
THE FRONTIERS COLLECTION

AIN-COMPUTER INTERFACES BRAIN-COM TER INTERFACES BRAIN-COMPUTER IN RFACES BRAIN-COMPUTER INTERFACES AIN-COMPUTER INTERFACES BRAIN-COMPU MPUTER INTERFACES BRAIN-COMPUTER INTERFACES BRAIN-COMPUTER IN RFACES BRAIN-COMPUTER INTERFACES AIN-COMPUTER INTERFACES BRAIN-COM TER INTERFACES BRAIN-COMPUTER IN RFACES BRAIN-COMPUTER INTERFACES AIN-CONPUTER INTERFACES BRAIN-COM TER INTERFACES BRAIN-COMPUTER IN RFACES BRAIN-COMPUTER INTERFACES BRAIN-COM TER INTERFACES BRAIN-COMPUTER INTERFACES BRAIN-COMPUTER FERFACES BRAIN-COMPUTER INTERFACES BRAIN-COMPUTER FERFACES BRAIN-COMPUTER INTERFACES BRAIN-COMPUTER FERFACES BRAIN-COMPUTER INTERFACES BRAIN-COMPUTER FERFACES BRAIN-COMPUTER INTERFACES BRAIN-COMPUTER INTERFACES BRAIN-COMPUTER FERFACES BRAIN-COMPUTER INTERFACES BRAIN-COMPUTER INTERFACES BRAIN-COMPUTER

Bernhard Graimann Brendan Allison Gert Pfurtscheller (Eds.)

BRAIN-COMPUTER INTERFACES

Revolutionizing Human–Computer Interaction

THE FRONTIERS COLLECTION

Series Editors:

A.C. Elitzur L. Mersini-Houghton M.A. Schlosshauer M.P. Silverman J.A. Tuszynski R. Vaas H.D. Zeh

The books in this collection are devoted to challenging and open problems at th forefront of modern science, including related philosophical debates. In contrast to typical research monographs, however, they strive to present their topics in a manner accessible also to scientifically literate non-specialists wishing to gain insight into the deeper implications and fascinating questions involved. Taken as a whole, the series reflects the need for a fundamental and interdisciplinary approach to modern science. Furthermore, it is intended to encourage active scientists in all areas to ponder over important and perhaps controversial issues beyond their own speciality. Extending from quantum physics and relativity to entropy, consciousness and complex systems – the Frontiers Collection will inspire readers to push back the frontiers of their own knowledge.

Other Recent Titles

Weak Links The Universal Key to the Stability of Networks and Complex Systems By P. Csermely

Entanglement, Information, and the Interpretation of Quantum Mechanics By G. Jaeger

Homo Novus - A Human Without Illusions U.J. Frey, C. Störmer, K.P. Willführ

The Physical Basis of the Direction of Time By H.D. Zeh

Mindful Universe Quantum Mechanics and the Participating Observer By H. Stapp

Decoherence and the Quantum-To-Classical Transition By M.A. Schlosshauer

The Nonlinear Universe Chaos, Emergence, Life By A. Scott

Symmetry Rules How Science and Nature Are Founded on Symmetry By J. Rosen

Quantum Superposition Counterintuitive Consequences of Coherence, Entanglement, and Interference By M.P. Silverman

For all volumes see back matter of the book

Bernhard Graimann · Brendan Allison · Gert Pfurtscheller

Editors

BRAIN–COMPUTER INTERFACES

Revolutionizing Human–Computer Interaction

Editors Dr. Bernhard Graimann Otto Bock HealthCare GmbH Max-Näder-Str. 15 37115 Duderstadt Germany graimann@ottobock.de

Dr. Brendan Allison Institute for Knowledge Discovery Laboratory of Brain-Computer Interfaces Graz University of Technology Krenngasse 37 8010 Graz Austria allison@tugraz.at Prof. Dr. Gert Pfurtscheller Institute for Knowledge Discovery Laboratory of Brain-Computer Interfaces Graz University of Technology Krenngasse 37 8010 Graz Austria pfurtscheller@tugraz.at

Series Editors:

Avshalom C. Elitzur Bar-Ilan University, Unit of Interdisciplinary Studies, 52900 Ramat-Gan, Israel email: avshalom.elitzur@weizmann.ac.il Laura Mersini-Houghton Dept. Physics, University of North Carolina, Chapel Hill, NC 27599-3255, USA email: mersini@physics.unc.edu Maximilian A. Schlosshauer Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen, Denmark email: schlosshauer@nbi.dk Mark P. Silverman Trinity College, Dept. Physics, Hartford CT 06106, USA email: mark.silverman@trincoll.edu Jack A. Tuszynski University of Alberta, Dept. Physics, Edmonton AB T6G 1Z2, Canada email: jtus@phys.ualberta.ca Rüdiger Vaas University of Giessen, Center for Philosophy and Foundations of Science, 35394 Giessen, Germany email: ruediger.vaas@t-online.de H. Dieter Zeh

Gaiberger Straße 38, 69151 Waldhilsbach, Germany email: zeh@uni-heidelberg.de

ISSN 1612-3018 ISBN 978-3-642-02090-2 e-ISBN 978-3-642-02091-9 DOI 10.1007/978-3-642-02091-9 Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2010934515

© Springer-Verlag Berlin Heidelberg 2010

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover design: KuenkelLopka GmbH, Heidelberg

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

It's an exciting time to work in Brain–Computer Interface (BCI) research. A few years ago, BCIs were just laboratory gadgets that only worked with a few test subjects in highly controlled laboratory settings. Since then, many different types of BCIs have succeeded in providing real-world communication solutions for several severely disabled users. Contributions have emerged from a myriad of research disciplines across academic, medical, industrial, and nonprofit sectors. New systems, components, ideas, papers, research groups, and success stories are becoming more common. Many scientific conferences now include BCI related special sessions, symposia, talks, posters, demonstrations, discussions, and workshops. The popular media and general public have also paid more attention to BCI research.

However, the field remains in its infancy, with many fundamental challenges remaining. BCI success stories are still expensive, time consuming, and excruciatingly infrequent. We still cannot measure nor understand the substantial majority of brain activity, which limits any BCI's speed, usability, and reliability. Communication and collaboration across disciplines and sectors must improve. Despite increased efforts from many groups, you still can't really do very much with a BCI. The increased publicity has also brought some stories that are biased, misleading, confusing, or inaccurate.

All of the above reasons inspired a book about BCIs intended for non-expert readers. There is a growing need for a straightforward overview of the field for educated readers who do not have a background in BCI research nor some of its disciplines. This book was written by authors from different backgrounds working on a variety of BCIs. Authors include experts in psychology, neuroscience, electrical engineering, signal processing, software development, and medicine. The chapters describe different systems as well as common principles and issues. Many chapters present emerging ideas, research, or analysis spanning different disciplines and BCI approaches. The style and content provide a readable and informative overview aimed toward non-specialists.

The first chapter gives a particularly easy introduction to BCIs. The next three chapters cover the foundations of BCIs in more detail. Chapters 4 through 8 describe the four most cited non-invasive BCI systems, and chapters 9 and 10 cover neurore-habilitation. Chapter 11 focuses on BCIs for locked-in patients and presents a unique

interview with a locked-in patient. Invasive approaches are addressed in chapters 12 to 14. Chapters 15 and 16 present a freely available BCI framework (BCI 2000) and one of the first commercial BCI systems. Chapters 17 and 18 deal with signal processing. The last chapter gives a look into the future of BCIs.

Graz, Austria April 2010 Bernhard Graimann Brendan Allison Gert Pfurtscheller

Contents

Brain–Computer Interfaces: A Gentle Introduction	1
Brain Signals for Brain–Computer Interfaces	29
Dynamics of Sensorimotor Oscillations in a Motor Task	47
Neurofeedback Training for BCI Control Christa Neuper and Gert Pfurtscheller	65
The Graz Brain-Computer Interface	79
BCIs in the Laboratory and at Home: The Wadsworth Research Program	97
Detecting Mental States by Machine Learning Techniques: The Berlin Brain–Computer Interface	113
Practical Designs of Brain–Computer Interfaces Based on the Modulation of EEG Rhythms Yijun Wang, Xiaorong Gao, Bo Hong, and Shangkai Gao	137
Brain–Computer Interface in Neurorehabilitation	155
Non Invasive BCIs for Neuroprostheses Control of the Paralysed Hand Gernot R. Müller-Putz, Reinhold Scherer, Gert Pfurtscheller, and Rüdiger Rupp	171

Brain-Computer Interfaces for Communication and Control in Locked-in Patients	185
Intracortical BCIs: A Brief History of Neural Timing Dawn M. Taylor and Michael E. Stetner	203
BCIs Based on Signals from Between the Brain and Skull Jane E. Huggins	221
A Simple, Spectral-Change Based, ElectrocorticographicBrain-Computer InterfaceKai J. Miller and Jeffrey G. Ojemann	241
Using BCI2000 in BCI Research	259
The First Commercial Brain–Computer Interface EnvironmentChristoph Guger and Günter Edlinger	281
Digital Signal Processing and Machine Learning	305
Adaptive Methods in BCI Research - An Introductory Tutorial Alois Schlögl, Carmen Vidaurre, and Klaus-Robert Müller	331
Toward Ubiquitous BCIs	357
Index	389

Contributors

Brendan Allison Institute for Knowledge Discovery, Laboratory of Brain-Computer Interfaces, Graz University of Technology, Krenngasse 37, 8010 Graz, Austria, allison@tugraz.at

Kai Keng Ang Institute for Infocomm Research, A*STAR, Singapore, kkang@i2r.a-star.edu.sg

Niels Birbaumer Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany, niels.birbaumer@uni-tuebingen.de

Benjamin Blankertz Berlin Institute of Technology, Machine Learning Laboratory, Berlin, Germany; Fraunhofer FIRST (IDA), Berlin, Germany, blanker@cs.tu-berlin.de

Chadwick B. Boulay Wadsworth Center, New York State Department of Health and School of Public Health, State University of New York at Albany, New York, NY 12201, USA, cboulay@wadsworth.org

Ursula Broermann Institute of Medical Psychology and Behavioral Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany

Clemens Brunner Institute for Knowledge Discovery, Laboratory of Brain-Computer Interfaces, Graz University of Technology, Krenngasse 37, 8010 Graz, Austria, clemens.brunner@tugraz.at

Gabriel Curio Campus Benjamin Franklin, Charité University Medicine Berlin, Berlin, Germany, gabriel.curio@charite.de

Márton Danóczy Berlin Institute of Technology, Machine Learning Laboratory, Berlin, Germany, marton@cs.tu-berlin.de

Thorsten Dickhaus Berlin Institute of Technology, Machine Learning Laboratory, Berlin, Germany, dickhaus@cs.tu-berlin.de

Günter Edlinger Guger Technologies OG / g.tec medical engineering GmbH, Herbersteinstrasse 60, 8020 Graz, Austria, edlinger@gtec.at Siamac Fazli Berlin Institute of Technology, Machine Learning Laboratory, Berlin, Germany, fazli@cs.tu-berlin.de

Shangkai Gao Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China, gsk-dea@tsinghua.edu.cn

Xiaorong Gao Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China

Bernhard Graimann Strategic Technology Management, Otto Bock HealthCare GmbH, Max-Näder Straße 15, 37115 Duderstadt, Germany, graimann@ottobock.de

Cuntai Guan Institute for Infocomm Research, A*STAR, Singapore, ctguan@i2r.a-star.edu.sg

Christoph Guger Guger Technologies OG / g.tec medical engineering GmbH, Herbersteinstrasse 60, 8020 Graz, Austria, guger@gtec.at

Jane E. Huggins University of Michigan, Ann Arbor, MI, USA, janeh@umich.edu

Bo Hong Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China

Robert Leeb Institute for Knowledge Discovery, Laboratory of Brain-Computer Interfaces, Graz University of Technology, Krenngasse 37, 8010 Graz, Austria, robert.leeb@tugraz.at

Yuanqing Li School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, China, auyqli@scut.edu.cn

Dennis J. McFarland Laboratory of Neural Injury and Repair, Wadsworth Center New York State Department of Health, Albany, NY12201-0509, USA, mcfarlan@wadsworth.org

Jürgen Mellinger Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany, juergen.mellinger@uni-tuebingen.de

Kai J. Miller Physics, Neurobiology and Behavior, University of Washington, Seattle, WA 98195, USA, kjmiller@u.washington.edu

Klaus-Robert Müller Berlin Institute of Technology, Machine Learning Laboratory, Berlin, Germany, krm@cs.tu-berlin.de

Gernot R. Müller-Putz Institute for Knowledge Discovery, Laboratory of Brain-Computer Interfaces, Graz University of Technology, Krenngasse 37, 8010 Graz, Austria, gernot.mueller@tugraz.at

Christa Neuper Institute for Knowledge Discovery, Graz University of Technology, Graz, Austria; Department of Psychology, University of Graz, Graz, Austria, christa.neuper@uni-graz.at

Contributors

Femke Nijboer Institute of Medical Psychology and Behavioral Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany; Human-Media Interaction, University of Twente, Enschede, the Netherlands, femke.nijboer@utwente.nl

Jeffrey G. Ojemann Neurological Surgery, University of Washington, Seattle, WA 98195, USA, jojemann@u.washington.edu

Gert Pfurtscheller Institute for Knowledge Discovery, Laboratory of Brain-Computer Interfaces, Graz University of Technology, Krenngasse 37, 8010, Graz, Austria, pfurtscheller@tugraz.at

Florin Popescu Fraunhofer FIRST (IDA), Berlin, Germany, florin.popescu@first.fraunhofer.de

Rüdiger Rupp Orthopedic University Hospital of Heidelberg University, Schlierbacher Landstrasse 200a, Heidelberg, Germany, Ruediger.Rupp@ok.uni-heidelberg.de

Claudia Sannelli Berlin Institute of Technology, Machine Learning Laboratory, Berlin, Germany, sannelli@cs.tu-berlin.de

Paul Sauseng Department of Psychology, University Salzburg, Salzburg, Austria, paul.sauseng@sbg.ac.at

Gerwin Schalk Laboratory of Neural Injury and Repair, Wadsworth Center New York State Department of Health, Albany, NY 12201-0509, USA, schalk@wadsworth.org

Reinhold Scherer Institute for Knowledge Discovery, Laboratory of Brain-Computer Interfaces, Graz University of Technology, Krenngasse 37, 8010 Graz, Austria, reinhold.scherer@tugraz.at

Alois Schlögl Institute of Science and Technology Austria (IST Austria), Am Campus 1, A–3400 Klosterneuburg, Austria, alois.schloegl@gmail.com

Eric W. Sellers Department of Psychology, East Tennessee State University, Johnson City, TN 37641, USA, sellers@etsu.edu

Michael E. Stetner Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA, stetner@mit.edu

Michael Tangermann Berlin Institute of Technology, Machine Learning Laboratory, Berlin, Germany, schroedm@cs.tu-berlin.de

Dawn M. Taylor Dept of Neurosciences, The Cleveland Clinic, Cleveland, OH 44195, USA; Department of Veterans Affairs, Cleveland Functional Electrical Stimulation Center of Excellence, Cleveland, OH 44106, USA, dxt42@case.edu

Theresa M. Vaughan Laboratory of Neural Injury and Repair, Wadsworth Center New York State Department of Health, Albany, NY 12201-0509, USA, vaughan@wadsworth.org

Carmen Vidaurre Berlin Institute of Technology, Machine Learning Laboratory, Berlin, Germany, vidcar@cs.tu-berlin.de

Yijun Wang Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China

Jonathan R. Wolpaw Wadsworth Center, New York State Department of Health and School of Public Health, State University of New York at Albany, New York, NY 12201, USA, wolpaw@wadsworth.org

List of Abbreviations

ADHD	Attention deficit hyperactivity disorder
AEP	Auditory evoked potential
ALS	Amyotrophic lateral sclerosis
AP	Action potential
AR	Autoregressive model
BCI	Brain–Computer Interface
BMI	Brain–Machine Interface
BOLD	Blood oxygenation level dependent
BSS	Blind source separation
CLIS	Completely locked-in state
CNS	Central nervous system
CSP	Common spatial patterns
ECG	Electrocardiogram, electrocardiography
ECoG	Electrocorticogram, electrocorticography
EEG	Electroencephalogram, electroencephalography
EMG	Electromyogram, electromyography
EOG	Electrooculogram
EP	Evoked potential
EPSP	Excitatory postsynaptic potential
ERD	Event-related desynchronization
ERP	Event-related potential
ERS	Event-related synchronization
FES	Functional electrical stimulation
fMRI	Functional magnetic resonance imaging
fNIR	Functional near infrared
HCI	Human-computer interface
ICA	Independent component analysis
IPSP	Inhibitory postsynaptic potential
ITR	Information transfer rate
LDA	Linear discriminant analysis
LFP	Local field potential
LIS	Locked-in state

MEG	Magnetoencephalogram, magentoencephalography
MEP	Movement-evoked potential
MI	Motor imagery
MND	Motor neuron disease
MRI	Magnetic resonance imaging
NIRS	Near-infrared spectroscopy
PCA	Principal component analysis
PET	Positron emission tomography
SCP	Slow cortical potential
SMA	Supplementary motor area
SMR	Sensorimotor rhythm
SNR	Signal-to-noise ratio
SSVEP	Steady-state visual-evoked potential
VEP	Visual evoked potential
VR	Virtual reality