R E Hester and R M Harrison

Biodiversity Under Threat

RSC Publishing

Biodiversity Under Threat

ISSUES IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY

EDITORS:

R.E. Hester, University of York, UK **R.M. Harrison**, University of Birmingham, UK

EDITORIAL ADVISORY BOARD:

Sir Geoffrey Allen, Executive Advisor to Kobe Steel Ltd, UK, A.K. Barbour, Specialist in Environmental Science and Regulation, UK, P. Crutzen, Max-Planck-Institut für Chemie, Germany, S.J. de Mora, Aromed Environmental, Kingston, Canada, G. Eduljee, SITA, UK, J.E. Harries, Imperial College of Science, Technology and Medicine, UK, S. Holgate, University of Southampton, UK, P.K. Hopke, Clarkson University, USA, Sir John Houghton, Meteorological Office, UK, P. Leinster, Environment Agency, UK, J. Lester, Imperial College of Science, Technology and Medicine, UK, P.S. Liss, School of Environmental Sciences, University of East Anglia, UK, D. Mackay, Trent University, Canada, A. Proctor, Food Science Department, University of Arkansas, USA, D. Taylor, AstraZeneca plc, UK, J. Vincent, School of Public Health, University of Michigan, USA.

TITLES IN THE SERIES:

- 1. Mining and its Environmental Impact
- 2. Waste Incineration and the Environment
- 3. Waste Treatment and Disposal
- 4. Volatile Organic Compounds in the Atmosphere
- 5. Agricultural Chemicals and the Environment
- 6. Chlorinated Organic Micropollutants
- 7. Contaminated Land and its Reclamation
- 8. Air Quality Management
- 9. Risk Assessment and Risk Management
- 10. Air Pollution and Health
- 11. Environmental Impact of Power Generation
- 12. Endocrine Disrupting Chemicals
- 13. Chemistry in the Marine Environment
- 14. Causes and Environmental Implications of Increased UV-B Radiation

- 15. Food Safety and Food Quality
- 16. Assessment and Reclamation of Contaminated Land
- 17. Global Environmental Change
- 18. Environmental and Health Impact of Solid Waste Management Activities
- 19. Sustainability and Environmental Impact of Renewable Energy Sources
- 20. Transport and the Environment
- 21. Sustainability in Agriculture
- 22. Chemicals in the Environment: Assessing and Managing Risk
- 23. Alternatives to Animal Testing
- 24. Nanotechnology
- 25. Biodiversity Under Threat

How to obtain future titles on publication

A subscription is available for this series. This will bring delivery of each new volume immediately on publication and also provide you with online access to each title via the Internet. For further information visit https://www.rsc.org/Publishing/Books/issues or write to the address below.

For further information please contact:

Sales and Customer Care, Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK

Telephone: +44 (0)1223 432360, Fax: +44 (0)1223 426017, Email: sales@rsc.org

ISSUES IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY EDITORS: R.E. HESTER AND R.M. HARRISON

25 Biodiversity Under Threat

ISBN: 978-0-85404-251-7

ISSN: 1350-7583

A catalogue record for this book is available from the British Library

© The Royal Society of Chemistry 2007

All rights reserved

Apart from fair dealing for the purposes of research for non-commercial purposes or for private study, criticism or review, as permitted under the Copyright, Designs and Patents Act 1988 and the Copyright and Related Rights Regulations 2003, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of The Royal Society of Chemistry, or in the case of reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of the licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to The Royal Society of Chemistry at the address printed on this page.

Published by The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK

Registered Charity Number 207890

For further information see our web site at www.rsc.org

Preface

Biodiversity has become quite a buzzword of late. Hardly a day goes by without alarmed reference to it in the popular media. Much of the current comment is linked to climate change, widely believed to be caused by human activities. Other anthropogenic causes of biodiversity loss, such as deforestation, overfishing, intensification of agriculture, pollution and the spread of invasive species also have received considerable attention. This book brings together an international group of experts on the subject, each with a distinctive focus, giving an overview of its many different aspects and combining academic rigour with a concern to make the topic intelligible to the non-specialist reader.

Biodiversity plays an important role in the sustainability of ecosystems and provides both goods and services that are essential for human survival. However, despite the increased awareness of its benefits, biodiversity is undoubtedly under threat from the many pressures imposed by human-induced changes. The ten chapters of this book provide a broad view of the many threats to global biodiversity and of the policy responses required to combat them. Thus policy is a theme common to several of the chapters, but for the most part this is dealt with in the specific context of the particular topic under discussion, *e.g.* invasive species, threatened habitats, land use change, *etc*.

The book begins with a chapter by Nigel Boatman and his colleagues from the UK government's Central Science Laboratory. This is concerned with the impacts of agricultural change on farmland biodiversity in the UK. Next Jessica Hellmann of the University of Notre Dame and Nathan Sanders of the University of Tennessee, USA, write on the extent and future of global insect biodiversity. Chapter 3 then considers biological invasions in Europe, with an analysis of the relevant pressures, states, impacts and responses by Philip Hulme, now at the National Center for Advanced Bio-Protection Technologies in Lincoln University, NZ. In Chapter 4 Paul Tyler of the UK National Oceanography Centre in Southampton writes on biodiversity in the deep sea, addressing the question "if we do not understand the biodiversity, how can we assess the threat?" The fifth chapter, by Alison Hester and Rob Brooker of the Macaulay Institute in Aberdeen, Scotland, addresses threatened habitats, with a focus on marginal vegetation in upland areas. It is from this chapter that we draw the illustration used on our front cover.

The second half of the book begins with a chapter on trends in biodiversity in Europe and the impact of land use change, written by Allan Watt of the CEH, Banchory, Scotland, together with co-authors from Denmark, France, Ireland, England, Spain, Germany, Sweden, Hungary, Finland, The Netherlands and Portugal. Then in Chapter 7 Jon Lovett and colleagues from the Institute for Tropical Ecosystem Dynamics in York, England, provide an account of tropical forest biodiversity. Chapter 8 deals with both constraints and successes in the implementation of international biodiversity initiatives and is written by Eeva Furman of the Finnish Environment Institute in Helsinki, together with

vi Preface

co-authors who include colleagues from both The Netherlands and Romania. In Chapter 9, written by another international team headed by Michael Bredemeier of the Forest Ecosystems Research Centre at the University of Gottingen, Germany, and including co-authors from Wales, Hungary, Austria and Italy, the subject of biodiversity assessment and change and the challenge of appropriate methods are addressed. Finally, the book closes with a chapter by Stefan Klotz of the UFZ-Centre for Environmental Research in Lepzig-Halle, Germany, on the role of natural and anthropogenic drivers and pressures on biodiversity.

The subject of biodiversity is, of course, huge in scope and significance. Even in 10 chapters, involving some 47 authors, we cannot claim a fully comprehensive treatment. However, we believe the current understanding of the threats to biodiversity is particularly well described here, with a wide range of illustrative examples. Future directions for increasing this understanding and developing appropriate policy initiatives to combat the worst of the threats are suggested and discussed. Thus the book will be of value to policymakers as well as to ecologists and environmental scientists and to all students of the environment.

Ronald E Hester Roy M Harrison

Contents

Impacts of Agricultural Change on Farmland Biodiversity in the UK Nigel D. Boatman, Hazel R. Parry, Julie D. Bishop and Andrew G.S. Cuthbertson

1	Intro	oduction	1
2	The	Post-war Intensification of Agriculture	2
	2.1	Land Drainage	2
	2.2	Decline of Mixed Farming and Changes in Crop Rotations	3
	2.3	Fertiliser	4
	2.4	Pesticides	5 7
	2.5	Field Size and Hedgerows	
	2.6	Autumn Sowing	8
	2.7	Management of Grassland	9
	2.8	Heather Burning	12
	2.9	Grain Storage and Animal Housing	12
	2.10	Veterinary Medicines	13
	2.11	Supplementary Feeding	13
3	Rece	ent Changes in Agricultural Practices	14
	3.1	Farming Systems	14
	3.2	Reduced Cultivation Systems	16
	3.3	Set-aside	17
	3.4	Energy Crops	18
	3.5	Genetically Modified Crops	20
4	Mea	sures to Benefit Biodiversity on Farmland	21
	4.1	Agri-environment Schemes	21
	4.2	Cross-compliance	22
5	Cha	nging Agricultural Policy and Implications for the Future of	
	Farr	nland Biodiversity	23
A		vledgements	25
	eferen		25

viii Contents

The Extent and Future of Global Insect Diversity

Je	essica J. Hellmann and Nathan J. Sanders						
1	Introduction	33					
2	A Diversity of Species and Functions						
3	Services Provided by Insects						
4	Global Patterns of Insect Diversity	36					
5	Threats to Insects Worldwide	38					
6	Land-use Change	40					
7	Climate Change	41					
8	Invasive Species	46					
9	Where Do We Go from Here?	47					
	9.1 A New Taxonomy	47					
	9.2 Systematic Sampling	47					
	9.3 Synthesis of Biodiversity Inventories	48					
	9.4 Multi-factor Research	48					
	9.5 Generating a Trait-based Understanding of	4.0					
1.0	Global Change	48					
	Conclusions	49					
	cknowledgements eferences	49 50					

Re	tological Invasions in Europe: Drivers, Pressures, States, Impacts and esponses hilip E. Hulme						
1	Biological Invasions in Europe: a Framework for Best Practice	50					
2	The Trouble with Trade and Travel: Economic Drivers of Biological Invasions	58					
3)(
J	Assessing the Pressure of Invasions on Hoosystems: Propagules						
	Assessing the Pressure of Invasions on Ecosystems: Propagules,	6					
4	Pathways and People	62					
4	Pathways and People The State of the Union: Trends in the Distribution of Alien Species						
	Pathways and People The State of the Union: Trends in the Distribution of Alien Species in Europe	62					
4	Pathways and People The State of the Union: Trends in the Distribution of Alien Species in Europe Impacts on Biodiversity: Genes, Populations and	63					
5	Pathways and People The State of the Union: Trends in the Distribution of Alien Species in Europe Impacts on Biodiversity: Genes, Populations and Ecosystems						
	Pathways and People The State of the Union: Trends in the Distribution of Alien Species in Europe Impacts on Biodiversity: Genes, Populations and Ecosystems Responding to the Threat of Biological Invasions: a European	63 60					
5	Pathways and People The State of the Union: Trends in the Distribution of Alien Species in Europe Impacts on Biodiversity: Genes, Populations and Ecosystems Responding to the Threat of Biological Invasions: a European Policy Perspective	63					
5	Pathways and People The State of the Union: Trends in the Distribution of Alien Species in Europe Impacts on Biodiversity: Genes, Populations and Ecosystems Responding to the Threat of Biological Invasions: a European Policy Perspective A Future Europe: Will Economic Integration Lead to Biotic	63 66 72					
567	Pathways and People The State of the Union: Trends in the Distribution of Alien Species in Europe Impacts on Biodiversity: Genes, Populations and Ecosystems Responding to the Threat of Biological Invasions: a European Policy Perspective A Future Europe: Will Economic Integration Lead to Biotic Homogenisation?	63 66 72 73					
5 6 7 Ac	Pathways and People The State of the Union: Trends in the Distribution of Alien Species in Europe Impacts on Biodiversity: Genes, Populations and Ecosystems Responding to the Threat of Biological Invasions: a European Policy Perspective A Future Europe: Will Economic Integration Lead to Biotic	63 66 72					

Contents

The Deep Sea: If V	Ve Do Not Understan	d the Biodiversity,	Can	We Assess
the Threat?				

Paul	Tvl	er
1 0000	- y v	٠,

1	1 Introduction				
2	The Deep Sea	84			
3	Understanding Modern Deep-sea Biodiversity	86			
4	Patterns of Biodiversity in the Deep Sea: Benthos	88			
	4.1 With Depth	88			
	4.2 With Latitude	89			
	4.3 With Productivity	91			
	4.4 Hydrothermal Vents, Cold Seeps and Whale Falls:				
	Biodiversity Bonus?	92			
	Patterns of Biodiversity in the Deep Sea: Pelagos	93			
6		94			
7	Is Biodiversity in the Deep Sea Under Threat?	95			
	7.1 Disposal	95			
	7.2 Exploitation	97			
8	Conclusions	101 102			
A	Acknowledgements				
G	102				
R	eferences	103			
TI	hreatened Habitats: Marginal Vegetation in Upland Areas				
	lison Hester and Rob Brooker				
1	Introduction	107			
2	Case Studies	108			
3	Drivers, Pressures and Threats	112			
	3.1 Climate Change	113			
	3.2 Grazing	116			
	3.3 Fragmentation and Isolation	118			
4	Managing Biodiversity in Marginal Habitats	122			
	4.1 Policy Context	122			
	4.2 Research Priorities	125			
	4.3 Management Action	127			
	Acknowledgements				
R	eferences	129			

x Contents

	rends in Biodiversity in Europe and the Impact of Land-use Change	
	D. Watt, R.H.W Bradshaw, J. Young, D. Alard, T. Bolger,	
	. Chamberlain, F. Fernández-González, R. Fuller, P. Gurrea, K. Henle,	
	Johnson, Z. Korsós, P. Lavelle, J. Niemelä, P. Nowicki, M. Rebane,	
C.	Scheidegger, J.P. Sousa, C. Van Swaay and A. Vanbergen	
1	Introduction	135
2	Biodiversity in Europe: Current Status	135
3	Biodiversity in Europe: Information on Current Trends	137
	3.1 Habitat Extent and Quality	137
	3.2 Species Diversity	139
	3.3 Species Abundance and Biomass	139
	3.4 Distribution of Species	140
	3.5 Threatened Status of Species	140
4	Biodiversity in Europe: an Historical Perspective	140
5	Biodiversity in Europe: Current and Future Threats	144
6	The Policy Response to Biodiversity Loss	148
7	Quantifying Biodiversity Loss	149
8	Biodiversity and Land-use Change	151
9	Discussion	152
Re	eferences	155
Tr	opical Moist Forests	
Jo	on C. Lovett, Rob Marchant, Andrew R. Marshall and Janet Barber	
1	Introduction	161
2	Tropical Forest Ecology	162
3	Continental Scale Variation due to Plate Tectonics	164
4	Regional Scale Variation due to Pleistocene Climate Fluctuations	166
	4.1 Tropical Climate Change	166
	4.2 Direct Evidence for Change	167
	4.3 Inferential Evidence for Change	168
	4.4 African Late Glacial Climates	169
	4.5 Changing Climate Changing Forests	170
	4.6 Past Climate Change as a Predictor of Diversity	171
5	Reasons for Local-scale Variation due to Present-day Ecology	173
6	Past Anthropogenic Impact on Tropical Forests	174
7	Present Anthropogenic Impact and Management of Tropical	
	Forests	175
8	Case Study: Management of the Mufindi Forests	178
9	The Future	183
R	eferences	184

Contents xi

The Implementation of International	Biodiversity	Initiatives:	Constraints
and Successes			

F_{eva}	Furman	Riku	Varjopuro,	Roh	Van	4 neldoorn	and	Mihai	Adamesca
Levu	rumun,	Ninu	v arjoparo,	$\Lambda 00$	v un z	1 <i>решоот</i> п	unu	wi inai	Auumesci

1	Tow	ards International Biodiversity Goals	193					
2	Inter	International Initiatives to Set Goals for Biodiversity Conservation						
3	How	are International Goals Implemented?	195					
	3.1	How has Finland Organised the Implementation of						
		International Biodiversity Goals?	198					
	3.2	How has the UK Organised the Implementation of						
		International Biodiversity Goals?	199					
	3.3	Alternative Routes from International Goals to Local Level						
		Practices: Ranomafana National Park in Madagascar as a						
		Case Study	200					
4	Whe	n Implementation is Being Constrained	201					
5	Does	Implementation Lead to Wanted Results?	202					
6	Med	iation to Help Reach Effectiveness and Legitimacy	204					
	6.1	Braila Islands: Starting Management from Local						
		Socio-environmental Needs Before Linking with International						
		Goals	208					
	6.2	From Hunger Strikes to Voluntary Measures: Forest						
		Conservation in Karvia	209					
	6.3	Turning Symbolic Participation into Effective Deliberation	210					
	6.4	A Successful Community-led Biodiversity						
		Management Process: the Farming for Nature Initiative	212					
7	Cond	clusions	213					
Ac	know	ledgements	213					
Re	feren	ces	213					
		sity Assessment and Change – the Challenge of Appropriate						
	ethods							
		Bredemeier, Peter Dennis, Norbert Sauberer, Bruno Petriccione,						
Ka	talin	Török, Cristiana Cocciufa, Giuseppe Morabito and Alessandra						
Pu	gnetti							
1	Intro	duction	217					
	1.1	The Progressive Inclusion of Biodiversity						
		Measures in Environmental Monitoring	217					
	1.2	The Challenge of Adequately Representing						
		Complexity	218					
	1.3	Complexity and Ambiguity of the Term						
		Biodiversity	218					
	1.4	Approaches to Reduce Complexity	219					

xii Contents

2	Surr	ogate Measures, Indicators and Indices	221			
	2.1	Forerunners and First Steps in the 1980s	221			
	2.2	A Muddle of Terms	222			
	2.3	"It Starts with the Right Question" or "the Choice of Values				
		and Measures"	222			
	2.4	Adoption of the Biodiversity Surrogate Approach	223			
	2.5	Biodiversity Indices	224			
3	Indic	cators of Biodiversity and its Change for LTER Sites	224			
	3.1	LTER Sites and Biodiversity: Basic Concepts and Keystones	224			
	3.2	LTER Networks at Pan-European Level in Practice: the				
		Experience of UN-ECE CLRTAP ICP IM and ICP Forests	226			
	3.3	Biodiversity Status and Change in Forest Ecosystems:				
		Examples from Italy	228			
	3.4	Biodiversity Status and Change in Freshwater Ecosystems:				
		Examples from North-Italy	232			
	3.5	Biodiversity Status and Change in the Marine Ecosystem:				
		Examples from the Pelagic Ecosystem in Italy	235			
	3.6	Toward a Core Set of Biodiversity Indicators for LTER Sites	236			
4	Indicators of Biodiversity and its Change for the "Wider					
	Cou	ntryside"	237			
	4.1	Limitations of Discrete, Intensively Monitored Locations	238			
	4.2	Advantages of Supplementary Monitoring in the Wider				
		Landscape	239			
	4.3	Data Sources that could Contribute to Surveillance in the				
		Broader Landscape	240			
5	How	to Communicate Biodiversity Assessments to Stakeholders and				
	the I	Public?	241			
	5.1	General Principles	242			
	5.2	Setting Objectives	242			
	5.3	Selecting the Target Audience	243			
	5.4	Selection of Appropriate Tools	243			
	5.5	How to Do It?	244			
	5.6	Evaluation of Success	244			
	5.7	Case Study: Visitor Centre in Vácrátót,				
		Hungary	245			
6	Cone	clusions	246			
Re	eferen	ces	247			

X111
AIII
XII.

Drivers	and	Pressures	on	Biodiversity	in	Analytical
Framew	orks	3				

Stefan Klotz

1 Introduction		oduction	252
2	Different Approaches to Classify the Drivers and Pressures on Biodiversity		
			253
	2.1	Scenarios of Biodiversity Change for the Year 2100 and the	
		Ranking of the Main Drivers	253
	2.2	The Stress-Response Framework	254
	2.3	The DPSIR Framework	254
	2.4	The Millennium Ecosystem Assessment Framework (MA)	255
3	The Main Drivers and Pressures on Biodiversity		257
	3.1	Land-use Changes	258
	3.2	Climate Change	258
	3.3	Changes in Matter Fluxes	258
	3.4	Biological Invasions	259
4	Conclusions		259
A	Acknowledgements		
Re	References		
Su	bject	Index	263

Editors

Ronald E. Hester, BSc, DSc(London), PhD(Cornell), FRSC, CChem

Ronald E. Hester is now Emeritus Professor of Chemistry in the University of York. He was for short periods a research fellow in Cambridge and an assistant professor at Cornell before being appointed to a lectureship in chemistry in York in 1965. He was a full professor in York from 1983 to 2001. His more than 300 publications are mainly in the area of vibrational spectroscopy, latterly focusing on time-resolved studies of photoreaction inter-

mediates and on biomolecular systems in solution. He is active in environmental chemistry and is a founder member and former chairman of the Environment Group of the Royal Society of Chemistry and editor of 'Industry and the Environment in Perspective' (RSC, 1983) and 'Understanding Our Environment' (RSC, 1986). As a member of the Council of the UK Science and Engineering Research Council and several of its sub-committees, panels and boards, he has been heavily involved in national science policy and administration. He was, from 1991 to 1993, a member of the UK Department of the Environment Advisory Committee on Hazardous Substances and from 1995 to 2000 was a member of the Publications and Information Board of the Royal Society of Chemistry.

Roy M. Harrison, BSc, PhD, DSc(Birmingham), FRSC, CChem, FRMetS, Hon MFPH, Hon FFOM

Roy M. Harrison is Queen Elizabeth II Birmingham Centenary Professor of Environmental Health in the University of Birmingham. He was previously Lecturer in Environmental Sciences at the University of Lancaster and Reader and Director of the Institute of Aerosol Science at the University of Essex. His more than 300 publications are mainly in the field of environmental chemistry, although his current work includes studies of

human health impacts of atmospheric pollutants as well as research into the chemistry of pollution phenomena. He is a past Chairman of the Environment Group of the Royal Society of Chemistry for whom he has edited 'Pollution: Causes, Effects and Control' (RSC, 1983; Fourth Edition, 2001) and 'Understanding our Environment: An Introduction to Environmental Chemistry and Pollution' (RSC, Third Edition, 1999). He has a close interest in scientific and