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Preface

There has been a tremendous growth in the weather markets since their beginning around 1997. The organized market for trading weather exists at the Chicago Mercantile Exchange, which launched their first futures and option contracts on temperature in 1999. In the last decade, these markets have also attracted significant attention from academia, with a growing body of literature essentially following three main streams. The first stream focuses on statistical modelling of the time dynamics of weather variables like temperature, rainfall or wind speed. The second stream of research is targeted to pricing and hedging of weather derivatives. Finally, the financial and economical applications of weather derivatives are investigated in the third direction. The current monograph focuses on the first two topics, where the authors have contributed with both new stochastic models for weather variables and developed technology for pricing weather derivatives based on the modern theory of mathematical finance.

The contents of the monograph are to a great extent influenced by our work over the last 10 years in the field of weather derivatives, with particular focus on temperature modelling and futures pricing. The market for temperature derivatives is also currently the most active weather market. Furthermore, we have made contributions to modelling and pricing wind speed derivatives, as well as introducing the concept of hedging spatial risk (or geographical risk, as we call it in this monograph) in weather markets. Lastly, some recent innovations on modelling and pricing precipitation derivatives are presented in the monograph. All this comes in addition to the presentation of relevant work on weather derivatives done by other authors. Most notably, we devote a full chapter on utility-based weather derivatives pricing.

The purpose of this monograph is to present an integrated approach to weather derivatives. We develop stochastic models for the time and space evolution of weather variables on empirical grounds. These are next applied to price weather derivatives using the no-arbitrage theory from mathematical finance. Our methodology provides the fundamental for a correct pricing and risk management in weather markets. Our hope is that the monograph will stimulate further research along these lines in this exciting area of financial engineering where you can buy and sell weather.

In our work on weather derivatives, we are grateful for all the help and fruitful discussions to Andrea Barth, Brenda Lopez Cabrera, Wolfgang Härdle, Paulius Jalinskas, Paul C. Kettler, Jürgen Potthoff and Laura Šaltyt[image: Images]. We especially want to express our gratitude to our friend and collegue Steen Koekebakker, in particular for bringing CARMA to our work on weather. The Lithuanian Meteorological Services are thanked for providing the weather data used in this monograph. Finally, Fred Espen Benth acknowledges the financial support from the project “Managing Weather Risk in Electricity Markets (MAWREM)” funded by the Norwegian Research Council under grant RENERGI 216096.

Oslo, June 2012

Fred Espen Benth and [image: Images] Benth
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Chapter 1

Financial markets for weather

By the year 2011, the notional value of the market for weather derivatives was USD11.8 billion, according to the Weather Risk Management Association (WRMA)1. The weather markets have grown remarkably in financial strength since the first known weather deals took place in 1996. Nowadays, these markets provide a platform for managing risk exposure in weather variables like temperature, wind and precipitation. The most liquid weather derivatives are based on temperature. In short, these derivatives convert weather into money, where you can profit on bad weather (or good, for that matter).

In this monograph we analyze typical weather derivatives traded in the market, both over-the-counter and as customary assets on exchanges. Our aim is to present a unified approach to the statistical modelling of weather factors like temperature, wind speed and precipitation, and apply these models along with the arbitrage theory of mathematical finance to price weather derivatives. In this first Chapter we present typical weather derivatives and the markets they are traded in, before we move on with the statistical analysis of weather and the pricing of weather derivatives.

1.1 The use of weather derivatives

A skiing resort in the Alps is dependent on snow to operate and profit from tourism. A farmer needs fair weather when harvesting the crop in the autumn. A power producer earns money when the weather is hot and air-conditioning is required. A wind mill farm can only operate when there is wind. If weather conditions are unfavourable, on the other hand, the ski resort will not attract any tourists, the farmer risks to lose the harvest, the wind mill cannot operate or the demand for power may be low. Too cold or too hot temperatures, no wind or too strong wind, drought or flooding, may seriously harm industry and constitute a major risk to revenues. Weather derivatives are designed to offer a financial tool for hedging this risk.



1see www.wrma.org

A farmer, say, can insure the crop against flooding in the harvest season. If there is a flooding, the farmer can claim coverage of the incurred losses based on the insurance contract. However, to make these claims, the farmer must prove that losses are due to the flooding, and this may not be a simple task since also other factors influence the harvest, making it difficult to assess the damage. Weather derivatives, like, for example, derivatives written on rainfall, are an alternative that provides an “objective” way to insure against flooding. Typically, a rainfall derivative is a financial contract that pays the owner money according to an index measuring the amount of rain over a period. For example, the farmer may buy such a contract written on the amount of rain during the harvest season. If there is flooding, the amount of rain will be above a certain threshold, and the contract, properly designed, will pay out money in such a case. The farmer will receive cash, no matter what the actual losses are. The farmer has in effect an insurance against flooding without having to prove any damages. In fact, the farmer will receive money no matter if there is a flooding or not. Of course, the rainfall derivative contract will cost money, which is paid up front at entry.

The profit from a skiing resort is directly linked to the weather during the season. Too warm temperatures destroy snow conditions and harm the profit. To make matters simple, let us suppose that the resort can measure the losses being proportional to the aggregate temperatures T(t), with t being time, above a threshold c in the season, that is,

[image: Images]

for some proportionality constant a > 0. It is natural to suppose that the threshold c could be equal to, or be slightly above 0 degrees Celsius (°C). The losses will then be proportional to the number of cooling-degree days in the season (see below). Imagine now a temperature derivatives contract which pays the buyer the number of cooling degree days with threshold c over the season measured at the ski resort, in return of a fixed amount F. This would in effect be a futures contract on the cooling-degree day index over the season. The ski resort could buy a such contracts, and would in this case receive

[image: Images]

which covers the temperature-dependent losses. On the other hand, the ski resort must pay the amount F. The temperature derivatives contract has in effect swapped their stochastically floating loss function with a fixed one.

Consider now the electricity market, for example, in Southern Europe. It is natural to imagine that the profits of a power producer are proportional to temperatures in the summer due to the demand of air-conditioning cooling. The lower temperature, the lower demand and thus less production of power that leads to reduced income. At the same time, prices of power are likely to go down with lower temperatures. The producer can hedge the production by, for example, selling futures contracts on the cumulative temperature in the summer period, which would generate a fixed income of money (being the futures price) in return of paying the realized cumulative temperature. If this becomes lower than the futures price, the producer generates an income that could cover the losses. On the other hand, the producer will lose on the futures contract if temperatures become high, but in this case generate income from production. In any case, the producer has locked in the loss generated by temperature to be the fixed futures price, and not the random cumulative temperature.

A retailer in the same market typically have fixed price and volume contracts with the clients, and buys power in the market to honour these. As volume increases with increasing temperatures, the retailer may suffer losses incurred by increasing power prices. The retailer may be interested in off-loading the temperature risk by entering long positions in cumulative average temperature futures. A long position in the futures corresponds to buying it, and the retailer will receive the realized cumulative average temperature in return of the fixed futures price. As the retailer on the other hand “pays” the cumulative temperature indirectly in terms of losses, such an investment will make the retailer immune against variations in cumulative temperature. As we see from these two examples, the needs of hedging against temperatures may be opposite for actors in the energy market.

Weather derivatives may prove fruitful for hedging weather risk exposure for outdoor amusement parks, open-air concerts, or soft drink producers, economic activities very different from agriculture or energy. However, nearly all industrial activity is affected by weather in one way or another, so the demand for weather-related hedging tools should be wide. In fact, weather derivatives provide an interesting asset class for speculation and risk diversification for investment funds. As the folklore “London stock markets do not care if it rains in New York” claims, one can apply weather derivatives as an independent asset class in financial investments.

1.2 Markets for weather derivatives

The Chicago Mercantile Exchange (CME) organizes a market for weather derivatives. At the CME, futures on temperature, snowfall, hurricanes and rainfall are offered for trade, along with different types of options written on these. Today, CME is the only market for trading in weather derivatives. There have been attempts to set up markets for similar and other weather derivatives. For example, in 2007 the US Futures Exchange (USFE) initiated a market for wind speed derivatives, however the exchange was closed shortly after.

The CME launched its first weather derivatives in 1999, being futures and options on temperature indices measured in several US cities. Nowadays, the weather segment of CME includes futures and options on temperature indices for cities in the US, Canada, Europe, Japan and Australia (we refer to www.cme.com for a complete list). Moreover, the exchange offers derivatives on hurricanes in the Gulf region of the US, snowfall and rainfall derivatives for New York and Boston, and a frost index at Schiphol airport in Amsterdam. There has also been organized trade in weather derivatives at other exhanges for shorter periods, like the Inter Continental Exchange (ICE) and the London International Financial Future and Options Exchange (LIFFE).

1.2.1 Temperature derivatives

At the CME, temperature futures contracts are settled against three main indices: cooling degree-day (CDD), heating degree-day (HDD) and cumulative average temperature (CAT). The CDD and HDD indices are measured against a benchmark temperature of 65° Fahrenheit (F), or 18°C. Here and in most of this book we shall stick to Celsius as measurement unit for temperature. For a particular day t, we define the CDD index as the difference between the average temperature T(t) on that day and the benchmark, whenever this is positive. Otherwise the CDD index is zero. In mathematical terms, we have

[image: Images]

The average temperature for a given day t is defined as the mean of the recorded maximum and minimum temperature, that is,

[image: Images]

The CDD index is intended to measure the demand for air-conditioning cooling. The warmer it is, the more cooling is required. For example, for an average temperature of 20°C, the CDD index becomes two, while a recorded temperature of 30°C yields an index value of 12. As we see, the CDD index gives a number which is intimately connected to the volume demand for cooling. Hence, for an energy producer, the higher index value for a given day means more electricity demanded. The index measures this volume, and is the underlying for futures contracts in the summer season.

The HDD index, on the other hand, measures the demand for heating. It is mathematically defined as

[image: Images]

One can imagine that households are putting on heating whenever the temperatures drop below 18°C. For example, a temperature of 0°C will give a HDD index of 18. The CDD and HDD indices are used for US and Australian cities as underlying for the temperature futures (using Fahrenheit as the unit of temperature). The futures are not settled on the index value for a particular day, but the aggregated index value over an agreed period of time, which we will refer to as the measurement period. The measurement periods are typically a week, month, or a longer period like two to seven consecutive months (then referred to as a seasonal strip). A seasonal strip is within the same general season, where winter is defined from October through April, and summer from April through October. For example, one could imagine a HDD index for New York measured over one week in January. If τ1 is Monday of that week, and τ2 is Sunday, then the HDD index for New York will be

[image: Images]

If the observations for the week in question would be Monday 5°C, Tuesday 6°C, Wednesday 0°C, Thursday 10°C, Friday 12°C, Saturday 19°C and finally Sunday 19°C, the HDD index becomes

[image: Images]

This would give a measurement of the demand of heating in New York for that given week. The HDD index is the underlying for futures contracts in the winter season.

A futures contract on a CDD or HDD index over a given measurement period is settled against the index value times a cash amount. For the US cities, this cash amount is USD20 per index point. In the above example, the buyer of the HDD futures will receive USD39 × 20, or USD780, in return for the agreed futures price. If the futures contract was entered in December, say, at a futures price of USD750, the buyer would earn a profit of USD30 on this transaction. If the futures price at time of entry was USD800, the buyer would have to pay USD20 effectively.

The CAT index is used as underlying in the summer season for cities in Canada, Europe and Asia. The index is computed over a contracted measurement period [τ1, τ2] as

[image: Images]

that is, the cumulative amount of temperatures from τ1 to τ2. The measurement periods are monthly or seasonal strips. The CAT index is substituting the CDD index since in many cities in Europe and Canada the average daily temperature is hardly above 18°C in the summer. The winter index is the HDD as for the US cities. For Canadian cities, the cash amount paid to the buyer of the futures is CAD20, whereas the London futures are settled using the factor GBP20 and the other European locations EUR20. The three cities in Japan covering the Asian area use the average of the CAT index as the underlying, called the Pacific RIM index. It is simply defined as CAT(τ1,τ2)/(τ2 − τ1), and the settlement is based on the Pacific RIM index times YEN2500. All futures are settled immediately after the measurement period has terminated.

On all the temperature futures listed at the CME one can also trade in call and put options. These options are of European-type, meaning that exercise can only take place at a fixed exercise time. A call option on a HDD futures for New York can be used to lock in a fixed futures price at a given time. The option will ensure a maximum futures price given by a strike price K. If the futures price is above this strike K at exercise, the option owner will use the contract and enter the futures at the strike price K, yielding a profit equal to the difference between the futures and strike prices. The option is abandoned if the futures price is below the strike at exercise, as then it is better to buy the futures in the market instead.

1.2.2 Derivatives on wind speed

Generation of wind power has become increasingly important as a renewable energy source in the last decades. Large wind mill farms both on- and offshore are planned as a substitute for carbon-intensive power production in the EU area. As wind power takes over more and more of the power production, the energy markets will become increasingly more sensitive to the variations in this weather factor.

For example, wind power can only be generated when there is wind, which may create instabilities in the supply of power to the grid. In the German power market EEX, wind generated power has priority in the electricity grid, which creates instances of negative power prices as the wind power is fed in at unexpected time periods. Since it is rather costly to ramp down a coal-fired plant for a short time period, it may be better for the operator to simply pay someone to consume the power. On the other hand, the wind power producer faces a large degree of production uncertainty due to the variations in wind speed. The production is dependent on a certain speed of wind at the farm. However, if the wind is too strong, the mills must be closed down in order to avoid damaging the rotors. Clearly, there is a need for risk management tools towards wind uncertainty in the power markets.

As already mentioned, the USFE organized a market for futures settled on wind speed in 2007. The market never came to be, but we discuss its specifications here since this plays the role as a natural set-up of a wind speed derivative market. The USFE applied the so-called Nordix wind speed index as the underlying of their futures contracts. This index was based on the daily average wind speed in two wind farm areas in the US, one in the state of New York, and one in Texas. The two areas were separated into five subareas (two in Texas, three in New York), and futures contracts could be traded on the index in each of these five subareas. In addition, European call and put options were listed on the futures contracts.

The Nordix wind speed index, or the Nordix index from now on, is based on the deviations of the daily wind speed from a 20-year mean. These deviations are then aggregated over a measurement period, being typically a month or a season consisting of consecutive months. Furthermore, it is benchmarked at 100. If we let W(t) be the average daily wind speed measured on day t, and w20(t) the mean of the last 20 years’ wind speeds for day t, the Nordix index measured over the period [τ1, τ2] is then define as
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A futures written on this index pays the buyer the index amount in cash, settled at the end of the measurement period τ2.

From the definition of the Nordix index, we see that if N(τ1, τ2) > 100, there has been more than average wind in the period, while an index value below 100 means less than average. Hence, if N(τ1, τ 2) > 100, a producer of wind power in the farm area has been able to produce more than expected, as long as the expectation is based on the mean wind speed over the last 20 years. The producer may face losses if the index falls below 100, implying less than average production. This can be hedged by entering a position in futures on the index, which essentially is equivalent to swapping a floating index with a fixed, or in terms of wind speed, swapping a floating aggregated wind speed against a fixed one.

1.2.3 Precipitation derivatives

The CME has for some years offered futures on snowfall in US cities. Recently, rainfall futures have been added to the list of precipitation-based weather derivatives traded at this exhchange. The rainfall derivatives are traded for a number of US cities (visit www.cme.com for a complete list). The traded products are futures on a rainfall index measured in each city as well as options on the futures.

The snowfall futures are settled with respect to the CME Snowfall Index, which measures the amount of snow falling in a given measurement period. The period may be a month or a season. At CME one trades in futures for the months November through April, and a season is defined to be two to seven consecutive months (called a seasonal strip, as for temperature derivatives). The buyer of such a futures will receive USD500 times the index value in return for the futures price.

The CME Snowfall Index over a measurement period [τ1,τ2] is defined as the aggregated daily snowfall in inches over the period. Mathematically, if S(t) is the total amount of snow on day t, the Snowfall index will be
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This index is analogous to the CAT index for temperature.

The settlement of rainfall futures is based on the similar CME Rainfall Index. Instead of the aggregated amount of snow in the measurement period, the amount of rain measured in inches at the location is aggregated instead. The settlement of the futures will be USD500 times the index value. The measurement periods are again months or seasonal strips, in the period March through October.

The CME offers plain vanilla European call and put options written on the snow and rainfall futures. In addition, binary options with an American-style exercise procedure can be traded.

1.2.4 Other weather derivatives

The CME also offers hurricane and frost index futures, two classes of weather derivatives that we will not analyze in this monograph. However, as they are linked to derivatives on wind and temperature, we briefly mention them here.

Hurricanes can lead to major damages. One may cover the risk for incurred losses from a hurricane by entering hurricane derivatives. These derivatives, being either futures or options, provide an attractive alternative to more traditional damage insurance. When buying an insurance contract, one must prove the claims incurred by the damage from a hurricane, a procedure which may take time and even lead to costly court cases. A hurricane derivative, on the other hand, settles the transfer of money based on an objective index, and as such may lead to payments even if one was lucky and were not hit by the hurricane.

At the CME, hurricane futures are settled against the CME Hurricane Index (CHI). The CHI is a measure for the potential damage incurred by an actual named hurricane making landfall in the US Atlantic Basin. It is dependent on the wind speed and the radius of its force winds. When the hurricane makes a landfall, or dissipitates, the futures is settled by USD1000 per index point. In case the hurricane does not make a landfall, the futures settles at zero.

Call and put options on the CHI are also traded at various strikes. Moreover, the exchange organizes trade in binary options paying a fixed amount if the option is “in” or “at” the money. All the options are cash settled. There exist two more types of hurricane derivatives, one based on the number of hurricanes making a landfall within a season, and another one based on the largest hurricane making a landfall. For both classes, both futures, call and put options and binary options are offered for trade.

The frost index futures is based on frost recorded on weekdays from November through March in Amsterdam. The index is representing the danger of frost on the runway at the Schiphol airport, based on certain levels of recorded temperatures. The futures can be used by airline companies and airport operators to hedge themselves against the financial consequences of a full stop in flying due to slippy runways.

In July 1996, Aquila Energy entered a contract selling electricity to Consolidated Edison Co for the month of August. Part of the deal was a weather clause, that entitled Consolidated Edison Co a rebate on the power if August turned out to be cooler than expected, as measured by the CDD index of August for New York. This transaction is considered to be among the first known weather derivatives deals in the market. Weather quanto options are tightly connected to such a structured deal, a class of derivatives which have gained a lot of attention recently.

An example of a typical weather quanto option can be a call option on some commodity like gas, but where the payment is triggered by certain weather events. In a simple case, one could imagine the option is knocked out by pre-defined levels of HDD or CDD. As gas prices are highly temperature-dependent, such temperature-triggered derivatives are very attractive tools to manage volume (or demand) risk along with price risk. The issuer of such contracts also has both the gas market as well as the weather market to hedge the option. In [Caporin, Pre[image: Image] and Torro (2012)] quanto options on electricity and temperature are priced using Monte Carlo based simulation methods. They consider in particular double call options on degree days and electricity prices. [Benth, Lange and Myklebust (2012)] hedge and price weather quanto options using futures contracts.

In recent years there has been a growing interest in designing so-called weather-indexed insurance contracts, see [Barnett and Mahul (2007)], [Bar-nett, Barrett and Skees (2008)] and [Skees (2008)]. These contracts are very similar to weather derviatives, as they pay out money to the insured according to an objective index of some weather variable rather than based on claims incurred from actual damages. The main differences from weather derivatives are that the weather-indexed insurance contracts are not traded on an exchange and that they are tailormade to individuals in developing countries.

For example, such a weather-indexed insurance contract may be designed to give a farmer protection against too dry weather that may ruin the crop. Based on measurement of the temperature over a period, say, the farmer will get a payment from the insurance contract. The payment may, for instance, be proportional to a CDD-type index, and in this way give the farmer money if temperatures are too hot. Note that the farmer receives a payment depending on the index, and not depending on actual losses. The insurance company, on the other hand, will charge a premium for this kind of protection. The premium will be calculated based on the probabilistic properties of the temperature index, which will be measured at some objective station. In [Taib and Benth (2012)] the price of such temperature-indexed weather insurance contracts is analyzed. Another type of weather-indexed insurance could involve protection against flooding, linking the contract to precipitation at some location.

To make these weather-indexed contracts relevant for farmers in rural areas in Africa, say, the measurement of temperature and precipitation must be done at stations in reasonable distance to the insured. This means that the insurance company must choose measurement stations in areas where there may be significant danger of unreliable data collection. This is a major issue in the design of these contracts. As the stations can rarely be chosen at the location of the insured, there is also a major correlation risk involved. The weather conditions at the farmer’s location may only partly be described by the location of the measurement station, and thus the farmer is not covered fully for the weather risk. This is an issue that we will return to in a more general perspective, as this is relevant for all weather derviatives markets. We refer to Sect. 7.3, where geographical hedging is analyzed taking spatial risk into account.

1.3 A brief outlook of the monograph

This monograph is arranged into two parts: the first part deals with the statistics of weather, where we perform a detailed statistical analysis of the three weather variables, temperature, wind speed and precipitation. Using long time series of observations on temperature and wind speed at different locations in Lithuania, we describe the fundamental properties of the weather dynamics, and propose stochastic models based on autore-gressive moving average time series with seasonality. Moreover, we also suggest models taking spatial dependencies into account, leading to spatial-temporal stochastic processes. The stochastic modelling of precipitation is treated separately.

The data set of weather variables from Lithuania is quite extensive. We have long series of daily measurements ranging up to 40 years, which enables us to make a detailed study of the weather dynamics. Lithuania is also a reasonably homogeneous geographical region, and therefore advantageous when studying the spatial dependency structure of weather variables. Situated on the European continent, Lithuania serves as an excellent sample case for the study of weather dynamics with the purpose of pricing financial contracts on temperature, wind speed and precipitation.

In the second part of the monograph, we assess pricing of different weather derivatives using the modern financial mathematics theory of no-arbitrage. Our theoretical approach is based on continuous-time stochastic processes. The time series models from the first part can naturally by formulated as so-called continuous-time autoregressive moving average processes, which we introduce and discuss. Except for precipitation derivatives, we apply the standard stochastic analysis for Brownian motion in analyzing prices and hedges.

The monograph requires a basic knowledge of statistics, probability theory and classical stochastic analysis of Brownian motion. The main core of the monograph is self-contained in the presentation of non-classical theory. There are some notable exceptions:

(1)  the use of Lévy processes in modelling stochastic volatility in Sect. 6.1,

(2)  the application of Malliavin Calculus in hedging temperature options in Sect. 7.1,

(3)  the use of independent increment processes (inhomogeneous Lévy processes) in the modelling of precipitation in Chapter 8,

(4)  the application of stochastic control theory in Chapter 9 on the indifference pricing approach to weather derivatives.

The standard reference for Lévy processes with applications in financial markets is [Cont and Tankov (2004)]. The interested reader may consult [Nualart (1995)] for an excellent introduction to the Malliavin Calculus. In Sect. 7.1, we make use of some results from Malliavin Calculus regarding the Malliavin derivative, which will be assumed known. A background in the theory of independent increment processes can be found in [Jacod and Shiryaev (1987)]. A simpler presentation of this class of time-inhomogeneous Lévy processes is found in [Benth, Šaltyt[image: Image] Benth and Koekebakker (2008)], with applications to energy markets. In Chapter 8, we provide the necessary material for following the analysis on precipitation modelling and pricing of precipitation derivatives. [Øksendal (1998)] gives a very motivating background on stochastic control theory relevant to our presentation of utility-based weather derivatives pricing in Chapter 9. In particular, we will use dynamic programming in our analysis, the classical tool for treating such control problems. Dynamic programming leads to a class of non-linear partial differential equations, called Hamilton-Jacobi-Bellman equations.

Throughout the monograph we will use the notion of forward and futures contracts interchangeably, even though most of the weather derivatives traded are of futures type. We refer to [Hull (2002)] and [Duffie (1992)] for a discussion of the differences and similarities of forward and futures contracts.

We refer to [Jewson and Brix (2005)] for a basic introduction to the various techniques relevant to the analysis of weather derivatives. Together with [Geman (1999)], [Jewson and Brix (2005)] also serves as natural background for understanding the functioning of the weather markets. [Geman and Leonardi (2005)] provide a thorough discussion of the various pricing approaches to weather derivatives, highly relevant for our analysis. Large parts of the material presented in this book is taken from the authors’ own work (with collaborators) on weather derivatives. We suggest the inter-ested reader to consult [Benth, Šaltyt[image: Image] Benth and Koekebakker (2008)] for an analysis of modelling and pricing in energy markets, highly relevant for weather. Here a chapter on weather derivatives can be found as well.

For a light approach to the principles of derivatives pricing based on the no-arbitrage theory, the reader is advised to have a look at [Benth (2004)].A more advanced, but yet reasonably tractable introduction to the modern theory of mathematical finance can be found in [Björk (1998)].



PART 1

Statistics of weather


Chapter 2

Description of weather data and
exploratory analysis

In this Chapter we will describe the weather data used for the empirical analysis throughout the book. The data are typical for what one may obtain from meteorological services worldwide, and our statistical analysis to come will serve as an example on how to deal with these and how to construct and estimate stochastic models for temperature, wind speed and precipitation.

2.1 Data

Throughout the book data collected in 20 meteorological stations in Lithuania (Fig. 2.1) will be used. The data base is available through the Lithuanian Hydrometeorological Service in Vilnius, Lithuania (http://www.meteo.lt). We consider three weather parameters, daily average temperature measured in degrees of Celsius (°C), daily average wind speed in meters per second (m/s), and daily precipitation measured in millimeters (mm). In most of the stations, observations on these three meteorological variables are available in electronic form since the beginning of 1961. However, in order to have time series of equal length for a specific variable in all stations of interest, we choose a later starting point in time for our analysis.

Four measurement stations (D[image: Images]kštas, Lazdijai, Palanga and Trak[image: Images] Vok[image: Images]) will be excluded from the analysis because of too many missing observations or because the station in question is a close neighbour of another station (Trak[image: Images] Vok[image: Images], for instance, is nearby Vilnius station). Missing observations in other stations were substituted for each station separately by the average of observations made at the same day in the last five years. The percentage of missing values is low (0.2% in two stations (Laukuva and Utena) for daily average temperature, 0.0009% in Kybartai and 0.5% in Laukuva and Utena for wind speed, and 0.009% in Vilnius and 0.3% in Laukuva and Utena for precipitation), and the comparison of imputed and original data sets shows that the imputation method has a negligible influence on data sets.

[image: Images]

Fig. 2.1 Map of Lithuania with measurement stations. T.Vok[image: Images] is abbreviation for Trak[image: Images] Vok[image: Images].

We proceed now with an exploratory analysis of the three weather variables at each spatial location separately. When illustrating our results graphically, we mainly use only Vilnius station. Due to the simple surface topology of Lithuania the pattern in other stations is similar to that in Vilnius.

2.2 Temperature

As a starting point for daily average temperature records we choose 1 June 1964. Daily average temperatures are ranging until 31 August 2004 resulting in 14,692 observations. In Fig. 2.2, we plot a snapshot of temperature data for the last five years in Vilnius station, where we notably observe a clear seasonal pattern in the data.

Some simple descriptive statistics for all 16 stations are given in Table 2.1. The variation in different characteristics of temperatures is not big among the stations. The values of skewness and kurtosis, small, but significantly different from zero, indicate that temperature might be non-normally distributed. Note that all values of skewness and kurtosis are negative, suggesting left skewness and a less peaky distribution than the normal.

[image: Images]

Fig. 2.2 Time series of daily average temperatures for Vilnius. A snapshot of last five years of observations.

Analysis of histograms in all stations confirms the conclusions reached above. In Fig. 2.3, we present the histogram for Vilnius. Clearly, it has a left skewness and no clear peak which is contradictory to normality. In fact, the distribution seems to be bimodal, an implication of winter and summer seasons with cold and warm weather, respectively. We also check for the presence of autocorrelation in the temperatures. In Fig. 2.4, the autocorrelation function (ACF) for temperature is plotted. The strong seasonal variation in the values of the autocorrelations is a clear sign of seasonality in data.

2.3 Wind
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