose a = 1. Note that 

,,,-1 _ X _ J(-oo,-l]U[l,oo) 
L t - t t 

= X t -1 xNt(-,dx). 
Ixl~l 

The next theorem gives an interpretation of the Levy measure as the expected 
rate at which the jumps of the Levy process fall in a given set. 
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Theorem 38. Let A be Borel with 0 rf. A. Let v be the Levy measure of X, 
and let flA E L2 (dv). Then 

E{i f(x)NtCdx)} = ti f(x)v(dx) 

and also 

Praof. First let f = Lj aj lAj , a simple function. Then 

E{I>jNtAj} = LajE{NtAj} 
j 

= tL ajv(Aj ), 
j 

since NtAj is a Poisson process with parameter v( Aj ). The first equality follows 
easily. 

For the second equality, let Mf = N~i -tv(A i ). The M; are LP martingales, 
all p ~ 1, by the proof of Theorem 34. Moreover, E {M;} = o. Suppose Ai, Aj 

are disjoint. We have 

E{MfMl} = E{L(Mlk+l - MfJ L(Mif+l - M1J} 
k R 

for any partition 0 = to < tl < ... < tn = t. Using the martingale property 
we have 

E{MfMl} = E{L(Mlk+1 - Mlk )(Mik+1 - ML)}· 
k 

Using the inequality labi::; a2 + b2 , we have 

L(Mfk+1 - Mfk )(Mik +1 - ML) ::; L(Mlk +1 - Mfk )2 + L(Mik+l - ML)2. 
k k k 

However Lk(Mlk +1 - Mfk)2 ::; (NtAi)2 + v(A i )2t2; therefore the sums are 

dominated by an integrable random variable. Since Mt and Mi have paths of 
finite variation on [0, tj it is easy to deduce that if we take a sequence (1f n)n2:1 

of partitions where the mesh tends to 0 we have 

nl~~ L (M!k+l - Mlk )(ML+l - Mik) = L ~M;~M{ 
tk ,tk+l E7rn O<s:s:t 

Using Lebesgue's Dominated Convergence Theorem we conclude 

E{MfMl} = E{ L ~M;~M1} = 0; 
O<s:S:t 
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the expectation above is ° because Ai and A j are disjoint, implying that Mi 
and Mj jump at different times. The second equality is now easy to verify for 
simple functions. For general f, let fn be a sequence of simple functions such 
that fn1A converges to f in L 2 (dv), and the result folIows. 0 

Remark. The first statement in Theorem 38 remains true if f1A E LI(dv). 
See Exercise 28. 

Corollary. Let f : lR ---+ lR be bounded and vanish in a neighborhood of O. 
Then 

E{ L f(L~Xs)} = t J(XJ f(x)v(dx). 
O<sS;t -(XJ 

Proof. We need only combine Theorem 38 with Theorem 36. o 

Theorem 39. Let Al, A2 be two disjoint Bore! sets with ° r:J. Al, 0 r:J. A2 . 

Then the two processes 

J{ = L Ö.Xs 1A1 (Ö.Xs ) 

O<sS;t 

J; = L Ö.Xs1A2(Ö.Xs) 
O<sS;t 

are independent Levy processes. 

Proof. By Theorem 36 and its corollary we have that JI and J2 are Levy 
processes. To show they are independent, we begin by forming for u, v in lR, 

eivf; 
D V = -1 

t E{eivJi'} . 

Then Cu and DV are both martingales, with E{Cf} = E{Dn = 0. As in the 
proof of Theorem 38, let 7rn : ° = to < t l < ... < t n = t be a sequence of 
partitions of [0, tj with limn mesh(7rn ) = 0. Then 

E{CU DV} = E{~(CU _ CU) ~(DV _ DV )} 
t t L tk+l tk L tHl te 

k C 

= E{L(C00 +1 - C00)(D~k+l - D~J}. 
k 

Since Cu and DV have paths of finite variation on compacts, it follows by 
letting mesh(7rn ) tend to 0, that 

E{C~Dn = E{ L Ö.C~Ö.D~}. 
O<sS;t 
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The expectation above equals zero because Cu and DV jump at different times, 
due to the void intersection of Al and A2 • 

We conclude that E{ Ci' Dn = 0, and thus 

which in turn implies, because of the independence and stationarity of the 
increments that 

E{ ei(u1Jf1 +u2(Jf2 -Jf1 )+oo+un(Jfn -Jfn_1)) ei(v1J'f1 +o+vn(J;n -J;n_l))} 

= E{ eiulJfl +i L:j=2 Uj (Jfj -Jij_1)} E{ eiv1J;1 +i L:j=2 Vj(J;j -J;j_l)}. 

This is enough to give independence. D 

The preceding results combine to yield the following useful theorem, which 
is one of the fundamental results ab out Levy processes. 

Theorem 40. Let X be a Levy process. Then Xt = Yt + Zt, where Y, Z are 
Levy processes, Y is a martingale with bounded jumps, Yt E LP for all p ?: 1 
and Z has paths of finite variation on compacts. 

Proof. Let Jt = Lo<s<t ßXs1{lllXBI~I}. Since X has dl,dUl,g paths, for each 
fixed w the function s-f-t Xs(w) has only finitely many jumps bigger than 
one on [0, t]. Therefore J has paths of finite variation on compacts. J is also 
a Levy process by Theorem 36 and its corollary. The process W = X - J 
is also a Levy process (Theorem 37), and W has jumps bounded by one. We 
know therefore that, n ?: 1, E{IWtln} exists (Theorem 34), and the stationary 
increments of W implies E{Wd = at, for a = E{WI }. (Recall E{Wo} = 0.) 
We set Yt = Wt - E{Wd. Then Y has independent increments and mean 0; 
it is a martingale. Setting Zt = Jt + at completes the proof. D 

While Theorem 40 is the most important result ab out Levy processes 
from the standpoint of stochastic integration, the next two theorems provide 
a better understanding of Levy processes themselves. 

Theorem 41. Let X be a Levy process with jumps bounded by a. That is, 
sUPs IßXsl ::; a a.s. Let Zt = X t - E{Xd. Then Z is a martingale and Zt = 
Zf + Zr where ZC is a martingale with continuous paths, Zd is a martingale, 

zt = r x(Nt (·, dx) - tv(dx)), 
J{lxlsa} 

and ZC and Zd are independent Levy processes. 

Proof. Z has mean zero and independent increments so it is a martingale, as 
weIl as a Levy process. For a given set A we define 



4 Levy Processes 31 

MtA = i xNt(-,dx) - ti xv(dx) 

= L ßXs 1A(ßXs ) - tl xv(dx). 
O<s~t A 

For this proof we take a = 1. Let Ak = {k~l < lxi ~ l-}. Then MAk 
are pairwise independent Levy processes and martingales (Theorem 39). Set 
Mn = L~=l MAk. Then the martingales Z - Mn and Mn are independent 
by an argument similar to the one in the proof of Theorem 39. Moreover 
Var(Zt) = Var(Zt - Ml') + Var(Mt') where Var(X) denotes the variance of a 
random variable X. Therefore Var(Ml') ~ Var(Zt) < 00 for all n. We deduce 
that Mt' is Cauchy in L 2 and hence converges in L 2 as n tends to 00 to a 
martingale Zr, and Z - Mn also converges to a martingale ZC. Using Doob's 
maximal quadratic inequality (Theorem 20), we can find a subsequence con­
verging a.s., uniformly in t on compacts, which permits the conclusion that 
ZC has continuous paths. The independence of Zd and ZC follows from the 
independence of Mn and Z - Mn, for every n. 0 

Note that a consequence of the convergence of Mt' to Zr in L2 in the proof 
of Theorem 41 is that the integral Jl-l,O)U(O,ll x 2 v(dx) is finite. Note that this 
improves a bit on the conclusion in Theorem 38. 

We recall that for a set A, 0 t/:- A, the process Nl = JA Nt(-,dx) is a 
Poisson process with parameter v(A), and thus Nt - tv(A) is a martingale. 

Definition. Let N be a Poisson process with parameter A. Then Nt - At is 
called a compensated Poisson process. 

Theorem 41 can be interpreted as saying that a Levy process with bounded 
jumps decomposes into the sum of a continuous martingale Levy process and 
a martingale which is a mixt ure of compensated Poisson processes. It is not 
hard to show that E{ eiuZf } = e-ta2u2 /2, which implies that ZC must be a 
Brownian motion. The full decomposition theorem then follows easily. We 
state it here without proof (consult Bertoin [14], Bretagnolle [28], Feller [75], 
or Jacod-Shiryaev [115] for a proof). 

Theorem 42 (Levy Decomposition Theorem). Let X be a Levy process. 
Then X has a decomposition 

X t = B t + ( x(Nt (-, dx) - tv(dx)) 
J{lxl<l} 

+tE{X1 - ( xN1(·,dx)}+ ( xNt(-,dx) 
J{lxl::::l} J{lxl:2:1} 

= B t + ( x(Nt (-, dx) - tv(dx)) + at + L ßXs1{IL~X81:2:1} 
J{lxl<l} 0<s9 

where B is a Brownian motion; for any set A, 0 t/:- A, Nl = JA Nt(-,dx) is a 
Poisson process independent of Bi Nt is independent of N[ if A and rare 


