Advanced Stochastic Models, Risk Assessment, and Portfolio Optimization

The Ideal Risk, Uncertainty, and Performance Measures

SVETLOZAR T. RACHEV STOYAN V. STOYANOV FRANK J. FABOZZI

John Wiley & Sons, Inc.

Advanced Stochastic Models, Risk Assessment, and Portfolio Optimization

THE FRANK J. FABOZZI SERIES

Fixed Income Securities, Second Edition by Frank J. Fabozzi

Focus on Value: A Corporate and Investor Guide to Wealth Creation by James L. Grand and James A. Abater

Handbook of Global Fixed Income Calculations by Dragomir Krgin

Managing a Corporate Bond Portfolio by Leland E. Crabbe and Frank J. Fabozzi

Real Options and Option-Embedded Securities by William T. Moore

Capital Budgeting: Theory and Practice by Pamela P. Peterson and Frank J. Fabozzi

The Exchange-Traded Funds Manual by Gary L. Gastineau

Professional Perspectives on Fixed Income Portfolio Management, Volume 3 edited by Frank J. Fabozzi

Investing in Emerging Fixed Income Markets edited by Frank J. Fabozzi and Efstathia Pilarinu

Handbook of Alternative Assests by Mark J. P. Anson

The Exchange-Trade Funds Manual by Gary L. Gastineau

The Global Money Markets by Frank J. Fabozzi, Steven V. Mann, and Moorad Choudhry

The Handbook of Financial Instruments edited by Frank J. Fabozzi

Collateralized Debt Obligations: Structures and Analysis by Laurie S. Goodman and Frank J. Fabozzi Interest Rate, Term Structure, and Valuation Modeling edited by Frank J. Fabozzi

Investment Performance Measurement by Bruce J. Feibel

The Handbook of Equity Style Management edited by T. Daniel Coggin and Frank J. Fabozzi

The Theory and Practice of Investment Management edited by Frank J. Fabozzi and Harry M. Markowitz Foundations of Economics Value Added: Second Edition by James L. Grant

Financial Management and Analysis: Second Edition by Frank J. Fabozzi and Pamela P. Peterson

Measuring and Controlling Interest Rate and Credit Risk: Second Edition by Frank J. Fabozzi, Steven V. Mann, and Moorad Choudhry

Professional Perspectives on Fixed Income Portfolio Management, Volume 4 edited by Frank J. Fabozzi

The Handbook of European Fixed Income Securities edited by Frank J. Fabozzi and Moorad Choudhry The Handbook of European Structured Financial Products edited by Frank J. Fabozzi and Moorad

Choudhry

The Mathematics of Financial Modeling and Investment Management by Sergio M. Focardi and Frank J. Fabozzi

Short Selling: Strategies, Risk and Rewards edited by Frank J. Fabozzi

The Real Estate Investment Handbook by G. Timothy Haight and Daniel Singer

Market Neutral: Strategies edited by Bruce I. Jacobs and Kenneth N. Levy

Securities Finance: Securities Lending and Repurchase Agreements edited by Frank J. Fabozzi and Steven V. Mann

Fat-Tailed and Skewed Asset Return Distributions by Svetlozar T. Rachev, Christian Menn, and Frank J. Fabozzi

Financial Modeling of the Equity Market: From CAPM to Cointegration by Frank J. Fabozzi, Sergio M. Focardi, and Petter N. Kolm

Advanced Bond Portfolio management: Best Practices in Modeling and Strategies edited by Frank J. Fabozzi, Lionel Martellini, and Philippe Priaulet

Analysis of Financial Statements, Second Edition by Pamela P. Peterson and Frank J. Fabozzi

Collateralized Debt Obligations: Structures and Analysis, Second Edition by Douglas J. Lucas, Laurie S. Goodman, and Frank J. Fabozzi

Handbook of Alternative Assets, Second Edition by Mark J. P. Anson

Introduction to Structured Finance by Frank J. Fabozzi, Henry A. Davis, and Moorad Choudhry

Financial Econometrics by Svetlozar T. Rachev, Stefan Mittnik, Frank J. Fabozzi, Sergio M. Focardi, and Teo Jasic

Developments in Collateralized Debt Obligations: New Products and Insights by Douglas J. Lucas, Laurie S. Goodman, Frank J. Fabozzi, and Rebecca J. Manning

Robust Portfolio Optimization and Management by Frank J. Fabozzi, Peter N. Kolm, Dessislava A. Pachamanova, and Sergio M. Focardi

- Advanced Stochastic Models, Risk Assessment, and Portfolio Optimization by Svetlozar T. Rachev, Stoyan V. Stoyanov, and Frank J. Fabozzi
- How to Select Investment Managers and Evalute Performance by G. Timothy Haight, Stephen O. Morrell, and Glenn E. Ross
- *Bayesian Methods in Finance* by Svetlozar T. Rachev, John S. J. Hsu, Biliana S. Bagasheva, and Frank J. Fabozzi

Advanced Stochastic Models, Risk Assessment, and Portfolio Optimization

The Ideal Risk, Uncertainty, and Performance Measures

SVETLOZAR T. RACHEV STOYAN V. STOYANOV FRANK J. FABOZZI

John Wiley & Sons, Inc.

Copyright © 2008 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the Web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993, or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. For more information about Wiley products, visit our Web site at www.wiley.com.

ISBN: 978-0-470-05316-4

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

STR

To my children, Boryana and Vladimir

SVS

To my parents, Veselin and Evgeniya Kolevi, and my brother, Pavel Stoyanov

FJF

To the memory of my parents, Josephine and Alfonso Fabozzi

Contents

Preface			XIII
Acknowl	edgment	S	XV
About the	e Author	\$	xvii
CHAPTER Conce	1 pts of Pro	obability	1
1.1	Introdu	action	1
1.2	Basic C	Concepts	2
1.3	Discret	e Probability Distributions	2
	1.3.1	Bernoulli Distribution	3
	1.3.2	Binomial Distribution	3
	1.3.3	Poisson Distribution	4
1.4	Contin	uous Probability Distributions	5
	1.4.1	Probability Distribution Function, Probability	
		Density Function, and Cumulative Distribution	
		Function	5
	1.4.2	The Normal Distribution	8
	1.4.3	Exponential Distribution	10
	1.4.4	Student's <i>t</i> -distribution	11
	1.4.5	Extreme Value Distribution	12
	1.4.6	Generalized Extreme Value Distribution	12
1.5	Statisti	cal Moments and Quantiles	13
	1.5.1	Location	13
	1.5.2	Dispersion	13
	1.5.3	Asymmetry	13
	1.5.4	Concentration in Tails	14
	1.5.5	Statistical Moments	14
	1.5.6	Quantiles	16
	1.5.7	Sample Moments	16
1.6	Joint P	robability Distributions	17
	1.6.1	Conditional Probability	18
	1.6.2	Definition of Joint Probability Distributions	19

	1.6.3	Marginal Distributions	19
	1.6.4	Dependence of Random Variables	20
	1.6.5	Covariance and Correlation	20
	1.6.6	Multivariate Normal Distribution	21
	1.6.7	Elliptical Distributions	23
	1.6.8	Copula Functions	25
1.7	Probab	oilistic Inequalities	30
	1.7.1	Chebyshev's Inequality	30
	1.7.2	Fréchet-Hoeffding Inequality	31
1.8	Summa	ary	32

CHAPTER 2 Optimization

35

61

Tartan da		25
Introdu	iction	33
Uncons	strained Optimization	36
2.2.1	Minima and Maxima of a Differentiable	
	Function	37
2.2.2	Convex Functions	40
2.2.3	Quasiconvex Functions	46
Constrained Optimization		48
2.3.1	Lagrange Multipliers	49
2.3.2	Convex Programming	52
2.3.3	Linear Programming	55
2.3.4	Quadratic Programming	57
Summary		
	Introdu Uncons 2.2.1 2.2.2 2.2.3 Constr 2.3.1 2.3.2 2.3.3 2.3.4 Summa	Introduction Unconstrained Optimization 2.2.1 Minima and Maxima of a Differentiable Function 2.2.2 Convex Functions 2.2.3 Quasiconvex Functions Constrained Optimization 2.3.1 Lagrange Multipliers 2.3.2 Convex Programming 2.3.3 Linear Programming 2.3.4 Quadratic Programming Summary

CHAPTER 3 Probability Metrics

			•.
3.1	Introdu	61	
3.2	Measu	ring Distances: The Discrete Case	62
	3.2.1	Sets of Characteristics	63
	3.2.2	Distribution Functions	64
	3.2.3	Joint Distribution	68
3.3	Primar	y, Simple, and Compound Metrics	72
	3.3.1	Axiomatic Construction	73
	3.3.2	Primary Metrics	74
	3.3.3	Simple Metrics	75
	3.3.4	Compound Metrics	84
	3.3.5	Minimal and Maximal Metrics	86
3.4	Summa	ary	90
3.5	Techni	cal Appendix	90

	3.5.1	Remarks on the Axiomatic Construction of	
		Probability Metrics	91
	3.5.2	Examples of Probability Distances	94
	3.5.3	Minimal and Maximal Distances	99
CHAPTER 4	4		
ideal P	robability	y Metrics	103
4.1	Introdu	uction	103
4.2	The Cl	assical Central Limit Theorem	105
	4.2.1	The Binomial Approximation to the Normal	
		Distribution	105
	4.2.2	The General Case	112
	4.2.3	Estimating the Distance from the Limit	
		Distribution	118
4.3	The Ge	eneralized Central Limit Theorem	120
	4.3.1	Stable Distributions	120
	4.3.2	Modeling Financial Assets with Stable	
		Distributions	122
4.4	Constr	uction of Ideal Probability Metrics	124
	4.4.1	Definition	125
	4.4.2	Examples	126
4.5	Summa	ary	131
4.6	Techni	cal Appendix	131
	4.6.1	The CLT Conditions	131
	4.6.2	Remarks on Ideal Metrics	133
	5		

CHAPTER 5 **Choice under Uncertainty**

Choice	under U	ncertainty	139
5.1	Introdu	action	139
5.2	Expect	ed Utility Theory	141
	5.2.1	St. Petersburg Paradox	141
	5.2.2	The von Neumann-Morgenstern Expected	
		Utility Theory	143
	5.2.3	Types of Utility Functions	145
5.3	Stocha	stic Dominance	147
	5.3.1	First-Order Stochastic Dominance	148
	5.3.2	Second-Order Stochastic Dominance	149
	5.3.3	Rothschild-Stiglitz Stochastic Dominance	150
	5.3.4	Third-Order Stochastic Dominance	152
	5.3.5	Efficient Sets and the Portfolio Choice Problem	154
	5.3.6	Return versus Payoff	154

5.4 5.5 5.6	Probab Summa Technie 5.6.1 5.6.2 5.6.3	wility Metrics and Stochastic Dominance ary cal Appendix The Axioms of Choice Stochastic Dominance Relations of Order <i>n</i> Return versus Payoff and Stochastic Dominance	157 161 161 161 163 164
РИЛПТЕР	5.6.4	Other Stochastic Dominance Relations	166
Risk a	o nd Uncert	tainty	171
6.1	Introdu	action	171
6.2	Measu	res of Dispersion	174
	6.2.1	Standard Deviation	174
	6.2.2	Mean Absolute Deviation	176
	6.2.3	Semistandard Deviation	177
	6.2.4	Axiomatic Description	178
	6.2.5	Deviation Measures	179
6.3	Probab	ility Metrics and Dispersion Measures	180
6.4	Measu	res of Risk	181
	6.4.1	Value-at-Risk	182
	6.4.2	Computing Portfolio VaR in Practice	186
	6.4.3	Backtesting of VaR	192
	6.4.4	Coherent Risk Measures	194
6.5	Risk M	leasures and Dispersion Measures	198
6.6	Risk M	leasures and Stochastic Orders	199
6.7	Summa	ary	200
6.8	Techni	cal Appendix	201
	6.8.1	Convex Risk Measures	201
	6.8.2	Probability Metrics and Deviation Measures	202

CHAPTER 7 Average Value-at-Risk

207

7.1	Introduction	207
7.2	Average Value-at-Risk	208
7.3	AVaR Estimation from a Sample	214
7.4	Computing Portfolio AVaR in Practice	216
	7.4.1 The Multivariate Normal Assumption	216
	7.4.2 The Historical Method	217
	7.4.3 The Hybrid Method	217
	7.4.4 The Monte Carlo Method	218
7.5	Backtesting of AVaR	220

7.6	Spectral Risk Measures		222
7.7	Risk M	leasures and Probability Metrics	224
7.8	Summa	iry	227
7.9	Techni	cal Appendix	227
	7.9.1	Characteristics of Conditional Loss	
		Distributions	228
	7.9.2	Higher-Order AVaR	230
	7.9.3	The Minimization Formula for AVaR	232
	7.9.4	AVaR for Stable Distributions	235
	7.9.5	ETL versus AVaR	236
	7.9.6	Remarks on Spectral Risk Measures	241

CHAPTER 8

Optimal Portfolios

245

287

8.1	Introdu	action	245
8.2	Mean-	Variance Analysis	247
	8.2.1	Mean-Variance Optimization Problems	247
	8.2.2	The Mean-Variance Efficient Frontier	251
	8.2.3	Mean-Variance Analysis and SSD	254
	8.2.4	Adding a Risk-Free Asset	256
8.3	Mean-	Risk Analysis	258
	8.3.1	Mean-Risk Optimization Problems	259
	8.3.2	The Mean-Risk Efficient Frontier	262
	8.3.3	Mean-Risk Analysis and SSD	266
	8.3.4	Risk versus Dispersion Measures	267
8.4	Summa	ary	274
8.5	Techni	cal Appendix	274
	8.5.1	Types of Constraints	274
	8.5.2	Quadratic Approximations to Utility Functions	276
	8.5.3	Solving Mean-Variance Problems in Practice	278
	8.5.4	Solving Mean-Risk Problems in Practice	279
	8.5.5	Reward-Risk Analysis	281

CHAPTER 9

Benchmark Tracking Problems

9.1	Introduction	287
9.2	The Tracking Error Problem	288
9.3	Relation to Probability Metrics	292
9.4	Examples of r.d. Metrics	296
9.5	Numerical Example	300
9.6	Summary	304

9.7	Technie	cal Appendix	304
	9.7.1	Deviation Measures and r.d. Metrics	305
	9.7.2	Remarks on the Axioms	305
	9.7.3	Minimal r.d. Metrics	307
	9.7.4	Limit Cases of $\mathcal{L}_p^*(X, Y)$ and $\Theta_p^*(X, Y)$	310
	9.7.5	Computing r.d. Metrics in Practice	311
CHAPTER	10		
Perfor	mance M	easures	317
10.1	Introdu	iction	317
10.2	Reward	1-to-Risk Ratios	318
	10.2.1	RR Ratios and the Efficient Portfolios	320
	10.2.2	Limitations in the Application of	
		Reward-to-Risk Ratios	324
	10.2.3	The STARR	325
	10.2.4	The Sortino Ratio	329
	10.2.5	The Sortino-Satchell Ratio	330
	10.2.6	A One-Sided Variability Ratio	331
	10.2.7	The Rachev Ratio	332
10.3	Reward	l-to-Variability Ratios	333
	10.3.1	RV Ratios and the Efficient Portfolios	335
	10.3.2	The Sharpe Ratio	337
	10.3.3	The Capital Market Line and the Sharpe Ratio	340
10.4	Summa	ry	343
10.5	Technie	cal Appendix	343
	10.5.1	Extensions of STARR	343
	10.5.2	Quasiconcave Performance Measures	345
	10.5.3	The Capital Market Line and Quasiconcave	
		Ratios	353
	10.5.4	Nonquasiconcave Performance Measures	356
	10.5.5	Probability Metrics and Performance Measures	357

Index

Preface

M odern portfolio theory, as pioneered in the 1950s by Harry Markowitz, is well adopted by the financial community. In spite of the fundamental shortcomings of mean-variance analysis, it remains a basic tool in the industry.

Since the 1990s, significant progress has been made in developing the concept of a risk measure from both a theoretical and a practical viewpoint. This notion has evolved into a materially different form from the original idea behind mean-variance analysis. As a consequence, the distinction between risk and uncertainty, which translates into a distinction between a risk measure and a dispersion measure, offers a new way of looking at the problem of optimal portfolio selection.

As concepts develop, other tools become appropriate to exploring evolved ideas than existing techniques. In applied finance, these tools are being imported from mathematics. That said, we believe that probability metrics, which is a field in probability theory, will turn out to be well-positioned for the study and further development of the quantitative aspects of risk and uncertainty. Going one step further, we make a parallel. In the theory of probability metrics, there exists a concept known as an *ideal probability metric*. This is a quantity best suited for the study of a given approximation problem in probability or stochastic processes. We believe that the ideas behind this concept can be borrowed and applied in the field of asset management to construct an *ideal risk measure* that would be ideal for a given optimal portfolio selection problem.

The development of probability metrics as a branch of probability theory started in the 1950s, even though its basic ideas were used during the first half of the 20th century. Its application to problems is connected with this fundamental question: "Is the proposed stochastic model a satisfactory approximation to the real model and, if so, within what limits?" In finance, we assume a stochastic model for asset return distributions and, in order to estimate portfolio risk, we sample from the fitted distribution. Then we use the generated simulations to evaluate the portfolio positions and, finally, to calculate portfolio risk. In this context, there are two issues arising on two different levels. First, the assumed stochastic model should be close to the empirical data. That is, we need a realistic model in the first place. Second, the generated scenarios should be sufficiently many in order to represent a