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Foreword

The active quest to endow machines with human abilities has been a feature of
modern times. The ultimate goal of creating an artificially intelligent and autono-
mous entity has been approached through many intermediate steps by providing
human-like functionality in a myriad of applications, including industrial automa-
tion, health care and security. A chief biological function that has been pursued is
that of analysing and understanding visual information. Advances in image pro-
cessing and computer vision have been adopted in a range of applications and have
transformed what is possible to be done automatically and without the need for
human visual intervention. In certain applications, machine capabilities have even
surpassed what humans can do. However, while in some of these limited cases they
have outstripped the human capabilities in terms of scale and speed, there are still
areas where humans have the edge and, therefore, the search for better approaches
and algorithms for image understanding continues.

At the same time, a better understanding of the emergence of biological systems,
including humans, has drawn the designers of machine vision systems to try to learn
from Nature. Through a very long process, spanning millennia, the Nature’s own
search for effective autonomous entities has resulted in efficient and effective
mechanisms for understanding and interacting with the world. Scientists and
designers are now learning from the fruits of Nature’s long labour to expedite the
development of artificial systems.

This volume brings together some of these naturally inspired approaches for
image understanding in one place and also provides a sample of the vast array of
applications to which they can be applied. For the reader new to these approaches, it
will provide a good starting point and for the more advanced algorithm designers, it
may suggest new ideas that they have not considered before.
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The deep and vast experience of Nature is a great resource for engineers and
designers in their quest for novel solutions to the current and emerging challenges
that face humanity. It is hoped that this book will contribute to this quest and
strengthens the case for the continued study of Nature in search of new insights.

Canterbury, UK Farzin Deravi, CEng, FIET
August 2018 Professor of Information Engineering

Head of School of Engineering & Digital Arts
University of Kent
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Preface

This edited book is one of the significant contributions in the field of intelligent
systems for practical applications. This book is interdisciplinary with a wide cov-
erage of topics from nature-inspired optimization techniques and image processing
applications. The main objective of this book is to highlight the state-of-the-art
methods in these interdisciplinary areas to the researchers and academicians.
Variety of practical applications are covered in this book which can assist the
budding researcher to choose his own area of research. This book also covers
in-depth analysis of the methods which will attract high-end researchers to further
explore or innovate in these areas. In a nutshell, this book is a complete product for
usage by anyone working in the areas of intelligent systems. A brief introduction
about each chapter is as follows.

Chapter 1 illustrates the application of firefly optimization algorithm for brain
image analysis. Specifically, the methodology of CT and MRI brain image seg-
mentation is analysed in detail. Chapter 2 deals with image compression using bat
optimization techniques. An in-depth analysis of codebook generation for image
compression is analysed which will attract the readers. Chapter 3 deals with natural
language processing using particle swarm optimization methods. Few modified
swarm approaches are suggested in this chapter for efficient categorization of
alphabets in languages. The proposed approach is tested with Tamil language but
can be extended to different languages across the globe.

Chapter 4 covers the application of grey wolf optimization algorithm for image
steganography applications. Feature optimization for efficient data hiding is the
main objective of the work covered in this chapter. Literature survey is one critical
area of research which will attract several readers. With this idea, a detailed survey
on nature-inspired techniques for image processing applications is dealt in Chap. 5.
The application for ant colony optimization for visual cryptography is discussed in
Chap. 6. The primary focus of this work is image enhancement which can assist in
developing efficient cryptographic systems. Qualitative and quantitative analyses
are covered in this chapter which is more beneficial to the readers.
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The necessity of image analysis methods is significantly increasing in the area of
agriculture. The application of swarm intelligence techniques for detecting the
quality of crops via images is illustrated in Chap. 7. Analysing the quality of
different stages of wheat is the main focus of this chapter. Chapter 8 discusses the
various concepts of image preprocessing using cuckoo search optimization tech-
niques. Different types of input images are used in this chapter to validate the
proposed methodology. Automatic skin disease identification in mango fruits using
artificial bee colony algorithm is the focus of Chap. 9. The optimization algorithm is
used to select the optimal features for skin classification in this chapter.

Chapter 10 covers the different optimization techniques for fixing the structure
of the complex deep convolutional neural networks. An efficient architecture will
enhance the performance of any automated system. Chapter 11 deals with the
application of differential evolution method for quality enhancement in underwater
images. Chapter 12 covers the application of genetic algorithm for biometrics
application. Fetal biometrics-based abnormality detection is the prime focus of this
chapter.

We are grateful to the authors and reviewers for their excellent contributions for
making this book possible.

Our special thanks go to Janus Kacprzyk and Lakhmi C. Jain (Series Editors to
Intelligent Systems Reference Library) for the opportunity to organize this
guest-edited volume.

We are grateful to Springer, especially to Dr. Thomas Ditzinger (Senior Editor)
for the excellent collaboration.

We would like to express our gratitude and thanks to Handling Editor Ms.
Rajalakshmi Narayanan, Springer, Chennai and her team for their wholehearted
editorial support and assistance while preparing the manuscript.

This edited book covers the fundamental concepts and application areas in detail
which is one of the main advantages of this book. Being an interdisciplinary book,
we hope it will be useful to a wide variety of readers and will provide useful
information to professors, researchers and graduated, and all will find this collection
of papers inspiring, informative and useful.

Coimbatore, India Jude Hemanth
Arad, Romania Valentina Emilia Balas
August 2018
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Chapter 1
Firefly Optimization Based Improved
Fuzzy Clustering for CT/MR Image
Segmentation

S. N. Kumar, A. Lenin Fred, H. Ajay Kumar
and P. Sebastin Varghese

Abstract The segmentation is the process of extraction of the desired region of
interest. In medical images, the anatomical organs and anomalies like a tumor,
cysts, etc. are of importance for the diagnosis of diseases by physicians for tele-
medicine applications. The thresholding, region growing, and edge detection are
termed as classical segmentation algorithms. Clustering is an unsupervised learning
technique to group similar data points and fuzzy partitioning merges similar pixels
based on the fuzzy membership value. The classical FCM algorithm lacks sensi-
tivity in the cluster centroid initialization and often gets trapped in local minima.
The optimization algorithm gains its importance in cluster centroids initialization,
thereby improving the efficiency of FCM algorithm. In this work, firefly opti-
mization is coupled with FCM algorithm for CT/MR medical image segmentation.
Fireflies are insects having a natural capacity to illumine in dark with glowing and
flickering lights and firefly optimization algorithm was modeled based on its bio-
logical traits. The preprocessing stage comprises of artifacts removal and denoising
by Nonlinear Tensor Diffusion (NLTD) filter. The computation time was minimized
by reducing the total pixels count for the processing. The Firefly optimization, when
coupled with FCM, generates satisfactory results inconsistent with FCM when
coupled with Cuckoo, Artificial Bee Colony, and Simulated annealing algorithms.
The cluster validity performance metrics are used for the determination of optimum
number of clusters. The algorithms are developed in Matlab 2010a and tested on
real-time abdomen datasets.
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1.1 Introduction

Medical image processing refers to the application of computer-aided algorithms
for the extraction of anatomical organs and analysis of anomalies like a tumor, cyst,
etc. The various steps in image processing are restoration, enhancement, segmen-
tation, classification, and compression. The segmentation can be defined as the
extraction of Region of Interest (ROI). The Computer Tomography (CT), Magnetic
Resonance Imaging (MRI), Ultrasound and Positron Emission Tomography
(PET) are the widely used medical imaging modalities for the disease diagnosis.
The choice of segmentation algorithm depends on the medical imaging modality
and its characteristics.

The CT images, in general, are corrupted by Gaussian noise and its distribution
is as follows.

pðzÞ ¼ 1ffiffiffi
2

p
pr

e�ðx�lÞ2=2r2

where x represents random variable normally distributed with mean l and standard
deviation r.

The MR images are corrupted by rician noise, artifacts and intensity inhomo-
geneity due to the non-uniform response of RF coil. The rician noise distribution is
as follows

pðzÞ ¼ z
r2

exp � z2 þ I2

2r2

� �
B

za
r2

� �

where, I is the true intensity value, r is the standard deviation of the noise, and B is
the modified zeroth order Bessel function.

The Ultrasound images, in general, are corrupted by speckle noise and its dis-
tribution is as follows.

FðxÞ ¼ gc�1

c� 1ð Þ!ac e
g
a

� �

where, a is the variance, c is the shape parameter of gamma distribution and g is the
gray level.

Prior to segmentation, the preprocessing was performed by appropriate filtering
technique; Filter selection is based on the medical imaging modality and noise
characteristics. The role of preprocessing is inevitable in signal and image
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processing for subsequent operations like segmentation and classification [1, 2].
The segmentation algorithms can be categorized based on the generation of evo-
lution and are depicted in Fig. 1.1.

Image segmentation is the process of grouping the pixels of an image to form
meaningful regions. Medical image segmentation is the visualization of the region
of interest such as anatomical structures and anomalies like tumor, cyst, etc. for
medical applications such as diagnostics, therapeutic planning, and guidance. Lay
Khoon Lee et al. performed a review on different types of segmentation algorithms
for medical imaging modalities like X-ray, CT, MRI, 3D MRI and Ultrasound [3].
Similarly, S. N. Kumar et al. performed a detailed study on the different generation
of the medical image segmentation techniques; qualitative and quantitative analysis
was performed for the widely used medical image segmentation algorithms [4].
Neeraj Sharma et al. state the necessity of automated medical image segmentation
technique in diagnosis, and radiotherapy planning in medical images and also
explained the limitations of the existing segmentation algorithms [5]. The thresh-
olding is a simple and classical technique that separates the foreground and
background regions in an image based on the threshold value. The multilevel
thresholding eliminates the discrepancy of the bi-level thresholding that uses a
single threshold value. The optimization techniques when employed in the multi-
level thresholding yield efficient results, since it provides the proper choice of
threshold values. The 3D Otsu thresholding was found to be efficient for MR brain
images; better results were produced than bi-level and multithresholding techniques
[6]. Among the region based approaches, the classical region growing is the
semi-automatic segmentation technique that relies on the seed point selection [6].
The multiple-seed point based region growing for brain segmentation was found to
be effective on a multi-core CPU computer [7]. The manual seed point selection can
be replaced by the deployment of the optimization algorithm for yielding efficient
results [8]. The edge detection traces the boundary of objects in an image and
among the classical edge detector, canny produces better results [9]. The Markov
basics and Laplace filter were coupled to form an edge detection model that gives
better results for medical images than the classical techniques [10]. The teaching

Segmentation
Algorithms

First Generation :
Thresholding

Region Growing
Edge based methods

Second Generation:
Deformable, 

Clustering, Watershed,
Markov Random 
Field techniques

Third Generation :
Classifier,

Graph Guided,
Atlas , Hybrid 

approaches

Fig. 1.1 Classification of segmentation algorithms
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learning-based optimization was found to be effective for medical image edge
detection than the classical edge detectors [11]. The interactive medical image
segmentation algorithms are discussed in [12]. J. Senthilnath et al. did a perfor-
mance study on nature-inspired firefly optimization algorithm in the thirteen
benchmark classification datasets [13]. Superior results were produced when
compared with classical techniques like Particle Swarm Optimization (PSO), Bayes
net, Multilayer Perceptron, Radial Basis Function Neural Network, KStar, Bagging,
MultiBoost, Naive Bayes Tree, Ripple Down Rule, Voting Feature Interval.

Iztok Fister et al. made a detailed analysis of the types of firefly algorithm for
engineering applications in solving the real world challenges [14]. Hui Wang et al.
proposed a modification in the parameter of classical firefly algorithm to reduce the
complexity of the algorithm [15]. The proposed adaptive firefly algorithm generates
better solution when compared with standard Firefly Algorithm, Variable step size
Firefly Algorithm (VSSFA), Wise step strategy Firefly Algorithm (WSSFA),
Memetic Firefly Algorithm (MFA), Firefly Algorithm with chaos and Firefly
Algorithm with random attraction. Mutasem K et al. proposed a hybrid technique
comprising of the Fuzzy C-Means algorithm with Firefly algorithm for the seg-
mentation of brain tumor [16]. The experimental analysis was carried out on 181
brain images obtained from brain-web Simulated Brain Database (SBD) repository;
robust results were produced when compared with Dynamic clustering algorithm
based on the hybridization of Harmony Search and Fuzzy Variable String Length
Genetic Point symmetry techniques. K. Vennila et al. proposed multilevel Otsu
image segmentation based on Firefly optimization and good results were obtained
in terms of PSNR, computation cost and mean value when compared with
Darwinian Particle Swarm Optimization [17]. Cholavendhan Selvaraj et al. made a
detailed survey of the bio-inspired optimization algorithms such as Ant Colony
Optimization, Particle Swarm optimization, Artificial Bee Colony algorithm and
their hybridizations [18].

The summarization of results reflects the status of the optimization techniques in
solving the wide range of engineering problems. In the medical image processing,
the FCM plays a major role in the clustering and classification of the image for the
analysis, diagnosis, and recognition of anomalies [19]. Janmenjoy Nayak et al.
performed a survey on major modification and advancement in the classical FCM
algorithm and their applications towards the image analysis [20]. Chih Chin Lai
et al. proposed a hierarchical evolutionary algorithm based on genetic algorithm for
the segmentation of skull images which enhances the diagnostic efficiency than the
dynamic thresholding, Competitive Hopfield Neural Networks (CHNN), K-Means
and Fuzzy C-Means algorithms [21].

Emrah Hancer et al. proposed a methodology for the segmentation of brain
tumor in the MRI images by using artificial bee colony algorithm. Efficient results
were produced when compared with K-Means, FCM, and Genetic Algorithm based
image segmentation techniques [22]. The FCM, when coupled with PSO was found
to be effective for the segmentation of noisy images when compared with K-means,
Enhanced FCM, and Fast Global Fuzzy Clustering techniques [23].
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The Convolution Neural Network (CNN) was employed for the automatic
segmentation of MR brain images, multiple convolution kernels of varying size was
used for the generation of accurate results [24]. The CNN with multiple kernels of
smaller size was used for the efficient brain tumor segmentation in MR images [25].
The Deep Learning Neural Network (DLNN) gains its importance in attenuation
correction of PET/MR images [26]. The DLNN along with deformable model was
proposed for the automatic segmentation of left ventricle in cardiac MR images
[27]. The Deep Convolution Neural Network (DCNN) along with the 3D
deformable model generates good segmentation results for the extraction of tissues
in musculoskeletal MR images [28]. Vijay Badrinarayanan et al. proposed SegNet,
a novel DCNN architecture for semantic pixel-wise segmentation [29]. In this
chapter, firefly optimization algorithm was coupled with FCM for CT/MR medical
image segmentation. The preprocessing stage comprises of artifacts removal and
denoising by Non-Linear Tensor Diffusion (NLTD) filter. The computation com-
plexity of the algorithm was minimized by sampling the total pixel count for
manipulation. The Cluster Validity Indexes (CVI’s) are used for the validation of
results to determine the optimum number of clusters.

1.2 Materials and Methods

1.2.1 Data Acquisition

The real-time abdomen CT data sets are used in this work for the analysis of
algorithms. The images are acquired from Optima CT machine with a slice
thickness of 3 mm. The images in DICOM format with a size of 512 � 512 are
used in this work. The Metro Scans and Research Laboratory approved the study of
human datasets for research purpose. The five abdomen CT data sets, each com-
prising of 200 slices are used in this work. The results of typical slice from each
dataset are depicted here.

1.2.2 Fuzzy C Means Clustering

In this chapter, the Fuzzy c-means Clustering algorithm coupled with optimization
technique was proposed for the segmentation of medical images. In the perspective
of image processing, clustering is defined as the grouping of pixels into a cluster
which is similar between them, while dissimilar pixels belong to other clusters. The
concept of clustering is depicted below in Fig. 1.2. The clustering algorithms can be
classified into two groups; Supervised and Unsupervised. The requirement of prior
knowledge termed as training samples is the key concept of the supervised clas-
sifier. Artificial Neural Network (ANN), Naive Bayes Classifier, and Support
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Vector Machine are some of the widely used supervised algorithms. The unsu-
pervised technique doesn’t need any prior information and is particularly well
suited for huge unlabeled datasets. The unsupervised clustering techniques can be
further classified into two categories; hierarchical and partitional. The role of par-
titional clustering is prominent in image analysis and pattern recognition. The
K-means and Fuzzy c-means (FCM) are well-known partition clustering algo-
rithms. The K- means clustering is termed as Crisp (hard) since the objects are
assigned to only one cluster. The FCM clustering is termed as soft (Fuzzy) since an
object can be accommodated in more than one cluster based on the fuzzy mem-
bership value.

The FCM overcomes the issues of classical K-means clustering; since the data
can belongs to more than one cluster. The FCM was developed by Dunn [30] and
modified by Hathaway and Bezdek [31] which was widely used for pattern clas-
sification. FCM is an unsupervised algorithm based on the minimization of the
objective function.

Jm ¼
XN
i¼1

XC
j¼1

Um
ij yi � cj
�� ��2; 1� f\1

The pixels are grouped into clusters in such a manner that, the intracluster
similarity is maximized and the intracluster similarity is minimized.

The fuzzy partition represents the fuzzy membership matrix of the pixel in the
cluster. The parameter Uij represents the fuzzy membership of the ith object (pixel)
in the jth cluster. The parameter ‘f’ depicts weighting exponent that determines the
degree of fuzziness for the fuzzy membership function. The fuzzy classification is
based on the iterative optimization of the objective function depicted above with the
updation of membership function uij and the cluster center cj as follows.

Fig. 1.2 Principle of clustering
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Uij ¼ 1

PC
K¼1

yi�cjk k
yj�ckk k

� � 2
f�1

cj ¼
PN

i¼1 U
f
ij � yiPN

i¼1 U
f
ij

The iterative calculation is terminated, when maxij uðkþ 1Þ
ij � uðkÞij

��� ���n o
\d, where

d is a termination criterion between 0 and 1, and k represents the iteration count.
The convergence of the algorithm occurs when the objective function (Jm) attains
local minima or saddle point.

The steps in FCM clustering algorithm are summarized as follows

1. Initialise U ¼ ½Uij�matrix;Uð0Þ

2. At kth step: Calculate the cluster center vector CðkÞ ¼ cj
	 


withUðkÞ

cj ¼
PM

i¼1 U
m
ij � xiPM

i¼1 U
m
ij

3. Update UðkÞ;Uðkþ 1Þ

Uij ¼ 1

PC
K¼1

xi�cjk k
xj�ckk k

� � 2
m�1

4. If Uðkþ 1Þ � UðkÞ�� ��\d; then Stop; otherwise return to step 2:

The operating principle of FCM is based on the fact that, the minimization of the
objective function ends up with the solution. In many real-time cases, classical
FCM stuck into local minima. The optimization algorithm can be employed to
achieve global minima. The parameter selection is vital for optimization algorithms
and it influences the performance of the algorithm to maximize or minimize the
objective function subjecting to certain constraints. The cluster centers are ran-
domly initialized by classical FCM, hence the optimization based clustering solves
this problem. The cluster centers generated by the optimization technique is utilized
by the FCM for image segmentation. The pixels in the image are mapped into the
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particular cluster based on similarity and distance. The initialization of the cluster
centers by optimization improves the performance in terms of the convergence rate,
computation complexity, and segmentation accuracy.

1.2.3 Firefly Optimization Algorithm

In this chapter, the performance of firefly optimization in the FCM algorithm was
analyzed for the estimation of optimal cluster center values for image segmentation.
The biological trait of the firefly is the motivation for Yang [32] to propose an
optimization technique. The rhythmic flashes generated by the firefly was used as a
mode of communication between them to search for prey and for mating. More than
2000 species of fireflies are there in the world and they have natural characteristics
to create illumination in the dark with flickering and glowing lights. Fister et al.
found that the attraction capacity of the fireflies is proportional to the brightness
[14]. The fireflies tend to move towards ones which emits a brighter light.

The population-based firefly algorithm was found to generate a global optimal
solution for many engineering problems. The biological chemical substance luci-
ferin present in the body of the fireflies was responsible for flashing the light. The
intensity of light emitted is directly proportional to the discharge of luciferin. The
degree of attraction tends to decrease as the distance between the fireflies increases.
If any firefly fails to discover another firefly which is brighter than itself, it will
travel arbitrarily. The optimization algorithm when employed for clustering appli-
cations, cluster centers are the decision variables and the objective function is
associated with the euclidean distance. Based on the objective function, initially, all
the fireflies will be spread randomly over the search space.

The two stages of firefly algorithm are summarized as follows:
The first stage is based on the difference in the intensity that is associated with

the objective function values. Depending on the nature of the problem that requires
maximization/minimization, a firefly with higher/lower intensity will entice another
individual with higher/lower intensity.

Consider that there are n swarms (fireflies), where Yi signifies the solution of a
firefly i. The fitness value is expressed by f ðYiÞ moreover the current position I of
the fitness value f ðyÞ is estimated by the brightness of a firefly [32].

Ii ¼ f ðyiÞ; 1� i� n

The second stage is the movement towards the firefly with high brightness
intensity. The attraction factor of the firefly is represented by b that indicates the
attraction power of firefly in the swarm and it changes with distance ðRijÞ between
two fireflies i and j at positions Yi and Yj respectively.
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Rij ¼ Yi � Yj
�� �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd

k¼1
Yik � Yjk
� �2r

The attraction function bðRÞ of the firefly is expressed as follows.

bðRÞ ¼ b0e
�cR2

where b0 is the attraction function value for R ¼ 0; c is the coefficient of ingestion
of light.

The pseudo code for firefly optimization algorithm is as follows

Define objective function f(Y), Y=[Y1,Y2,Y3,--------Yd]

Generate initial population of fireflies Yi =[1,2,3-----n] 

Estimate the light intensity of firefly Ii using the objective function  f(Y) 

 Define light absorption coefficient( 

While (t<max generation ) 

            for i=1:n    //all n fireflies 

                  for j=1: n   // all n fireflies 

                               if (Ij > Ii)

                                         Move firefly i towards j in d dimensions. 

                   end if 

                                                // Attraction capacity changes with distance 

                                               //Validate new solutions and update light intensity 

             end for j 

                           end for i 

Estimate the current best by ranking the fireflies 

end while

The motion of a firefly ‘i’ from the position Yi which is attracted towards another
brighter firefly ‘j’ at position Yj is expressed as follows
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Yiðtþ 1Þ ¼ YiðtÞþ bðRÞ Yi � Yj
� �þ a rand � 1

2

� �

Yiðtþ 1Þ ¼ YiðtÞþ b0e
�cR2

Yi � Yj
� �þ a rand � 1

2

� �

where a depicts the maximum radius of the random step. The term rand represents
randomization parameter uniformly distributed between 0 and 1.

There are two special cases

Case i: r ¼ 0, then b ¼ b0e
0 ¼ b0, The air is absolutely clear with no light dis-

persion. The fireflies can see each other; exploration and exploitation is out of
balance.
Case ii: r ¼ 1, then b ¼ I0e�1d2 ¼ 0, The air is foggy with extreme light dis-
persion. The fireflies can’t see each other; exploration and exploitation is out of
balance.

1.2.4 Improved FCM-Firefly Optimization Segmentation
Algorithm

The FCM clustering algorithm proposed here comprises of two stages. In the first
stage, firefly optimization is employed to determine the near-optimal cluster centers.
In the second stage, the cluster centers are used for the initialization of FCM
algorithm. The firefly optimization algorithm makes the clustering an effective tool
for medical image segmentation by eliminating the problem of stucking at local
minima. The firefly optimization is a swarm intelligence based algorithm and hence
it mimics its advantages.

The solution vector is expressed as follows

S ¼ V1 V2 V3

S1; S2; . . .; Si. . .Sd S1; S2; . . .; Si. . .Sd S1; S2; . . .; Si. . .Sd

� �

where Si represents characteristics in numerical form such that Si € S. The ‘S’ depicts
the array representing pixel attribute. Each cluster center Vi is represented by d
numerical features ðS1; S2; . . .SdÞ. Each solution vector is of the size (c � d), where c
indicates given number of clusters and d represents the features of the dataset.

For the delineation of anomalies like tumor or cyst or anatomical organs, each
pixel in the image is mapped into the clustering sector. The cluster centers are
randomly initialized from the image pixel gray values with the randomly initialized
solution vector, the fitness value is determined by the objective function. The
solution vector is then rearranged based on the decreasing order of the objective
function value. The firefly optimization determines near optimal cluster centers
thereby ensuring global minima for FCM algorithm and hence eliminates the
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trapping at local minima. The improved FCM based on firefly optimization replaces
the classical techniques of random initialization.

Prior to filtering, the medical image film artifacts are eliminated by a statistical
technique coupled with convex hull computational geometry [33]. The threshold
value determined by standard deviation technique was used for the binarization of
input image. The binarized image was then subjected to connected component
labeling for the elimination of patient details and technical information. The convex
hull of the resultant image was multiplied with the original image for the generation
of artifacts removed image. The preprocessing of input image was performed by
Non-Linear Tensor Diffusion (NLTD) filter prior to segmentation [34]. The NLTD
ensures good edge preservation since the smoothing is heterogeneous and
non-noisy pixels are not disturbed.

The computation complexity was minimized by reducing the pixel count for the
processing by segmentation algorithm.

Rp ¼ randperm ðLÞ

The parameter Sp represents the pixels taken for optimization, here in this work
50% of the total pixels are taken. The L represents the total pixel count of the image
to be segmented and randperm function returns a row vector depicting a random
permutation of the integers from 1 to n.

Sn ¼ ceil L � Sp
� �

The Sn represents the number of pixels selected for optimization and the function
below represents the subset of pixels chosen for optimization process

X2 ¼ X Rp 1 : Snð Þ; :ð Þ

The optimization of the objective function relies on the brightness and move-
ments of the firefly. The firefly algorithm starts by initializing the population of
fireflies. The intensity of light emitted by the firefly estimates the movement of the
fireflies. The algorithm works in the iterative fashion. The intensity of ith firefly is
compared with the jth firefly as follows

if bðiÞ[ bðjÞ
firefly j move towards firefly i
else
firefly i move towards firefly j

1 Firefly Optimization Based Improved Fuzzy Clustering … 11



The incorporation of firefly algorithm has significantly improved the segmen-
tation results. There were four stages of Improved FCM-Firefly segmentation
algorithm.

i. Initialization phase
ii. Intensity calculation phase
iii. Movement calculation phase
iv. FCM algorithm phase.

The goal of incorporating firefly optimization in FCM is to minimize the
objective function with a global minima value. The cluster centers represent
the decision parameters to minimize the objective function. The initialization of the
firefly population is as follows

yif ¼ yi1; yi2; . . .; yij; . . .yid
	 


2\j\C

Each firefly in the population is represented by using the above equation. Where
yij represents the jth cluster centre.

The population of the fireflies are initialized and randomly distributed in search
space. The position of firefly depicts the possible solution (centroids) for the
clustering problem. In this phase, the parameter like b0; c; a and maximization
iteration are also initialized. Once the initialization process is over, the intensity of
each firefly is determined by estimating the distance between the position of the
firefly and the entire data in the dataset. The minimum distance value among the
population with respect to data from the dataset is considered. The intensity value of
each firefly is determined based on the sum of minimum distance with respect to the
data from the dataset.

The expression for determination of intensity is as follows

bðFFjÞ ¼
Xn
i¼1

di

where FF represents firefly, di represents the minimum distance value for a par-
ticular firefly.

The brightness of the fireflies indicates the movement of the fireflies in the search
space. The intensity of fireflies is compared to determine the new position. The
difference in the brightness triggers the movement. The firefly optimization is
employed in the FCM algorithm to enhance the clustering operation. The new
position of the entire swarm of the fireflies is determined by the FCM operator
based on the current intensity value.

The FCM-Firefly algorithm is carried out through the updation of the mem-
bership value uij and position of the firefly yj using the below equations

12 S. N. Kumar et al.



Uij ¼ 1

Ps
k¼1

yi�fjk k
yi�fkk k

� �2=f�1
; 1� i�N

where Uij depicts the degree of membership of yi in the firefly j, degree of fuzziness
f = 2 and yi is the data associated with the firefly under study.

Fj ¼
PN

i¼1 u
m
ij � xiPN

i¼1 u
m
ij

The Fj represents the solution after applying FCM in the firefly j.
The new position of Firefly is determined and the intensity value is updated. The

fixed number of iterations will be provided and at the end of the iteration, the best
solution was determined.

1.3 Results and Discussion

The algorithms are developed in Matlab 2010a and tested on CT abdomen data sets.
The system specifications are as follows; Intel Core i3 processor of 3.30 GHz with
4 GB RAM. In the scenario of medical image segmentation, fixing the number of
clusters is cumbersome, since it cannot be initialized roughly by viewing the image.
The validation metrics are employed for the optimal cluster selection.

This is performed in 3 steps

i. The parameters of clustering algorithm except the cluster number is fixed.
ii. The cluster number is varied from an initial value of 2 to an upper limit (max).

The data partition is carried out for each cluster number.
iii. The cluster validity indexes are applied on the data partition obtained from the

previous stage for evaluation. Based on the values of CVI’s, the cluster
number selection is done.

The terminologies used in the formulation of cluster validity function are as
follows

N: the count of data objects for clustering
f: the fuzzifier factor that represents the level of cluster fuzziness
u: the ith data object, 1� i�N
P: the number of clusters
Cp: the pth cluster, 1� p�P
Cp

�� ��: the count of data objects in the p-th cluster
Vp: the centroid of the p-th cluster
u� vk k: the distance between a pair of data objects

lip: the membership degree of ui corresponding to Cp.
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The FCM algorithm is an iterative technique in which the pixels are grouped into
a cluster based on the membership degree through the minimization of the objective
function.

XM
i¼1

XP
p¼1

l f
ip ui � Vp

�� ��2; f � 1

The number of the cluster is taken initially P and randomly P centroids are
selected. The objective function represented above is optimized in an iterative
fashion by the updation of lip and Vp as follows

lip ¼
1

PP
j¼1

ui�vpk k2

uj�vck k2

� � 2
f�1

Vp ¼
PN

i¼1 l
f
ipuiPN

i¼1 l
f
ip

The iteration terminates when, UT þ 1 � UTk k\ 2, where UT ¼ lip
	 


represents
the matrix comprising of all lik 0s. T is the number of iteration and 2 is a threshold
specified by the user. The clustering validity metrics are used to estimate the quality
of clustering result. The partition coefficient (PC) and partition entropy (PE) is
based only on the membership values of fuzzy partition dataset. The criteria for
optimum cluster number selection is the maximization of (PC) or minimum of PE.
The issues in the performance metrics, PC or PE is that they do not consider the
geometrical properties of the dataset.

Xie Beni’s index (XBI) and Fukuyama’s and Sugeno’s index (FSI) are also
widely used classical CVI’s. XBI and FSI focus on the characteristics, compactness,
and separation. The numerical part of the expression XBI in Table 1.1 represents
the compactness of fuzzy partition, the denominator part represents the strength of
separation between the cluster for optimal clustering. The value of XBI should be
minimized for optimum cluster number selection. The expression for FSI in
Table 1.1 comprises of two terms. The first term represents the compactness
measure and the second term represents separation measure. Though FSI and XBI
consider the inter-cluster information, geometrical properties are not considered.

The DB index was obtained by the mean of cluster similarities. For each cluster
P, the similarity between P and all other clusters are determined. The term Sp is
represented as follows

Sp ¼ 1
CPj j

X
Ui2Cp

Ui � Vp

�� ��2
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Table 1.2 represents the clustering validity metrics based on compactness and
separation ratio.

The shortcoming of the traditional CVI’s is that they are focusing only on the
distance between the cluster centroids. The classical clustering validity indexes
were not found to be good for large cluster numbers.

The CS index is a function of the cluster diameter and the mean distance
between the cluster centers. The PCAES index is a function of exponential sepa-
ration component, and normalized partition coefficient.

The CH index is based on the mean between and within the sum of squares. The
terms in the CH index are represented as follows

Table 1.1 Classical clustering validation metrics

Cluster validity index Formula

Partition coefficient
(PC) [35, 36]

PC ¼ 1
N

PP
p¼1

PN
i¼1 l

2
ip

Partition entropy (PE) [35,
36]

PE Kð Þ ¼ 1
N

PP
p¼1

PN
i¼1 liplog2 lip

� �
Xie and Beni index
(XBI) [37] XBI Kð Þ ¼

PP

p¼1

PN

i¼1
l2ip ui�vpk k2

N�mini6¼j vi�vjk k2

The Fukuyama and
Sugeno Index (FSI) [37]

FSI Kð Þ ¼ PP
p¼1

PN
i¼1 l

f
ip ui � vp
�� ��2 �PP

p¼1

PN
i¼1 l

f
ip vp � v̂
�� ��2

Table 1.2 Clustering validation metrics based on compactness and separation ratio

Cluster validity index Formula

Calinski-Harabasz index (CHI) [38] CHIðKÞ ¼ BP
P�1 =

Wp

N�P

Silhouette coefficient index (SCI) [38] SCIðPÞ ¼ SC1ðPÞ � SC2ðPÞ
Centroid similarity index (CSI) [38]

CSIðKÞ ¼
PP

p¼1
1
CPj j

P
uj2CP

max
uj 2 Cp

uj�uik k
� �� �
PP

j¼1

min
i 6¼ j

vi�vjk k
Davies Bouldin index (DBI) [38] DBI ¼ 1

P

PP
P¼1 max Sj þ Sp

Vj�Vpkk
Partition coefficient and exponential
separation index (PCAESI) [38]

PCAESI ¼ PP
P¼1

PN
i¼1

liP2

lM
� exp

�min
h 6¼ p

Vp�Vhk k2

bT

0
B@

1
CA

Pakhira-Bandyopadhyay-Maulik
index (PBMFI) [39]

PBMFI ¼
max
j 6¼ lp

Vj�Vpk kf g�PN

i¼1
lil Ui�Vlk k

P
PP

P¼1

PN

i¼1
l f
iK Ui�VKk k

WL index (WLI) [38] WLI ¼ PP
P¼1

PN
i¼1

lilP2 Ui�VPk k2PN

i¼1
liP
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BP ¼
XP
p¼1

CPj j vP � vk k2

WP ¼
XP
p¼1

X
Ui2CP

ui � vp
�� ��2

The SC index is based on the combination of two functions and evaluates the
compactness-separation ratio. The terms in the SC index are represented as follows

SC1ðPÞ ¼
1
P

PP
p¼1 vp � v

�� ��2PP
p¼1

PN
i¼1 l

m
ip ui � vp
�� ��2=PN

i¼1 lip
� �

SC2ðPÞ ¼
PP�1

p¼1

PP
j¼pþ 1

PN
i¼1 min lip; lij

� �2� �
=nij

� �
PN

i¼1

max

1� p�P
l2ip

� �
=

PN
i¼1

max

1� p�P
lip

� �

where SC1 is related with the geometric properties of data; SC2 is related with the
membership degree properties.

The PBMF index is based on the compactness within clusters and a large sep-
aration between clusters. The WL index estimates the compactness of clusters by
taking into account fuzzy weighted distance and the fuzzy cardinality of clusters.
The five abdomen medical data sets are used for the analysis of algorithms. The
cluster number was changed from P = 2 to 6 and for each cluster number, 10 times
the executions are done and the performance metrics are validated.

The expression for lM and bT in PCAES index are as follows

lM ¼ min

1� p�P

XN
i¼1

l2iP

( )

bT ¼ 1
P

XP
P¼1

Vp � �V
�� ��2

The performance metrics of the first run for the data set (ID1) is represented
below in Table 1.3. Each cluster validity metric was represented with ± sign, the
“+” indicates that the CVI value should be high and “−” sign indicates that the CVI
value should be low. The representative input images corresponding to data sets
(ID1 to ID5) after the removal of artifacts are depicted in Fig. 1.3. Figure 1.4
represents the NLTD filtering result. Compared with classical filters like median
filter, Gaussian filter, and bilateral filter, the NLTD filter generates efficient result.
In the median filter, the noise-free pixels are also affected. The edge preservation is
poor in Gaussian and bilateral filter. The performance of Anisotropic Diffusion
Filter (ADF) was clearly stated in [40]. The NLTD filter is an improved version of
ADF, thereby providing promising restoration results. The FCM results when
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