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Introduction 

In the last decade we have witnessed the birth of a fascinating new mathematical 
theory. It is often called by algebraists the theory of quantum groups and by 
topologists quantum topology. These terms, however, seem to be too restrictive 
and do not convey the breadth of this new domain which is closely related to 
the theory of von Neumann algebras, the theory of Hopf algebras, the theory of 
representations of semisimple Lie algebras, the topology of knots, etc. The most 
spectacular achievements in this theory are centered around quantum groups and 
invariants of knots and 3-dimensional manifolds. 

The whole theory has been, to a great extent, inspired by ideas that arose 
in theoretical physics. Among the relevant areas of physics are the theory of 
exactly solvable models of statistical mechanics, the quantum inverse scattering 
method, the quantum theory of angular momentum, 2-dimensional conformal 
field theory, etc. The development of this subject shows once more that physics 
and mathematics intercommunicate and influence each other to the profit of both 
disciplines. 

Three major events have marked the history of this theory. A powerful original 
impetus was the introduction of a new polynomial invariant of classical knots and 
links by V. Jones (1984). This discovery drastically changed the scenery of knot 
theory. The Jones polynomial paved the way for an intervention of von Neumann 
algebras, Lie algebras, and physics into the world of knots and 3-manifolds. 

The second event was the introduction by V. Drinfel'd and M. Jimbo (1985) of 
quantum groups which may roughly be described as 1-parameter deformations of 
semisimple complex Lie algebras. Quantum groups and their representation theory 
form the algebraic basis and environment for this subject. Note that quantum 
groups emerged as an algebraic formalism for physicists' ideas, specifically, from 
the work of the Leningrad school of mathematical physics directed by L. Faddeev. 

In 1988 E. Witten invented the notion of a topological quantum field theory and 
outlined a fascinating picture of such a theory in three dimensions. This picture 
includes an interpretation of the Jones polynomial as a path integral and relates 
the Jones polynomial to a 2-dimensional modular functor arising in conformal 
field theory. It seems that at the moment of writing (beginning of 1994), Witten's 
approach based on path integrals has not yet been justified mathematically. Wit-
ten's conjecture on the existence of non-trivial 3-dimensional TQFT's has served 
as a major source of inspiration for the research in this area. 

The development of the subject (in its topological part) has been strongly 
influenced by the works of M. Atiyah, A. Joyal and R. Street, L. Kauffman, 
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A. Kirillov and N. Reshetikhin, G. Moore and N. Seiberg, N. Reshetikhin and 
V. Turaev, G. Segal, V. Turaev and O. Viro, and others (see References). Although 
this theory is very young, the number of relevant papers is overwhelming. We do 
not attempt to give a comprehensive history of the subject and confine ourselves 
to sketchy historical remarks in the chapter notes. 

In this monograph we focus our attention on the topological aspects of the 
theory. Our goal is the construction and study of invariants of knots and 3-
manifolds. There are several possible approaches to these invariants, based on 
Chern-Simons field theory, 2-dimensional conformal field theory, and quantum 
groups. We shall follow the last approach. The fundamental idea is to derive 
invariants of knots and 3-manifolds from algebraic objects which formalize the 
properties of modules over quantum groups at roots of unity. This approach allows 
a rigorous mathematical treatment of a number of ideas considered in theoretical 
physics. 

This monograph is addressed to mathematicians and physicists with a knowl-
edge of basic algebra and topology. We do not assume that the reader is acquainted 
with the theory of quantum groups or with the relevant chapters of mathematical 
physics. 

Besides an exposition of the material available in published papers, this mono-
graph presents new results of the author, which appear here for the first time. 
Indications to this effect and priority references are given in the chapter notes. 

The fundamental notions discussed in the monograph are those of modular 
category, modular functor, and topological quantum field theory (TQFT). The 
mathematical content of these notions may be outlined as follows. 

Modular categories are tensor categories with certain additional algebraic struc-
tures (braiding, twist) and properties of semisimplicity and finiteness. The notions 
of braiding and twist arise naturally from the study of the commutativity of the 
tensor product. Semisimplicity means that all objects of the category may be de-
composed into "simple" objects which play the role of irreducible modules in 
representation theory. Finiteness means that such a decomposition can be per-
formed using only a finite stock of simple objects. 

The use of categories should not frighten the reader unaccustomed to the ab-
stract theory of categories. Modular categories are defined in algebraic terms and 
have a purely algebraic nature. Still, if the reader wants to avoid the language of 
categories, he may think of the objects of a modular category as finite dimensional 
modules over a Hopf algebra. 

Modular functors relate topology to algebra and are reminiscent of homology. 
A modular functor associates projective modules over a fixed commutative ring K 
to certain "nice" topological spaces. When we speak of an n-dimensional modular 
functor, the role of "nice" spaces is played by closed n-dimensional manifolds 
(possibly with additional structures like orientation, smooth structure, etc.). An 
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«-dimensional modular functor 2T assigns to a closed «-manifold (with a certain 
additional structure) 2 , a projective A'-module 2T(2), and assigns to a homeo-
morphism of «-manifolds (preserving the additional structure), an isomorphism 
of the corresponding modules. The module 2T(2) is called the module of states 
of 2 . These modules should satisfy a few axioms including multiplicativity with 
respect to disjoint union: 2 T ( 2 US') = 9" (2) 2 T ( 2 ' ) - It is convenient to regard 
the empty space as an «-manifold and to require that 2T(0) = K. 

A modular functor may sometimes be extended to a topological quantum field 
theory (TQFT), which associates homomorphisms of modules of states to cobor-
disms ("spacetimes"). More precisely, an (n + l)-dimensional TQFT is formed 
by an «-dimensional modular functor 2T and an operator invariant of (n + 1)-
cobordisms r. By an (n + l)-cobordism, we mean a compact (« + l)-manifold M 
whose boundary is a disjoint union of two closed «-manifolds 3_M, 3 +M called 
the bottom base and the top base of M. The operator invariant T assigns to such 
a cobordism M a homomorphism 

T(M) : 3"(3 +M). 

This homomorphism should be invariant under homeomorphisms of cobordisms 
and multiplicative with respect to disjoint union of cobordisms. Moreover, r 
should be compatible with gluings of cobordisms along their bases: if a cobordism 
M is obtained by gluing two cobordisms M\ and MI along their common base 
3+ (Mi) = 3_(M2) then 

T(M) = kr(M2) o t ( M , ) : 2T(3_(MO) - * 2T(3 +(M2)) 

where k e K is a scalar factor depending on M,M\, M2- The factor k is called 
the anomaly of the gluing. The most interesting TQFT's are those which have no 
gluing anomalies in the sense that for any gluing, k — 1. Such TQFT's are said 
to be anomaly-free. 

In particular, a closed (« + 1)-manifold M may be regarded as a cobordism 
with empty bases. The operator T(M) acts in 2T(0) = K as multiplication by an 
element of K. This element is the "quantum" invariant of M provided by the 
TQFT (ST, r ) . It is denoted also by T(M). 

We note that to speak of a TQFT (2T, r), it is necessary to specify the class of 
spaces and cobordisms subject to the application of 2T and r. 

In this monograph we shall consider 2-dimensional modular functors and 
3-dimensional topological quantum field theories. Our main result asserts that 
every modular category gives rise to an anomaly-free 3-dimensional TQFT: 

modular category m> 3-dimensional TQFT. 
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In particular, every modular category gives rise to a 2-dimensional modular func-
tor: 

modular category i-> 2-dimensional modular functor. 
The 2-dimensional modular functor STy, derived from a modular category T, 
applies to closed oriented surfaces with a distinguished Lagrangian subspace in 
1-homologies and a finite (possibly empty) set of marked points. A point of 
a surface is marked if it is endowed with a non-zero tangent vector, a sign 
±1, and an object of T; this object of Y is regarded as the "color" of the 
point. The modular functor 2Ty has a number of interesting properties including 
nice behavior with respect to cutting surfaces out along simple closed curves. 
Borrowing terminology from conformal field theory, we say that STy is a rational 
2-dimensional modular functor. 

We shall show that the modular category Y can be reconstructed from the cor-
responding modular functor 2Ty. This deep fact shows that the notions of modular 
category and rational 2-dimensional modular functor are essentially equivalent; 
they are two sides of the same coin formulated in algebraic and geometric terms: 

modular category rational 2-dimensional modular functor. 

The operator invariant r , derived from a modular category T, applies to com-
pact oriented 3-cobordisms whose bases are closed oriented surfaces with the 
additional structure as above. The cobordisms may contain colored framed ori-
ented knots, links, or graphs which meet the bases of the cobordism along the 
marked points. (A link is colored if each of its components is endowed with an 
object of Y. A link is framed if it is endowed with a non-singular normal vector 
field in the ambient 3-manifold.) For closed oriented 3-manifolds and for colored 
framed oriented links in such 3-manifolds, this yields numerical invariants. These 
are the "quantum" invariants of links and 3-manifolds derived from T. Under a 
special choice of T and a special choice of colors, we recover the Jones polyno-
mial of links in the 3-sphere S3 or, more precisely, the value of this polynomial 
at a complex root of unity. 

An especially important class of 3-dimensional TQFT's is formed by so-called 
unitary TQFT's with ground ring K = C. In these TQFT's, the modules of states 
of surfaces are endowed with positive definite Hermitian forms. The correspond-
ing algebraic notion is the one of a unitary modular category. We show that such 
categories give rise to unitary TQFT's: 

unitary modular category unitary 3-dimensional TQFT. 

Unitary 3-dimensional TQFT's are considerably more sensitive to the topology of 
3-manifolds than general TQFT's. They can be used to estimate certain classical 
numerical invariants of knots and 3-manifolds. 

To sum up, we start with a purely algebraic object (a modular category) and 
build a topological theory of modules of states of surfaces and operator invari-
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ants of 3-cobordisms. This construction reveals an algebraic background to 2-
dimensional modular functors and 3-dimensional TQFT's. It is precisely because 
there are non-trivial modular categories, that there exist non-trivial 3-dimensional 
TQFT's. 

The construction of a 3-dimensional TQFT from a modular category V is 
the central result of Part I of the book. We give here a brief overview of this 
construction. 

The construction proceeds in several steps. First, we define an isotopy invariant 
F of colored framed oriented links in Euclidean space R3. The invariant F takes 
values in the commutative ring K = Homy(1,1), where 1 is the unit object 
of Y. The main idea in the definition of F is to dissect every link L c R3 into 
elementary "atoms". We first deform L in R3 so that its normal vector field is given 
everywhere by the vector (0,0,1). Then we draw the orthogonal projection of L in 
the plane R2 = R2 x 0 taking into account overcrossings and undercrossings. The 
resulting plane picture is called the diagram of L. It is convenient to think that the 
diagram is drawn on graph paper. Stretching the diagram in the vertical direction, 
if necessary, we may arrange that each small square of the paper contains either 
one vertical line of the diagram, an X-like crossing of two lines, a cap-like arc 
n, or a cup-like arc U. These are the atoms of the diagram. We use the algebraic 
structures in V and the colors of link components to assign to each atom a 
morphism in V. Using the composition and tensor product in V, we combine 
the morphisms corresponding to the atoms of the diagram into a single morphism 
F(L) : 1 ->• 1. To verify independence of F(L) e K on the choice of the diagram, 
we appeal to the fact that any two diagrams of the same link may be related by 
Reidemeister moves and local moves changing the position of the diagram with 
respect to the squares of graph paper. 

The invariant F may be generalized to an isotopy invariant of colored graphs 
in R3. By a coloring of a graph, we mean a function which assigns to every edge 
an object of V and to every vertex a morphism in Y. The morphism assigned 
to a vertex should be an intertwiner between the objects of T sitting on the 
edges incident to this vertex. As in the case of links we need a kind of framing 
for graphs, specifically, we consider ribbon graphs whose edges and vertices are 
narrow ribbons and small rectangles. 

Note that this part of the theory does not use semisimplicity and finiteness 
of Y. The invariant F can be defined for links and ribbon graphs in R3 colored 
over arbitrary tensor categories with braiding and twist. Such categories are called 
ribbon categories. 

Next we define a topological invariant r(A/) = TY(M) e K for every closed 
oriented 3-manifold M. Present M as the result of surgery on the 3-sphere S3 = 
= R3 U {oo} along a framed link L c R3. Orient L in an arbitrary way and 
vary the colors of the components of L in the finite family of simple objects of 
V appearing in the definition of a modular category. This gives a finite family 
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of colored (framed oriented) links in M3 with the same underlying link L. We 
define T(M) to be a certain weighted sum of the corresponding invariants F e K. 
To verify independence on the choice of L, we use the Kirby calculus of links 
allowing us to relate any two choices of L by a sequence of local geometric 
transformations. 

The invariant T(M) e K generalizes to an invariant r(M, i l) e K where M is 
a closed oriented 3-manifold and i l is a colored ribbon graph in M. 

At the third step we define an auxiliary 3-dimensional TQFT that applies to 
parametrized surfaces and 3-cobordisms with parametrized bases. A surface is 
parametrized if it is provided with a homeomorphism onto the standard closed 
surface of the same genus bounding a standard unknotted handlebody in K3. 
Let M be an oriented 3-cobordism with parametrized boundary (this means that 
all components of dM are parametrized). Consider first the case where 3+M = 
0 and 2 = 3_M is connected. Gluing the standard handlebody to M along 
the parametrization of 2 yields a closed 3-manifold M. We consider a certain 
canonical ribbon graph R in the standard handlebody in M3 lying there as a kind 
of core and having only one vertex. Under the gluing used above, R embeds 
in M. We color the edges of R with arbitrary objects from the finite family of 
simple objects appearing in the definition of T. Coloring the vertex of R with an 
intertwiner we obtain a colored ribbon graph R c M. Denote by 27"(2) the K-
module formally generated by such colorings of R. We can regard r(M, R) € K 
as a linear functional ST(2) K. This is the operator T{M). The case of a 3-
cobordism with non-connected boundary is treated similarly: we glue standard 
handlebodies (with the standard ribbon graphs inside) to all the components of 
3M and apply r as above. This yields a linear functional on the tensor product 
(g>,-2T(2,) where X, runs over the components of 3M. Such a functional may be 
rewritten as a linear operator 2T(3_M) -» 2T(3+M). 

The next step is to define the action of surface homeomorphisms in the modules 
of states and to replace parametrizations of surfaces with a less rigid structure. 
The study of homeomorphisms may be reduced to a study of 3-cobordisms with 
parametrized bases. Namely, if 2 is a standard surface then any homeomorphism 
/ : 2 -> 2 gives rise to the 3-cobordism (2 x [0, 1], 2 x 0, 2 x 1) whose 
bottom base is parametrized via / and whose top base is parametrized via id^. 
The operator invariant r of this cobordism yields an action of / in 2T(2). This 
gives a projective linear action of the group Homeo(2) on 2T(2). The corre-
sponding 2-cocycle is computed in terms of Maslov indices of Lagrangian spaces 
in //i(2;M). This computation implies that the module 2T(2) does not depend 
on the choice of parametrization, but rather depends on the Lagrangian space 
in //i(2;M) determined by this parametrization. This fact allows us to define 
a TQFT based on closed oriented surfaces endowed with a distinguished La-
grangian space in 1-homologies and on compact oriented 3-cobordisms between 
such surfaces. Finally, we show how to modify this TQFT in order to kill its 
gluing anomalies. 
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The definition of the quantum invariant T{M) = ry(M) of a closed oriented 
3-manifold M is based on an elaborate reduction to link diagrams. It would be 
most important to compute r(M) in intrinsic terms, i.e., directly from M rather 
than from a link diagram. In Part II of the book we evaluate in intrinsic terms 
the product r(M) r(—M) where — M denotes the same manifold M with the 
opposite orientation. More precisely, we compute T(M) T(—M) as a state sum on 
a triangulation of M. In the case of a unitary modular category, 

T(M)T(-M) = \T{M)\2 E R 

so that we obtain the absolute value of T(M) as the square root of a state sum on 
a triangulation of M. 

The algebraic ingredients of the state sum in question are so-called 6y'-symbols 
associated to T. The 6/-symbols associated to the Lie algebra si2(C) are well 
known in the quantum theory of angular momentum. These symbols are complex 
numbers depending on 6 integer indices. We define more general 6y-symbols 
associated to a modular category T satisfying a minor technical condition of 
unimodality. In the context of modular categories, each 6/-symbol is a tensor 
in 4 variables running over so-called multiplicity modules. The 6j-symbols are 
numerated by tuples of 6 indices running over the set of distinguished simple 
objects of T . The system of 6y'-symbols describes the associativity of the tensor 
product in V in terms of multiplicity modules. A study of 6/-symbols inevitably 
appeals to geometric images. In particular, the appearance of the numbers 4 and 6 
has a simple geometric interpretation: we should think of the 6 indices mentioned 
above as sitting on the edges of a tetrahedron while the 4 multiplicity modules 
sit on its 2-faces. This interpretation is a key to applications of 6y-symbols in 
3-dimensional topology. 

We define a state sum on a triangulated closed 3-manifold M as follows. Color 
the edges of the triangulation with distinguished simple objects of Y. Associate 
to each tetrahedron of the triangulation the 6/-symbol determined by the col-
ors of its 6 edges. This 6j-symbol lies in the tensor product of 4 multiplicity 
modules associated to the faces of the tetrahedron. Every 2-face of the triangu-
lation is incident to two tetrahedra and contributes dual multiplicity modules to 
the corresponding tensor products. We consider the tensor product of 6./-symbols 
associated to all tetrahedra of the triangulation and contract it along the dualities 
determined by 2-faces. This gives an element of the ground ring K corresponding 
to the chosen coloring. We sum up these elements (with certain coefficients) over 
all colorings. The sum does not depend on the choice of triangulation and yields 
a homeomorphism invariant \M\ e K of M. It turns out that for oriented M, we 
have 

\M\ = T(M)T(-M). 

Similar state sums on 3-manifolds with boundary give rise to a so-called simpli-
cial TQFT based on closed surfaces and compact 3-manifolds (without additional 
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structures). The equality \M\ — T(M)T(—M) for closed oriented 3-manifolds 
generalizes to a splitting theorem for this simplicial TQFT. 

The proof of the formula \M\ = T(M) T(—M) is based on a computation of 
r(M) inside an arbitrary compact oriented piecewise-linear 4-manifold bounded 
by M. This result, interesting in itself, gives a 4-dimensional perspective to quan-
tum invariants of 3-manifolds. The computation in question involves the funda-
mental notion of shadows of 4-manifolds. Shadows are purely topological objects 
intimately related to 6j-symbols. The theory of shadows was, to a great extent, 
stimulated by a study of 3-dimensional TQFT's. 

The idea underlying the definition of shadows is to consider 2-dimensional 
polyhedra whose 2-strata are provided with numbers. We shall consider only so-
called simple 2-polyhedra. Every simple 2-polyhedron naturally decomposes into 
a disjoint union of vertices, 1-strata (edges and circles), and 2-strata. We say 
that a simple 2-polyhedron is shadowed if each of its 2-strata is endowed with 
an integer or half-integer, called the gleam of this 2-stratum. We define three 
local transformations of shadowed 2-polyhedra (shadow moves). A shadow is a 
shadowed 2-polyhedron regarded up to these moves. 

Being 2-dimensional, shadows share many properties with surfaces. For in-
stance, there is a natural notion of summation of shadows similar to the connected 
summation of surfaces. It is more surprising that shadows share a number of im-
portant properties of 3-manifolds and 4-manifolds. In analogy with 3-manifolds 
they may serve as ambient spaces of knots and links. In analogy with 4-manifolds 
they possess a symmetric bilinear form in 2-homologies. Imitating surgery and 
cobordism for 4-manifolds, we define surgery and cobordism for shadows. 

Shadows arise naturally in 4-dimensional topology. Every compact oriented 
piecewise-linear 4-manifold W (possibly with boundary) gives rise to a shadow 
sh(W). To define sh(W), we consider a simple 2-skeleton of W and provide 
every 2-stratum with its self-intersection number in W. The resulting shadowed 
polyhedron considered up to shadow moves and so-called stabilization does not 
depend on the choice of the 2-skeleton. In technical terms, sh(l¥) is a stable 
integer shadow. Thus, we have an arrow 

compact oriented PL 4-manifolds i-> stable integer shadows. 

It should be emphasized that this part of the theory is purely topological and does 
not involve tensor categories. 

Every modular category Y gives rise to an invariant of stable shadows. It is 
obtained via a state sum on shadowed 2-polyhedra. The algebraic ingredients of 
this state sum are the 6y'-symbols associated to V. This yields a mapping 

state sum 
stable integer shadows >• K — Homy (II, 1). 
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Composing these arrows we obtain a A'-valued invariant of compact oriented PL 
4-manifolds. By a miracle, this invariant of a 4-manifold W depends only on dW 
and coincides with r(3W). This gives a computation of r(9W) inside W. 

The discussion above naturally raises the problem of existence of modular 
categories. These categories are quite delicate algebraic objects. Although there 
are elementary examples of modular categories, it is by no means obvious that 
there exist modular categories leading to deep topological theories. The source of 
interesting modular categories is the theory of representations of quantum groups 
at roots of unity. The quantum group Uq(g) is a Hopf algebra over C obtained 
by a 1-parameter deformation of the universal enveloping algebra of a simple Lie 
algebra g. The finite dimensional modules over Uq(Q) form a semisimple tensor 
category with braiding and twist. To achieve finiteness, we take the deformation 
parameter q to be a complex root of unity. This leads to a loss of semisimplicity 
which is regained under the passage to a quotient category. If 0 belongs to the 
series A, B,C,D and the order of the root of unity q is even and sufficiently big 
then we obtain a modular category with ground ring C: 

quantum group at a root of 1 (->• modular category. 

Similar constructions may be applied to exceptional simple Lie algebras, although 
some details are yet to be worked out. It is remarkable that for q = 1 we have the 
classical theory of representations of a simple Lie algebra while for non-trivial 
complex roots of unity we obtain modular categories. 

Summing up, we may say that the simple Lie algebras of the series A, B,C,D 
give rise to 3-dimensional TQFT's via the ^-deformation, the theory of repre-
sentations, and the theory of modular categories. The resulting 3-dimensional 
TQFT's are highly non-trivial from the topological point of view. They yield 
new invariants of 3-manifolds and knots including the Jones polynomial (which 
is obtained from 9 = si2(C)) and its generalizations. 

At earlier stages in the theory of quantum 3-manifold invariants, Hopf algebras 
and quantum groups played the role of basic algebraic objects, i.e., the role of 
modular categories in our present approach. It is in this book that we switch to 
categories. Although the language of categories is more general and more simple, 
it is instructive to keep in mind its algebraic origins. 

There is a dual approach to the modular categories derived from the quantum 
groups Uq{sl„(C)) at roots of unity. The Weyl duality between representations 
of Uq(sln(C)) and representations of Hecke algebras suggests that one should 
study the categories whose objects are idempotents of Hecke algebras. We shall 
treat the simplest but most important case, n = 2. In this case instead of Hecke 
algebras we may consider their quotients, the Temperley-Lieb algebras. A study 
of idempotents in the Temperley-Lieb algebras together with the skein theory of 
tangles gives a construction of modular categories. This construction is elementary 
and self-contained. It completely avoids the theory of quantum groups but yields 
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the same modular categories as the representation theory of t / 9 (5 / 2 (C) ) at roots 
of unity. 

Until now main efforts have been spent to construct 2-dimensional modular 
functors and 3-dimensional TQFT's . Little is known about their role in low-
dimensional topology. Relationships between the TQFT's and the classical in-
variants of 3-manifolds, for instance, the fundamental group are poorly under-
stood. Topological properties and applications of the modular functors derived 
from quantum groups are yet to be studied. The most important problem is to 
relate the 3-dimensional TQFT's to the Donaldson invariants of 4-manifolds and 
the Floer homologies of 3-manifolds. (Very interesting results in this direction 
have been recently obtained by H. Murakami.) 

The book consists of three parts. Part I (Chapters I - V) is concerned with the 
construction of a 2-dimensional modular functor and 3-dimensional TQFT from a 
modular category. Part II (Chapters VI - X ) deals with 6/-symbols, shadows, and 
state sums on shadows and 3-manifolds. Part III (Chapters XI , XII ) is concerned 
with constructions of modular categories. 

It is possible but not at all necessary to read the chapters in their linear order. 
The reader may start with Chapter III or with Chapters VIII, I X which are inde-
pendent of the previous material. It is also possible to start with Part III which 
is almost independent of Parts I and II, one needs only to be acquainted with 
the definitions of ribbon, modular, semisimple, Hermitian, and unitary categories 
given in Section 1.1 (i.e., Section 1 of Chapter I) and Sections II. 1, II.4, II.5. 

The interdependence of the chapters is presented in the following diagram. 
An arrow from A to B indicates that the definitions and results of Chapter A 
are essential for Chapter B . Weak dependence of chapters is indicated by dotted 
arrows. 

Ill VIII 

XI 

W 

II IV IX 

XII VI VII 
"A. 

X 
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The content of the chapters should be clear from the headings. The following 
remarks give more directions to the reader. 

Chapter I starts off with ribbon categories and invariants of colored framed 
graphs and links in Euclidean 3-space. The relevant definitions and results, given 
in the first two sections of Chapter I, will be used throughout the book. They 
contain the seeds of main ideas of the theory. Sections 1.3 and 1.4 are concerned 
with the proof of Theorem 1.2.5 and may be skipped without much loss. 

Chapter II starts with two fundamental sections. In Section II. 1 we introduce 
modular categories which are the main algebraic objects of the monograph. In 
Section II.2 we introduce the invariant r of closed oriented 3-manifolds. In Section 
II.3 we prove that r is well defined. The ideas of the proof are used in the same 
section to construct a projective linear action of the group SL(2, Z). This action 
does not play an important role in the book, rather it serves as a precursor for 
the actions of modular groups of surfaces on the modules of states introduced in 
Chapter IV. In Section II.4 we define semisimple ribbon categories and establish 
an analogue of the Verlinde-Moore-Seiberg formula known in conformal field 
theory. Section II.5 is concerned with Hermitian and unitary modular categories. 

Chapter III deals with axiomatic foundations of topological quantum field 
theory. It is remarkable that even in a completely abstract set up, we can establish 
meaningful theorems which prove to be useful in the context of 3-dimensional 
TQFT's. The most important part of Chapter III is the first section where we give 
an axiomatic definition of modular functors and TQFT's. The language introduced 
in Section III. 1 will be used systematically in Chapter IV. In Section III.2 we 
establish a few fundamental properties of TQFT's. In Section III.3 we introduce 
the important notion of a non-degenerate TQFT and establish sufficient conditions 
for isomorphism of non-degenerate anomaly-free TQFT's. Section III.5 deals with 
Hermitian and unitary TQFT's, this study will be continued in the 3-dimensional 
setting at the end of Chapter IV. Sections III.4 and III.6 are more or less isolated 
from the rest of the book; they deal with the abstract notion of a quantum invariant 
of topological spaces and a general method of killing the gluing anomalies of a 
TQFT. 

In Chapter IV we construct the 3-dimensional TQFT associated to a modular 
category. It is crucial for the reader to get through Section IV. 1, where we define 
the 3-dimensional TQFT for 3-cobordisms with parametrized boundary. Section 
IV.2 provides the proofs for Section IV. 1; the geometric technique of Section IV.2 
is probably one of the most difficult in the book. However, this technique is used 
only a few times in the remaining part of Chapter IV and in Chapter V. Section 
IV.3 is purely algebraic and independent of all previous sections. It provides 
generalities on Lagrangian relations and Maslov indices. In Sections IV.4 - IV.6 
we show how to renormalize the TQFT introduced in Section IV. 1 in order to 
replace parametrizations of surfaces with Lagrangian spaces in 1-homologies. The 
3-dimensional TQFT (2P, r e) , constructed in Section IV.6 and further studied in 
Section IV.7, is quite suitable for computations and applications. This TQFT has 
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anomalies which are killed in Sections IV.8 and IV.9 in two different ways. The 
anomaly-free TQFT constructed in Section IV.9 is the final product of Chapter 
IV. In Sections IV.10 and IV.11 we show that the TQFT's derived from Hermitian 
(resp. unitary) modular categories are themselves Hermitian (resp. unitary). In the 
purely algebraic Section IV. 12 we introduce the Verlinde algebra of a modular 
category and use it to compute the dimension of the module of states of a surface. 

The results of Chapter IV shall be used in Sections V.4, V.5, VII.4, and X.8. 
Chapter V is devoted to a detailed analysis of the 2-dimensional modular 

functors (2-DMF's) arising from modular categories. In Section V.l we give 
an axiomatic definition of 2-DMF's and rational 2-DMF's independent of all 
previous material. In Section V.2 we show that each (rational) 2-DMF gives rise 
to a (modular) ribbon category. In Section V.3 we introduce the more subtle 
notion of a weak rational 2-DMF. In Sections V.4 and V.5 we show that the 
constructions of Sections IV. 1 - IV.6, being properly reformulated, yield a weak 
rational 2-DMF. 

Chapter VI deals with 6./-symbols associated to a modular category. The most 
important part of this chapter is Section VI.5, where we use the invariants of 
ribbon graphs introduced in Chapter I to define so-called normalized 6/-symbols. 
They should be contrasted with the more simple-minded 6j-symbols defined in 
Section VI. 1 in a direct algebraic way. The approach of Section VI. 1 generalizes 
the standard definition of 6j-symbols but does not go far enough. The funda-
mental advantage of normalized 6/-symbols is their tetrahedral symmetry. Three 
intermediate sections (Sections VI.2 - VI.4) prepare different kinds of preliminary 
material necessary to define the normalized 6/-symbols. 

In the first section of Chapter VII we use 6^-symbols to define state sums on 
triangulated 3-manifolds. Independence on the choice of triangulation is shown 
in Section VII.2. Simplicial 3-dimensional TQFT is introduced in Section VII.3. 
Finally, in Section VII.4 we state the main theorems of Part II; they relate the 
theory developed in Part I to the state sum invariants of closed 3-manifolds and 
simplicial TQFT's. 

Chapters VIII and IX are purely topological. In Chapter VIII we discuss the 
general theory of shadows. In Chapter IX we consider shadows of 4-manifolds, 
3-manifolds, and links in 3-manifolds. The most important sections of these two 
chapters are Sections VIII. 1 and IX. 1 where we define (abstract) shadows and 
shadows of 4-manifolds. The reader willing to simplify his way towards Chapter 
X may read Sections VIII. 1, VIII.2.1, VIII.2.2, VIII.6, IX. 1 and then proceed to 
Chapter X coming back to Chapters VIII and IX when necessary. 

In Chapter X we combine all the ideas of the previous chapters. We start with 
state sums on shadowed 2-polyhedra based on normalized 6/-symbols (Section 
X.l) and show their invariance under shadow moves (Section X.2). In Section 
X.3 we interpret the invariants of closed 3-manifolds r(M) and \M\ introduced in 
Chapters II and VII in terms of state sums on shadows. These results allow us to 
show that \M\ = t(M) r(—M). Sections X.4 - X.6 are devoted to the proof of a 
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theorem used in Section X.3. Note the key role of Section X.5 where we compute 
the invariant F of links in R3 in terms of 6j-symbols. In Sections X.7 and X.8 we 
relate the TQFT's constructed in Chapters IV and VII. Finally, in Section X.9 we 
use the technique of shadows to compute the invariant r for graph 3-manifolds. 

In Chapter XI we explain how quantum groups give rise to modular categories. 
We begin with a general discussion of quasitriangular Hopf algebras, ribbon Hopf 
algebras, and modular Hopf algebras (Sections XI. 1 - XI.3 and XI.5). In order to 
derive modular categories from quantum groups we use more general quasimod-
ular categories (Section XI.4). In Section XI.6 we outline relevant results from 
the theory of quantum groups at roots of unity and explain how to obtain mod-
ular categories. For completeness, we also discuss quantum groups with generic 
parameter; they give rise to semisimple ribbon categories (Section XI.7). 

In Chapter XII we give a geometric construction of the modular categories 
determined by the quantum group Uq(sl2(C)) at roots of unity. The corner-stone of 
this approach is the skein theory of tangle diagrams (Sections XII. 1 and XII.2) and 
a study of idempotents in the Temperley-Lieb algebras (Sections XII.3 and XII.4). 
After some preliminaries in Sections XII.5 and XII.6 we construct modular skein 
categories in Section XII.7. These categories are studied in the next two sections 
where we compute multiplicity modules and discuss when these categories are 
unitary. 
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Chapter I 
Invariants of graphs in Euclidean 3-space 

1. Ribbon categories 

1.0. Outline. We introduce ribbon categories forming the algebraic base of the 
theory presented in this book. These are monoidal categories (i.e., categories with 
tensor product) endowed with braiding, twist, and duality. All these notions are 
discussed here in detail; they will be used throughout the book. We also introduce 
an elementary graphical calculus allowing us to use drawings in order to present 
morphisms in ribbon categories. 

As we shall see in Section 2, each ribbon category gives rise to a kind of 
"topological field theory" for links in Euclidean 3-space. In order to extend this 
theory to links in other 3-manifolds and to construct 3-dimensional TQFT's we 
shall eventually restrict ourselves to more subtle modular categories. 

The definition of ribbon category has been, to a great extent, inspired by the 
theory of quantum groups. The reader acquainted with this theory may notice that 
braiding plays the role of the universal /¿-matrix of a quantum group (cf. Chapter 
XI). 

1.1. Monoidal categories. The definition of a monoidal category axiomatizes 
the properties of the tensor product of modules over a commutative ring. Here 
we recall briefly the concepts of category and monoidal category, referring for 
details to [Ma2], 

A category Y consists of a class of objects, a class of morphisms, and a 
composition law for the morphisms which satisfy the following axioms. To each 
morphism / there are associated two objects of T denoted by source(/) and 
target(/). (One uses the notation / : source(/) -»• target(/).) For any objects 
V, W of T , the morphisms V W form a set denoted by Hom(V, WO- The com-
position fog of two morphisms is defined whenever target(g) = source(/). This 
composition is a morphism source(g) —> target(/). Composition is associative: 

(l . l .a) ( f o g ) o h = fo(goh) 

whenever both sides of this formula are defined. Finally, for each object V, there 
is a morphism idv : V —> V such that 

(l .l .b) / o idy = / , idv° g = g 

for any morphisms / : V —»• W, g : W -> V. 
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A tensor product in a category Y is a covariant functor ® : T x T - > T which 
associates to each pair of objects V,W of T an object V® W of T and to each pair 
of morphisms f : V V' , g : W ^ W' a morphism / ® g : V <g> W V' ® W'. 
To say that <g> is a covariant functor means that we have the following identities 

(1-l.c) ( / o / ' ) ® (g o g') = (f®g)o (/' ® g'), 

(1.1 .d) idv ® idw = idv^w. 

A strict monoidal category is a category Y equipped with a tensor product and 
an object 1 = ly, called the unit object, such that the following conditions hold. 
For any object V of Y, we have 

(l . l .e) V ® 1 = V, 1 ® V = V 

and for any triple U, V, W of objects of Y, we have 

( l . l . f ) ( £ / ® V ) ® W = £/® (V®H0. 

For any morphism / in Y, 

(l . l .g) / ® i d 1 = i d 1 ® / = / 

and for any triple / , g, h of morphisms in Y, 

(1.1 .h) {f®g)®h = f®{g®h). 

More general (not necessarily strict) monoidal categories are defined similarly 
to strict monoidal categories though instead of (l . l .e), ( l . l . f ) one assumes that 
the right-hand sides and left-hand sides of these equalities are related by fixed iso-
morphisms. (A morphism / : V —> W of a category is said to be an isomorphism 
if there exists a morphism g : W -»• V such that fg = idw and gf = idv). These 
fixed isomorphisms should satisfy two compatibility conditions called the pen-
tagon and triangle identities, see [Ma2], These isomorphisms should also appear 
in (l . l .g) and (1.1 .h) in the obvious way. For instance, the category of modules 
over a commutative ring with the standard tensor product of modules is monoidal. 
The ground ring regarded as a module over itself plays the role of the unit object. 
Note that this monoidal category is not strict. Indeed, if U, V, and W are modules 
over a commutative ring then the modules (U ® V) ® W and U <g> (V <g>W) are 
canonically isomorphic but not identical. 

We shall be concerned mainly with strict monoidal categories. This does not 
lead to a loss of generality because of MacLane's coherence theorem which estab-
lishes equivalence of any monoidal category to a certain strict monoidal category. 
In particular, the category of modules over a commutative ring is equivalent to 
a strict monoidal category. Non-strict monoidal categories will essentially appear 
only in this section, in Section II. 1, and in Chapter XI. Working with non-strict 
monoidal categories, we shall supress the fixed isomorphisms relating the right-
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hand sides and left-hand sides of equalities (l . l .e) , ( l . l . f ) . (Such abuse of notation 
is traditional in linear algebra.) 

1.2. Braiding and twist in monoidal categories. The tensor multiplication of 
modules over a commutative ring is commutative in the sense that for any modules 
V, W, there is a canonical isomorphism V <g> W -> W ® V. This isomorphism 
transforms any vector v <S> w into w®v and extends to V (g> W by linearity. It is 
called the flip and denoted by Pv,w• The system of flips is compatible with the 
tensor product in the obvious way: for any three modules U, V, W, we have 

Pu,v®w = (idv <8> Pu,w)(Pu,v ® idw), Pu®v,w = (Pu,w <S> idy)(idj/ ®Pv,w)-

The system of flips is involutive in the sense that PwyPv,w — • Axioma-
tization of these properties of flips leads to the notions of a braiding and a twist 
in monoidal categories. From the topological point of view, braiding and twist 
(together with the duality discussed below) form a minimal set of elementary 
blocks necessary and sufficient to build up a topological field theory for links in 
K3 . 

A braiding in a monoidal category T consists of a natural family of isomor-
phisms 

(1.2.a) c = {cViW : W <8>V}, 

where V, W run over all objects of T , such that for any three objects U, V, W, we 
have 

(1.2.b) c u y m = (idv ® cu,w)(cu,v <S> idw), 

(1.2.C) Cu^v.W = (Cu,W ® idy)(idt/ ® Cy,w). 

(The reader is recommended to draw the corresponding commutative diagrams.) 
The naturality of the isomorphisms (1.2.a) means that for any morphisms / : 
V V", g : W -> W', we have 

(l-2.d) (g®f)cv,w = cv>,w>(f®g). 

Applying (1.2.b), (1.2.c) to V = W = I and U = V = t and using the 
invertibility of cy j , c j y, we get 

(1.2.e) cvt = c t v = idy 

for any object V of Y. In Section 1.6 we shall show that any braiding satisfies 
the following Yang-Baxter identity: 

(1.2.f) (idw <g> Cuy) (Cu,w ® idy) (idf/ <g> cv,w) = 

= (cyw ® idy) (idy 0 cUtw) (cu,v ® idw)-
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Axiomatization of the involutivity of flips is slightly more involved. It would 
be too restrictive to require the composition cw,vCv,w to be equal to idy®w- What 
suits our aims better is to require this composition to be a kind of coboundary. 
This suggests the notion of a twist as follows. A twist in a monoidal category Y 
with a braiding c consists of a natural family of isomorphisms 

(1.2.g) 6 = {dv:V^V], 

where V runs over all objects of Y, such that for any two objects V, W of Y, we 
have 

(1.2.h) Qvm = cWtV cv,w (9v ® 0w)-

The naturality of 9 means that for any morphism f : U V in Y, we have 
Oyf = f&u• Using the naturality of the braiding, we may rewrite (1.2.h) as 
follows: 

= C\y,V (fiw ® 0v) Cyw = (0v ® 0w) CW,V Cv,W-
Note that 0 j = id-j. This follows from invertibility of and the formula 

(0fl)2 = {et ® id jXidj ® et) = et ® et = et. 

These equalities follow respectively from (1.1 .g), (l.l.c) and (l.l.b), (1.2.h) and 
(1.2.e) where we substitute V = W = 1. 

1.3. Duality in monoidal categories. Duality in monoidal categories is meant 
to axiomatize duality for modules usually formulated in terms of non-degenerate 
bilinear forms. Of course, the general definition of duality should avoid the term 
"linear". It rather axiomatizes the properties of the evaluation pairing and co-
pairing (cf. Lemma III.2.2). 

Let Y be a monoidal category. Assume that to each object V of Y there are 
associated an object V* of Y and two morphisms 

(1.3.a) bv ®V*, dv : V* ® V 1. 

The rule V i->- (V*, by, dv) is called a duality in Y if the following identities are 
satisfied: 

(1.3.b) (idv ® dv)(bv <g> idy) = idv, 

(1.3.C) (dv <s> idy.)(idy. (8) by) = idy.. 

Note that we do not require that (V*)* = V. 
We need only one axiom relating the duality morphisms by, dy with braiding 

and twist. We say that the duality in Y is compatible with the braiding c and the 
twist 0 in Y if for any object V of Y, we have 

(1.3.d) (dy (8) idy.) by = (idy <g> 8y.) by. 
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The compatibility leads to a number of implications pertaining to duality. In 
particular, we shall show in Section 2 that any duality in Y compatible with 
braiding and twist is involutive in the sense that V** = (V*)* is canonically 
isomorphic to V. 

1.4. Ribbon categories. By a ribbon category, we mean a monoidal category Y 
equipped with a braiding c, a twist 0, and a compatible duality (*, b,d). A ribbon 
category is called strict if its underlying monoidal category is strict. 

Fundamental examples of ribbon categories are provided by the theory of 
quantum groups: Finite-dimensional representations of a quantum group form a 
ribbon category. For details, see Chapter XI. 

To each ribbon category Y we associate a mirror ribbon category Y. It has the 
same underlying monoidal category and the same duality (*, b, d). The braiding 
c and the twist 6 in Y are defined by the formulas 

(1.4.a) cKw = (cw,v)_1 and Oy = (0v)_1 

where c and 6 are the braiding and the twist in Y. The axioms of ribbon category 
for Y follow directly from the corresponding axioms for Y. 

MacLane's coherence theorem that establishes equivalence of any monoidal 
category to a strict monoidal category works in the setting of ribbon categories as 
well (cf. Remark XI. 1.4). This enables us to focus attention on strict ribbon cate-
gories: all results obtained below for these categories directly extend to arbitrary 
ribbon categories. 

1.5. Traces and dimensions. Ribbon categories admit a consistent theory of 
traces of morphisms and dimensions of objects. This is one of the most important 
features of ribbon categories sharply distinguishing them from arbitrary monoidal 
categories. We shall systematically use these traces and dimensions. 

Let Y be a ribbon category. Denote by K — Ky the semigroup End(l) with 
multiplication induced by the composition of morphisms and the unit element 
id-jj. The semigroup K is commutative because for any morphisms k,k' : 1 1, 
we have 

kk' = {k® id jXidj (g) k') = k ® k' = (idj ® k')(k <g) idj) = k'k. 

The traces of morphisms and the dimensions of objects which we define below 
take their values in K. 

For an endomorphism / : V —> V of an object V, we define its trace tr(/) £ K 
to be the following composition: 

(1.5.a) tr(/) = dv cvy,({dvf) <8> idy.) by : 1 1. 

For an object V of Y, we define its dimension dim(V) by the formula 

dim(V) = tr(idy) = dv cv,v*(0y <8> idy.) by G K. 
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The main properties of the trace are collected in the following lemma which 
is proven in Section 2. 

1.5.1. Lemma, (i) For any morphisms f : V -» W, g : W —> V, we have 
tr ( f g ) = tr ( g f ) . 

(ii) For any endomorphisms f , g of objects of Y, we have t r ( / <g> g) = 
tr(/)tr(g). 

(iii) For any morphism k : 1 1, we have tr(fc) = k. 

The first claim of this lemma implies the naturality of the trace: for any iso-
morphism g : W V and any / e End(V), 

(1.5.b) t r (g - 1 / g ) = tr( /) . 

Lemma 1.5.1 implies fundamental properties of dim: 
(i)' isomorphic objects have equal dimensions, 
(ii)' for any objects V, W, we have dim(V 0 W) = dim(V)dim(W), and 
(iii)' dim(l) = 1. 

We shall show in Section 2 that dim(V*) = dim(V). 

1.6. Graphical calculus for morphisms. Let T be a strict ribbon category. We 
describe a pictorial technique used to present morphisms in T by plane diagrams. 
This pictorial calculus will allow us to replace algebraic arguments involving 
commutative diagrams by simple geometric reasoning. This subsection serves as 
an elementary introduction to operator invariants of ribbon graphs introduced in 
Section 2. 

A morphism / : V W in the category Y may be represented by a box with 
two vertical arrows oriented downwards, see Figure 1.1. 

w 

1 1 
/ 

V 
1 

Figure 1.1 

Here V, W should be regarded as "colors" of the arrows and / should be regarded 
as a color of the box. (Such boxes are called coupons.) More generally, a mor-
phism / : V i ® ... ®Vm W[ <8>...<g>W„ may be represented by a picture as 
in Figure 1.2. We do not exclude the case m = 0, or n = 0, or m = n = 0; by 
definition, for m — 0, the tensor product of m objects of Y is equal to 1 = fly. 
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W. W 

f 

V 

Figure 1.2 

We shall use also vertical arrows oriented upwards under the convention that 
the morphism sitting in a box attached to such an arrow involves not the color of 
the arrow but rather the dual object. For example, a morphism / : V* W* may 
be represented in four different ways, see Figure 1.3. From now on the symbol = 
displayed in the figures denotes equality of the corresponding morphisms in Y. 

Figure 1.3 

The identity endomorphism of any object V will be represented by a vertical 
arrow directed downwards and colored with V. A vertical arrow directed upwards 
and colored with V represents the identity endomorphism of V*, see Figure 1.4. 

id , = v 
wy* V 

Figure 1.4 

Note that a vertical arrow colored with 1 may be effaced from any picture 
without changing the morphism represented by this picture. We agree that the 
empty picture represents the identity endomorphism of 1. 

The tensor product of two morphisms is presented as follows: just place a 
picture of the first morphism to the left of a picture of the second morphism. A 
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picture for the composition of two morphisms / and g is obtained by putting a 
picture of / on the top of a picture of g and gluing the corresponding free ends 
of arrows. (Of course, this procedure may be applied only when the numbers 
of arrows, as well as their directions and colors are compatible.) In order to 
make this gluing smooth we should draw the arrows so that their ends are strictly 
vertical. For example, for any morphisms f : V V' and g : W —»• W', the 
identities 

(/ g) idw)(idv ® g) = f <8> g = (idv ® g)(f ® idw) 

have a graphical incarnation shown in Figure 1.5. 

Figure 1.5 

The braiding morphism cv,w '• V ® H7 W ®V and the inverse morphism 
cv,w :W<g>V—»-VigiWare represented by the pictures in Figure 1.6. Note that 
the colors of arrows do not change when arrows pass a crossing. The colors may 
change only when arrows hit coupons. 

A graphical form of equalities (1.2.b), (1.2.c), (1.2.d) is given in Figure 1.7. 
Using this notation, it is easy to verify the Yang-Baxter identity (1.2.f), see 

Figure 1.8 where we apply twice (1.2.b) and (1.2.d). Here is an algebraic form 
of the same argument: 

(idw ® Cu,v)(cu,w ® idy)(id<y <g> CV,w) = cUtw®v(\&u ® CVtw) = 

= (cv,w ® id[/) cu,vm — (cv,w ® idy) ( idv ® cUtW)(cUtV ® i d w ) . 

Using coupons colored with identity endomorphisms of objects, we may give 
different graphical forms to the same equality of morphisms in °V. In Figure 1.9 
we give two graphical forms of (1.2.b). Here id = idv®w- For instance, the upper 
picture in Figure 1.9 presents the equality 

ct/,v<g>w(id[/ ® idv<g>w) = (idv®w ® id(/)(idv ® cu w)(cu v ® idw) 

which is equivalent to (1.2.b). It is left to the reader to give similar reformulations 
of (1.2.c) and to draw the corresponding figures. 
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Figure 1.6 

Duality morphisms by : 11 —•>- V <g> V* and dy '• V* ® V 11 will be represented 
by the right-oriented cup and cap shown in Figure 1.10. For a graphical form of 
the identities (1.3.b), (1.3.c), see Figure 1.11. 

The graphical technique outlined above applies to diagrams with only right-
oriented cups and caps. In Section 2 we shall eliminate this constraint, describe a 
standard picture for the twist, and further generalize the technique. More impor-
tantly, we shall transform this pictorial calculus from a sort of skillful art into a 
concrete mathematical theorem. 

1.7. Elementary examples of ribbon categories. We shall illustrate the concept 
of ribbon category with two simple examples. For more elaborate examples, see 
Chapters XI and XII. 

1. Let A" be a commutative ring with unit. By a projective if-module, we 
mean a finitely generated projective if-module, i.e., a direct summand of Kn with 
finite n = 0, 1, 2,... For example, free A"-modules of finite rank are projective. 
It is obvious that the tensor product of a finite number of projective modules is 
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projective. For any projective if-module V, the dual /('-module V* = Hom^ (V, K) 
is also projective and the canonical homomorphism V —> V** is an isomorphism. 
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Figure 1.8 

Let Proj (K) be the category of projective /^-modules and A"-linear homomor-
phisms. Provide Proj (K) with the usual tensor product over K. Set 1 = K. It 
is obvious that Proj (AT) is a monoidal category. We provide this category with 
braiding, twist, and duality. The braiding in Proj (if) is given by flips described 
in Section 1.2. The twist is given by the identity endomorphisms of objects. For 
any projective AT-module V, set V* = V* = Hom^(V, K) and define dv to be 
the evaluation pairing v 0 w i-> V(W) : V* <g> V —> K. Finally, define bv to be 
the homomorphism K V ® V* dual to dy : V* ® V —> K where we use the 
standard identifications K* = K and (V* ® V)* = V** ® V* = V <g> V*. The last 
two equalities follow from projectivity of V. (If V is a free module with a basis 
{e,}, and (e'ji is the dual basis of V* then by{ 1) = e, <g) el.) All axioms of 
ribbon categories are easily seen to be satisfied. Verification of (1.3.b) and (1.3.c) 
is an exercise in linear algebra, it is left to the reader. 

The ribbon category Proj (if) is not interesting from the viewpoint of applica-
tions to knots. Indeed, we have cy,w = (cw,so that the morphisms associ-
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ated with diagrams are preserved under trading overcrossings for undercrossings, 
which kills the 3-dimensional topology of diagrams (cf. Figure 1.6). 

Applying the definitions of Section 1.5 to the morphisms and objects of Proj (K) 
we get the notions of a dimension for projective A'-modules and a trace for K-
endomorphisms of projective if-modules. We shall denote these dimension and 
trace by Dim and Tr respectively. They generalize the usual dimension and trace 
for free modules and their endomorphisms (cf. Lemma II.4.3.1). 
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Figure 1.11 

2. Let G be a multiplicative abelian group, K a commutative ring with unit, c 
a bilinear pairing G xG -> K* where K* is the multiplicative group of invertible 
elements of K . Thus c ( g g ' , h) — c ( g , h) c { g ' , h) and c ( g , hh') = c ( g , h) c ( g , h') 
for any g, g', h, h' e G. Using these data, we construct a ribbon category T . The 
objects of Y are elements of G. For any g e G, the set of morphisms g —> g 
is a copy of K . For distinct g,h e G the set of morphisms g —*• h consists of 
one element called zero. The composition of two morphisms g —> h —y f is the 
product of the corresponding elements of K if g = h = / and zero otherwise. 
The unit of K plays the role of the identity endomorphism of any object. The 
tensor product of g, h e G is defined to be their product gh e G. The tensor 
product gg' hh' of two morphisms g h and g' —h' is the product of the 
corresponding elements of K if g = h and g' — h' and zero otherwise. It is easy 
to check that T is a strict monoidal category with the unit object being the unit of 
G. For g,h e G, we define the braiding gh —• hg — gh to be c(g, h) e K and the 
twist g —g to be c(g, g) e K . Equalities (1.2.b), (1.2.c), and (1.2.h) follow from 
bilinearity of c. The naturality of the braiding and twist is straightforward. For 
g £ G, the dual object g* is defined to be the inverse € G of g. Morphisms 
(1.3.a) are endomorphisms of the unit of G represented by 1 e K . Equalities 
(1.3.b) and (1.3.c) are straightforward. Formula (1.3.d) follows from the identity 
c{g-\ g - 1 ) = c(g, g). Thus, Y is a ribbon category. 

We may slightly generalize the construction of Y . Besides G, K , c, fix a group 
homomorphism <p : G K* such that ( p i g 2 ) = 1 for all g e G . We define the 
braiding and duality as above but define the twist g -» g to be <p(g) c(g, g) e K . 
It is easy to check that this yields a ribbon category. (The assumption <p(g 2) = 1 
ensures (1.3.d).) This ribbon category is denoted by °V~(G, K , c, <p). The case 
considered above corresponds to <p = 1. 

1.8. Exercises. 1. Use the graphical calculus to show that for any three objects 
U, V, W of a ribbon category, the homomorphisms 

f \ ^ ( d v < S > idiy)(idy. <g> /) : Hom(f/, V ® W) Hom(V* ® U, W) 
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and 

g i-> (idy ® g)(bv ® idy) : Hom(V* ®U,W)-+ Hom(U, V®W) 
are mutually inverse. This establishes a bijective correspondence between the sets 
Hom([/, V®W) and Hom(V*£g>t/, W). Write down similar formulas for a bijective 
correspondence between Hom(f/ ® V, W) and Hom(i/, W <S> V*). 

2. Define the dual /* : V* —> U* of a morphism / : [ / - > • V by the formula 

/* = (dv <g> idy.) (idy. ® / ® idy.) (idK. <8>bv). 
Give a pictorial interpretation of this formula. Use it to show that (idy)* = idy. 
and (fg)* — g*f* for composable morphisms / , g. Show that (1.3.d) is equivalent 
to the formula 

(1.8.a) 6v = (Pv)*. 

3. Show that every duality in a monoidal category V is compatible with the 
tensor product in the sense that for any objects V, W of V, the object (V <g) W)* 
is isomorphic to W* ® V*. Set U = V <g> W. Use the graphical calculus to show 
that the following morphisms are mutually inverse isomorphisms: 

{dv <g> idyy. <g> idy.)(idy. <g> idy ® bW ® idy.) (idy. ® bv) : U* W* ® V*, 

(•dw <S> idy.)(idw. <g> dv® idw <8> idy.)(idw. <g> idy. ® bv) : W* <8> V* ->•
(Hint: use coupons colored with idy.) Show that modulo these isomorphisms we 
have ( / <8> g)* = g* ® /* for any morphisms / , g in T . 

4. Use the graphical calculus to show that if / : { / — > V and g : V —• U 
are mutually inverse morphisms in a ribbon category then ( / <g) g*) by — by and 
dv{g*®f) = du. 

2. Operator invariants of ribbon graphs 

2.0. Outline. The objective of this section is to relate the theory of ribbon cat-
egories to the theory of links in Euclidean space M3. For technical reasons, it 
is convenient to deal with the strip R2 x [0, 1] rather than with R3. This does 
not lead to a loss of generality because any link in M3 may be deformed into 
]R2 x [0, 1]. 

In generalization of links and braids we shall consider graphs embedded in 
M2 x [0, 1], In fact, instead of usual graphs formed by vertices and edges we shall 
consider ribbon graphs formed by small rectangles (coupons) and long bands. It 
is understood that the bands are attached to the bases of coupons and, possibly, 
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to certain intervals in the planes M2 x 0 and R2 x 1. The bands attached to the 
last intervals are called free ends of the graph. 

The next step is to marry the topology of ribbon graphs with the algebra of 
ribbon categories. To this end we introduce colorings of ribbon graphs by objects 
and morphisms of a given ribbon category T . The bands are colored with objects 
whilst the coupons are colored with morphisms. The ribbon graphs with such 
colorings (or rather their isotopy classes) form a monoidal category Riby. The 
definition and study of the category of ribbon graphs marks one of the major 
steps towards the 3-dimensional topological field theory. 

The main result of this section (Theorem 2.5) establishes the existence of a 
certain covariant functor F : Riby — T . The functor F = Fy should be viewed 
as a "topological field theory" in Euclidean 3-space. This functor will play a 
fundamental role in the book. It is instrumental in the construction of 3-manifold 
invariants in Chapter II, in the construction of 3-dimensional TQFT's in Chapter 
IV, as well as in the definition of normalized 6y-symbols in Chapter VI. The 
functor F also provides a solid grounding for the pictorial calculus of Section 
1.6. 

Note that ribbon graphs (and not just links) are really important for the con-
structions in Chapters IV - VI. We demonstrate utility of coupons at the end of 
this section where we discuss a few simple properties and applications of F. 

The definition of ribbon graphs and related notions are somewhat technical. 
They involve a number of small arrangements concerned with orientations, bases 
of coupons, free ends of graphs, etc. The reader should not focus all his atten-
tion on these details, it is more important to catch the general idea rather than 
technicalities. 

2.1. Ribbon graphs and their diagrams. Roughly speaking, ribbon graphs are 
oriented compact surfaces in R3 decomposed into elementary pieces: bands, an-
nuli, and coupons. We start with the formal definition of these pieces. 

A band is the square [0, 1] x [0, 1] or a homeomorphic image of this square. 
The images of the intervals [0, 1] x 0 and [0, 1] x 1 are called bases of the band. 
The image of the interval (1/2) x [0, 1] is called the core of the band. An annulus 
is the cylinder S1 x [0, 1] or a homeomorphic image of this cylinder. The image 
of the circle S1 x (1/2) is called the core of the annulus. A band or an annulus is 
said to be directed if its core is oriented. The orientation of the core is called the 
direction of the band (resp. annuli). A coupon is a band with a distinguished base. 
This distinguished base is called the bottom base of the coupon, the opposite base 
is said to be the top one. 

Let k, I be non-negative integers. We define ribbon graphs with k inputs and / 
outputs or, briefly, ribbon (k, Z)-graphs. A ribbon (k, /)-graph in R3 is an oriented 
surface i l embedded in the strip M2 x [0, 1] and decomposed into a union of a 
finite number of annuli, bands, and coupons such that 
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(i) ft meets the planes R2 x 0, R2 x 1 orthogonally along the following segments 
which are bases of certain bands of ft: 

(2.1.a) { [/ - (1/10), i + (1/10)] x 0 x 0 | i= 1,..., k }, 

(2.1.b) { [j - (1/10), j + (1/10)] x 0 x 1 | j= 1,..., I }. 

In the points of these segments the orientation of ft is determined by the pair of 
vectors (1, 0, 0), (0, 0, 1) tangent to ft; 

(ii) other bases of bands lie on the bases of coupons; otherwise the bands, 
coupons, and annuli are disjoint; 

(iii) the bands and annuli of ft are directed. 

The surface ft with the splitting into annuli, bands, and coupons forgotten is 
called the surface of the ribbon (k, /)-graph ft. The intervals (2.1.a) (resp. (2.1.b)) 
are called bottom (resp. top) boundary intervals of the graph. 

Each band should be thought of as a narrow strip or ribbon with short bases. 
The coupons lie in R2 x (0, 1), each coupon should be thought of as a small 
rectangle with a distinguished base. Note that we impose no conditions on the 
geometric position of coupons in R2 x (0, 1). In particular, the distinguished 
(bottom) bases of coupons may actually lie higher than the opposite bases. (Since 
we shall consider ribbon graphs up to isotopy we shall be able to avoid this in 
our pictures.) 

The choice of orientation for the surface ft of a ribbon graph is equivalent to a 
choice of a preferred side of ft. (We fix the right-handed orientation in R3.) The 
orientation condition in (i) means that near the boundary intervals the preferred 
side of ft is the one turned up, i.e., towards the reader. 

By a ribbon graph, we mean a ribbon (k, 0-graph with k,l > 0. Examples 
of ribbon graphs are given in Figure 2.1 where the bottom bases of coupons are 
their lower horizontal bases and the preferred side of ft is the one turned up. 

By isotopy of ribbon graphs, we mean isotopy in the strip R2 x [0, 1] constant 
on the boundary intervals and preserving the splitting into annuli, bands, and 
coupons, as well as preserving the directions of bands and annuli, and the orien-
tation of the graph surface. Note that in the course of isotopy the bases of bands 
lying on the bases of coupons may move along these bases (not touching each 
other) but can not slide to the sides of coupons. Note also that when we rotate 
an annulus in R3 around its core by the angle of IT we get the same annulus with 
the opposite orientation. Therefore, orientations of annuli are immaterial when 
we consider ribbon graphs up to isotopy. 

There is a convenient technique enabling us to present ribbon graphs by plane 
pictures generalizing the standard knot diagrams. The idea is to deform the graph 
in R2 x [0, 1] into a "standard position" so that it lies almost parallel and very 
close to the plane R x 0 x R as in Figures 2.1.a and 2.1.b. (The plane R x 0 x R 
is identified with the plane of the pictures.) In particular, the coupons should be 
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Figure 2.1 

plane rectangles parallel to E x 0 x E. The bases of coupons should be parallel 
to the horizontal line E x 0 x 0 and the top base of each coupon should lie higher 
than the bottom one. The orientation of coupons induced by the orientation of 
11 should correspond to the counterclockwise orientation in E x 0 x R (so that 
the preferred side of each coupon is turned towards the reader). The bands and 
annuli of the graph should go close and "parallel" to this plane. The projections 
of the cores of bands and annuli in the plane 1 x 0 x 1 should have only double 
transversal crossings and should not overlap with the projections of coupons. 
After having deformed the graph in such a position we draw the projections of 
the coupons and the cores of the bands and annuli in E x 0 x E taking into 
account the overcrossings and undercrossings of the cores. The projections of the 
cores of bands and annuli are oriented in accordance with their directions. The 
resulting picture is called a diagram of the ribbon graph. 

Looking at such a diagram we may reconstruct the original ribbon graph (up 
to isotopy) just by letting the bands and annuli go "parallel" to the plane of the 
picture along their cores. One may think that arcs in our diagrams have some 
small width so that actually we draw very thin bands and annuli. For example, 
the graph diagrams in Figure 2.2 present the same ribbon graphs as in Figure 2.1, 
(a) and (b). 

The technique of graph diagrams is sufficiently general: any ribbon graph is 
isotopic to a ribbon graph lying in a standard position (as described above) and 
therefore presented by a graph diagram. To see this, we first deform the graph 
so that its coupons lie in a standard position and then we deform the bands so 
that they go "parallel" to the plane of the picture. The only problem which we 
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Figure 2.2 

may encounter is that the bands may be twisted several times around their cores. 
However, both positive and negative twists in a band are isotopie to cirls which 
go "parallel" to the plane. See Figure 2.3 which presents positive and negative 
twists in a band. (The symbol « denotes isotopy.) Note that positivity of the twist 
does not depend on the direction of the band and depends solely on the orientation 
of the ambient 3-manifold; we use everywhere the right-handed orientation in M3. 
Annuii are treated in a similar way. 

Figure 2.3 

The theory of ribbon graphs generalizes the more familiar theory of framed 
oriented links in R3. A link L in R3 is a finite collection of smooth disjoint embed-
ded circles L\,..., Lm c R3. The link L is oriented if its components L\,..., Lm 

are oriented. The link L is framed if it is endowed with a homotopy class of 
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non-singular normal vector fields on L\,..., Lm in R3. Note that the homotopy 
class of a non-singular normal vector field on a component L, is completely de-
termined by the rotation number of the field around L¡. (This is an integer defined 
as the linking number of L, with the longitude L\ c l ' \ L¡ obtained by pushing 
Li along the normal vector field on L,; to compute this linking number we need 
to orient L, and provide L- with the induced orientation; the resulting linking 
number does not depend on the choice of orientation in L,.) Therefore, in order 
to specify a framing on a link it suffices to assign an integer to each component. 
These integers are called framing numbers or framings. 

To each ribbon (0,0)-graph Í! consisting of annuli we may associate the link of 
circles in R3 formed by the oriented cores of the annuli. These circles are provided 
with a normal vector field transversal to fl. The resulting framing is correctly 
defined since different choices of the normal vector field lead to homotopic vector 
fields on the link. In this way we get a bijective correspondence between isotopy 
classes of ribbon (0,0)-graphs consisting of annuli and isotopy classes of framed 
oriented links in M2 x (0, 1). For instance, the ribbon graph drawn in Figure 2.1.b 
corresponds to the trefoil knot with the framing number —3. 

2.2. Ribbon graphs over Y. Fix a strict monoidal category with duality T. A 
ribbon graph is said to be colored (over T) if each band and each annulus of the 
graph is equipped with an object of Y. This object is called the color of the band 
(the annulus). 

The coupons of a ribbon graph may be colored by morphisms in T. Let Q be 
a coupon of a colored ribbon graph Í1. Let V\,..., Vm be the colors of the bands 
of Í1 incident to the bottom base of Q and encountered in the order induced 
by the orientation of i i restricted to Q (see Figure 2.4 where Q is oriented 
counterclockwise). Let Wi,..., Wn be the colors of the bands of ft incident to the 
top base of Q and encountered in the order induced by the opposite orientation 
of Q. Let £i,...,Em e {+1,-1} (resp. v\,..., vn e {1,-1}) be the numbers 
determined by the directions of these bands: e¡ = +1 (resp. vj = — 1) if the band 
is directed "out" of the coupon and e¡ = — 1 (resp. vj = +1) in the opposite case. 
A color of the coupon Q is an arbitrary morphism 

/ : V? ® ... ® Ve™ -> W\] <g>... (8) Wv
n" 

where for an object V of Y, we set V+1 = V and V - 1 = V*. A ribbon graph is 
v-colored (over Y) if it is colored and all its coupons are provided with colors as 
above. It is in the definition of colorings of coupons that we need to distinguish 
bottom and top bases of coupons. 

For example, Figure 2.4 presents a u-colored ribbon (m, n)-graph containing 
one coupon, m + n vertical untwisted unlinked bands incident to this coupon, 
and no annuli. As above the signs e\,..., £m, v\,..., vn e {+1, —1} determine the 
directions of the bands (the band is directed downwards if the corresponding sign 
is +1 and upwards if the sign is — 1). We shall call this ribbon graph an elementary 
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(W, , v,) , v ) 

/ 

«i> ( V , e . ) 

Figure 2.4 

u-colored ribbon graph. Figure 2.1 gives a few examples of non-elementary ribbon 
graphs. 

By isotopy of colored (resp. u-colored) ribbon graphs, we mean color-preserv-
ing isotopy. 

The technique of diagrams readily extends to colored and u-colored ribbon 
graphs. To present a colored ribbon graph by a diagram, we attach an object of 
Y to the cores of bands and annuli. To present a u-colored ribbon graph, we 
additionally assign colors to all coupons. 

The notions of colored and t>-colored ribbon graphs at first glance seem to be 
artificial and eclectic. These notions mix topological and algebraic concepts in a 
seemingly arbitrary way. In particular, links may be colored in many different 
ways, leading to numerous link invariants (constructed below). However, it is 
precisely in this mix of topology and algebra that lies the novelty and strength 
of the theory. As a specific justification of this approach, note that the invariants 
of a framed link L c R 3 corresponding to essentially all colorings of L may be 
combined to produce a single invariant of the 3-manifold obtained by surgery 
along L (see Chapter II). 

2.3. Category of ribbon graphs over Y. Let T be a strict monoidal category 
with duality. The u-colored ribbon graphs over Y may be organized into a 
strict monoidal category denoted by Riby. The objects of Riby are fi-
nite sequences ((Vi, ei),.. . , (VOT, em)) where V\,..., Vm are objects of Y and 
e \ , . . . ,em e {+1,-1}. The empty sequence is also considered as an object 
of Riby. A morphism tj —• 77' in Riby is an isotopy type of a «-colored 
ribbon graph (over Y) such that 77 (resp. 77') is the sequence of colors and 
directions of those bands which hit the bottom (resp. top) boundary inter-
vals. As usual, s = 1 corresponds to the downward direction near the cor-
responding boundary interval and e = — 1 corresponds to the band directed 
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up. For example, the ribbon graph drawn in Figure 2.4 represents a morphism 
((Vi, £i),..., (Vm, em)) ((Wi, v{),..., (Wn, vn)). It should be emphasized that 
isotopic v-colored ribbon graphs present the same morphism in Riby. 

The composition of two morphisms / : 77 77' and g : 77' —> 77" is obtained 
by putting a u-colored ribbon graph representing g on the top of a ribbon graph 
representing / , gluing the corresponding ends, and compressing the result into 
M2 x [0, 1], The identity morphisms are represented by ribbon graphs which have 
no annuli and no coupons, and consist of untwisted unlinked vertical bands. The 
identity endomorphism of the empty sequence is represented by the empty ribbon 
graph. 

We provide Riby with a tensor multiplication. The tensor product of objects 
77 and 77' is their juxtaposition 77,77'. The tensor product of morphisms / , g is ob-

Figure 2.5 
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tained by placing a u-colored ribbon graph representing / to the left of a u-colored 
ribbon graph representing g so that there is no mutual linking or intersection. It 
is obvious that this tensor multiplication makes Riby a strict monoidal category. 

We shall need certain specific morphisms in Riby presented by graph diagrams 
in Figure 2.5 where we also specify notation for these morphisms. Here the colors 
of the strings V, W run over objects of T . The morphisms in Riby presented by 
the diagrams in Figure 2.6 will be denoted by 4-v, tv, <Pv, <Pv, f"V, n^, Uv, Uy, 
respectively. 

Figure 2.6 

A ribbon graph over Y which has no coupons is called a ribbon tangle over 
Y. It is obvious that ribbon tangles form a subcategory of Riby which has the 
same objects as Riby but less morphisms. This subcategory is called the category 
of colored ribbon tangles. It is a strict monoidal category under the same tensor 
product. 

As the reader may have guessed, the category Riby admits a natural braiding, 
twist, and duality and becomes in this way a ribbon category. We shall not use 
these structures in Riby and do not discuss them. (For similar structures in a 
related setting, see Chapter XII.) 

2.4. Digression on covariant functors. A covariant functor F of a category % 
into a category % assigns to each object V of an object F(V) of and to 
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each morphism / : V -»• W in Slf a morphism F ( / ) : F(V) F(W0 in <3/ so 
that .F(idy) = id/r(v) for any object V of % and F ( f g ) = F(f)F(g) for any two 
composable morphisms f,g in 31?. If and are monoidal categories then the 
covariant functor F : 36 —> Y is said to preserve the tensor product if F(l%) = 
and for any two objects or morphisms / , g of S£ we have F(f®g) = F(f)®F(g). 

2.5. Theorem. Let Y be a strict ribbon category with braiding c, twist 9, and 
compatible duality (*, b, d). There exists a unique covariant functor F = Fy : 
Riby —> T preserving the tensor product and satisfying the following conditions: 

(1) F transforms any object (V, +1) into V and any object (V, —1) into V*; 
(2) for any objects V, W of T, we have 

F(X+w) = cv,w, F(<pv) = ev, F(Uv) = bv, F(nv) = dv; 

(3) for any elementary v-colored ribbon graph F, we have F(F) = / where f 
is the color of the only coupon of F. 

The functor F has the following properties: 

(2.5.a) F{XyW) = (cWy)~\ F(YyW) = (cwy.)'1, F{YyiW) = cv.,w, 

F(ZyW) = (Cw*,V) F(ZVW) = Cyw*, 

F(T+W) = Cy*w*, F{TyW) = (cw*y*r\ F(<p'y) = (0vyl. 

Theorem 2.5 plays a fundamental role in this monograph. It may be regarded 
from several complementary viewpoints. First of all, it yields isotopy invariants 
of u-colored ribbon graphs and, in particular, invariants of colored framed links 
in R3 . Indeed, by definition of Riby, isotopic u-colored ribbon graphs i l and 
ft' represent the same morphism in Riby and therefore F(Q) = F(Cl'). As we 
shall see in Chapter XII these invariants form a far-reaching generalization of the 
Jones polynomial of links. Secondly, Theorem 2.5 elucidates the role of braiding, 
twist, and duality exhibiting them as elementary blocks sufficient to build up a 
consistent theory of isotopy invariants of links. Theorem 2.5 renders rigorous and 
amplifies the graphical calculus described in Section 1.6. The main new feature 
is the isotopy invariance of the morphisms in T associated to ribbon graphs. This 
makes Theorem 2.5 a useful tool in the study of ribbon categories. Theorem 2.5 
may also be viewed as a machine extracting morphisms in Y from ribbon graphs 
in R3 . 

The morphism F(ft) associated to a u-colored ribbon graph ft is called the 
operator invariant of ft. The term "operator invariant" does not mean that F(( l ) 
is linear in any sense. This term is intended to remind of the following multi-
plicativity properties of F. Since F is a covariant functor we have 

(2.5.b) F(4,v) = idv, F ( t v ) = idv*. and F ( f t f t ' ) = F ( f t )F ( f t ' ) 
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for any two composable «-colored ribbon graphs ft and ft'. Since F preserves 
the tensor product we have 

(2.5.c) F ( f t ® ft') = F( f t ) (8) F(f t ' ) 

for any two «-colored ribbon graphs f1 and ft'. Note also that for any «-colored 
ribbon (0,0)-graph il , we have F(f t ) e K = End(ly). 

The values of F on Uy and Ply may be computed from the formulas 

(2.5.d) Uy = ( tv ®<Pv) ° Z+v o Uv; 

(2.5.e) C\y = C\V O Zyy O (<pv® t v ) . 

The proof of Theorem 2.5 occupies Sections 3 and 4. The idea of the proof 
may be roughly described as follows. We shall use the tensor product and the 
composition in Riby in order to express any ribbon graph via the ribbon graphs 
mentioned in the items (2) and (3) of the theorem. Such an expression allows 
us to define the value of F for any ribbon graph. Although every ribbon graph 
admits different expressions of this kind, they may be obtained from each other by 
elementary local transformations. To show that F is correctly defined, we verify 
the invariance of F under these transformations. 

To demonstrate the power of Theorem 2.5 we devote the rest of Section 2 to 
applications of this theorem to duality, traces, and dimensions in ribbon categories. 
We also study the behavior of F(f t ) under simple transformations of ribbon 
graphs. 

Up to the end of Section 2, the symbol Y denotes a strict ribbon category. 
By coloring and u-coloring of ribbon graphs, we mean coloring and u-coloring 
over Y. As in Section 1, we shall write i l = i l ' for «-colored ribbon graphs 
i l , i l ' such that F(f t ) = F(f t ' ) . For instance, if i l « ft', i.e., ft and ft' are 
isotopic, then ft = ft'. Similarly, for a v-colored ribbon graph ft and a morphism 
/ in Y, we write ft = / and / = ft whenever / = F(f t ) . For example, 
xv,w = cv,w, <Pv = 0v, etc. 

2.6. Applications to duality 

2.6.1. Corollary. For any object V ofY, the object V** is canonically isomorphic 
to V. 

Proof. Consider the morphisms ay : V V**, fiy '• V** V corresponding 
under the functor F to the «-colored ribbon graphs in Figure 2.7 where id = idy . 
Thus, 

av = (F(riy) ® idv**)(idy (8) bv*), Pv = ( d v . <g> idv)(idv.* ® F(Uy)). 

The argument in Figure 2.8 shows that /3yav = idy. (We use the isotopy invari-
ance and other properties of F established in Theorem 2.5; as an exercise the 
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reader may rewrite the equalities in Figure 2.8 in the algebraic form.) A similar 
argument shows that av /3y = i d y » . 
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2.6.2. Corollary. The morphisms b^ : 1 —> 1* and d-^ : 1* -* 1 are mutually 
inverse isomorphisms. 

Proof. The existence of isomorphism 1** «a 1 implies that 11* is isomorphic to 1. 
Indeed, 

Formula (1.3.b) applied to V = 1 yields d^b-^ = id^. This equality and the 
commutativity of End(l) imply that for any isomorphism g : t —> 1*, we have 

(g~' bfKd-^g) = = dfl&fl = id j . 

Therefore b-̂ d-̂  = id^». 

2.6.3. Remark. The proof of Corollary 2.6.1 may seem to certain readers a 
bit light-minded and not quite convincing. In fact, the proof is complete albeit 
based on somewhat unusual ideas. We introduce the morphisms ay, fiv using the 
functor F. Then we compute their composition using the fact that F is a covariant 
functor invariant under a few simple modifications of «-colored ribbon graphs. 
The modifications in question include isotopy and cancelling of coupons colored 
with the identity morphisms. The invariance of F follows from Theorem 2.5. The 
reader would do well to analyze the proof of Corollary 2.6.1 in detail; we shall 
systematically use similar arguments. 

2.7. Applications to trace and dimension 

2.7.1. Corollary. Let f be an endomorphism of an object V of Y. Let Clf be the 
ribbon (0, 0)-graph consisting of one f-colored coupon and one V-colored band 
and presented by the diagram in Figure 2.9. Then F(ilf) = t r ( / ) . 

r = r <g> i « r <8> t * * (1* ® 11)* = (A*)* ss 1. 

/ / 

Figure 2.9 

This Corollary gives a geometric interpretation of the trace of morphisms 
introduced in Section 1.5. Applying Corollary 2.7.1 to / = idy we get dim(V) = 
F(ily) where fly is an unknotted untwisted annulus of color V with an arbitrary 
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direction of the core. (The annulus fty is obtained from fl idv by elimination of 
the coupon. This does not change the operator invariant because this coupon is 
colored with the identity morphism.) Note that there is an isotopy of f l v onto 
itself reversing direction of the core. This fact and the isotopy invariance of F(f ty) 
explain why F(f ty) does not depend on this direction. 

Proof of Corollary. Let T/ be the u-colored ribbon (1,1)-graph presented by the 
diagram in Figure 1.1 with W = V. It is obvious that ft/ « Ply o (I"/® f y ) o Uy 
where the symbol « denotes isotopy. It follows from (2.5.e) that 

ft/ R» fly O Zyy o (<pv<g> f y ) o (l"/® tv) ° Uy. 

Theorem 2.5 implies that F ( f t / ) is equal to the expression used to define t r ( / ) . 

2.7.2. Corollary (a generalization of Corollary 2.7.1). Let ft be a v-colored 
ribbon graph determining an endomorphism of a certain object of Riby. Let ft 
be the v-colored ribbon (0, 0)-graph obtained by closing the free ends of ft (see 
Figure 2.10 where the box bounded by broken line substitutes a diagram of ft). 
Then tr(F(ft)) = F(f t ) . 

Figure 2.10 

Proof Note that the ribbon (0, 0)-graph ft is obtained by connecting the top free 
ends of ft to the bottom free ends of ft in the way indicated in Figure 2.10. The 
u-coloring of ft determines a v-coloring of ft in the obvious way. Set V = F(r)) 
where 17 is the object of Riby which is both the source and the target of ft. The 
box bounded by broken line with a diagram of ft inside may be replaced with 
a coupon colored by F(f t ) : V -> V without changing the operator invariant. 
This yields the first equality in Figure 2.11. The second equality follows from the 
properties of F specified in Theorem 2.5. The isotopy in Figure 2.11 is obtained 
by pulling the idy-colored coupon along the strands so that it comes close to 
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Q. = 

Figure 2.11 

the F(fl)-colored coupon from below. The last equality in Figure 2.11 follows 
from the properties of F. It remains to apply Corollary 2.7.1 to deduce that 
ft = tr(F(ft)). 

2.7.3. Corollary. For any objects V, W ofT, we have the equality in Figure 2.12. 

Figure 2.12 
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This assertion follows from Corollary 2.7.2 applied to f i = X^, vXyW and the 
isotopy invariance of F. The framed link presented by the diagram in Figure 2.12 
is called the Hopf link with zero framing. 

2.7.4. Proof of Lemma 1.5.1. The proof of the equality t r ( f g ) = t r ( g f ) is given 
in Figure 2.13. The proof of the equality tr(f<S>g) = tr(/) tr(g) is given in Figure 
2.14. Here we use Corollary 2.7.2 and the isotopy invariance of F. 

Figure 2.13 

= tr ( g ® f ) 

Figure 2.14 

Let us show that for any k e K, we have tr(fc) = k. It follows from (1.2.e), 
the equality 6^ = id^, and Corollary 2.6.2 that 

tr(fc) = d^(k <g> id^ . ) ^ = (idj ® d^)(k ® i d j ® id^«)(id^ <8> b^) = 

= k ® id-j <S> i d -^»)^ ) = k <S) d-^b-^ = k <g> id-j = k. 

2.8. Transformations of ribbon graphs. We describe three simple geometric 
transformations of ribbon graphs and discuss the behavior of the operator invariant 
under these transformations. The first transformation is applied to an annulus 
component of a ribbon graph. It reverses the direction of (the core of) the annulus 
and replaces its color by the dual object. The second transformation is applied to 
an annulus component colored with the tensor product of two objects of Y; the 
annulus is split into two parallel annuli colored with these two objects. Finally, 
the third transformation is the mirror reflection of the ribbon graph with respect 



46 I. Invariants of graphs in Euclidean 3-space 

to the plane of our pictures R <8> 0 <g> R. (This reflection keeps the boundary ends 
of the graph.) We shall see that the first two transformations preserve the operator 
invariant whereas the third one involves the passage to the mirror ribbon category. 

2.8.1. Corollary. Let ft be a v-colored ribbon graph containing an annulus 
component I. Let ft' be the v-colored ribbon graph obtained from f l by reversing 
the direction of I and replacing the color of I with its dual object. Then F((l') = 

Proof Denote the color of I by V. Choose a small vertical segment of I directed 
upwards and replace it by the composition of two coupons Q\ and Qi both colored 
with idy (see Figure 2.15 where the distinguished (bottom) bases of Q\ and Q2 
are the lower horizontal bases). This transformation does not change the operator 
invariant of ft. Now pulling the coupon <21 along I we deform the graph in R3 

so that at the end Q\ comes close to Q2 from below. Since the colors of Q\ 
and Q2 are the identity endomorphisms of V* we may eliminate Q\ and Q2 in 
this final position without changing the operator invariant. This yields ft'. Hence 
F(f t ' ) = F(f t ) . 

iV 

id 

< 
v* 

id 

V 

Figure 2.15 

2.8.2. Corollary. For any object V ofY, we have dim(V*) = dim(V). 

Proof. The oriented trivial knot is isotopic to the same knot with the opposite 
orientation. Therefore Corollary 2.8.1 and the remarks following the statement of 
Corollary 2.7.1 imply Corollary 2.8.2. 

2.8.3. Corollary. Let il be a v-colored ribbon graph containing an annulus 
component I of color U (g) V where U and V are two objects of T. Let i l ' be 
the v-colored ribbon graph obtained from ft by cutting i off along its core and 
coloring two newly emerging annuli with U and V. Then F(iT) = F(fl'). 

Proof. The idea of the proof is the same as in the proof of the previous corollary. 
Take a small vertical segment of I directed downwards and replace it by two 
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coupons as in Figure 2.16 where id = idy^y. It is obvious that this modification 
does not change the operator invariant. Now, pushing the upper coupon along I 
until it approaches the lower coupon from below we deform our ribbon graph in 
the position where we may cancel these two coupons. This does not change the 
operator invariant and results in il'. Hence F (il) = F (il'). 

i t /® y 

id 

< < i 
id 

'u 

Figure 2.16 

2.8.4. Corollary. Let SI be a v-colored ribbon graph over Y. Let fI be its mirror 
image with respect to the plane 1 x 0 x K. Then 

F M ) = Fy(il). 

Note that to get a diagram of ft from a diagram of i l we should simply 
trade all overcrossings for undercrossings. For instance, the mirror images of 

Ty \y are Xy^, Yy^, Zyy/, Tyy/ respectively. 

Proof of Corollary. Consider the covariant functor G : Riby —* Y which co-
incides on the objects with F-y and transforms the morphism represented by a 
u-colored ribbon graph i l into Fy(il). (We are allowed to regard F^(il) as a mor-
phism in the category T because Y and Y have the same underlying monoidal 
category.) It is straightforward to see that G satisfies conditions (1) - (3) of 
Theorem 2.5. In particular, 

= Fy(Xyyj) — (cw,v) 1 = Cy^w = Fy{XyW) 

and 

G(<pv) = F^(<p'y) = (0v)~l =dv = Fr(<Pv)-

The uniqueness in Theorem 2.5 implies that G = Fy. This yields our claim. 

2.8.5. Corollary. The dimensions of any object of Y with respect to Y and Y 
are equal. 
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This follows from Corollary 2.8.4 since the mirror image of a plane annulus 
is the same annulus. 

2.9. Exercises. 1. Let f l be a «-colored ribbon graph containing an annulus 
component. Let f l ' be the «-colored ribbon graph obtained from f l by replacing 
the color of this component with an isomorphic object. Show that f l = f l ' . What 
is the natural analogue of this assertion for bands? What are the analogues of 
Corollaries 2.8.1 and 2.8.3 for bands? 

2. Let f l be a u-colored ribbon graph containing an annulus component or 
a band of color 1. Let ft' be the u-colored ribbon graph obtained from f l by 
eliminating this annulus (resp. band). Show that f l = f l ' . 

3. Show that for any three objects U, V, W of a ribbon category, the formulas 
/ i-> (idv <g> F(n^))(/ <g> idw . ) and g h» (g ® idw)(idf/ <g> establish 
mutually inverse bijective correspondences between the sets Hom(i/, V ® W) and 
Hom(C/ ® W*, V). Write down similar formulas for a bijective correspondence 
between Hom(£/ <g> V, W) and Hom(V, U* ® W). 

4. Show that if 6V = idy for all objects V of Y then for any colored ribbon 
graph f l consisting of m annuli, we have F(il) = JJ™ j dim(V,) where Vi, . . . , Vm 

are the colors of these annuli. This applies, for example, to the ribbon category 
constructed in Section 1.7.1. 

5. Let V be the ribbon category Y(G, K, c, <p) constructed in Section 1.7.2. 
Use formulas (2.5.d), (2.5.e) to show that for any g e G, we have F(U~) = cp(g) 
and F ( n j ) = tp(g). Deduce from these equalities that dim(g) = cp(g) for any 
g e G. Show that for a framed m-component link L = Li U ... U Lm whose 
components are colored with gi , . . . , gm e G respectively, we have 

m 

F(L) = [ ] (c(gj, gk) c{gk, gj))'» x ft c(gj, gj)l'<p(gj)l>+1 

1 <j<k<m 7=1 

where ljk e Z is the linking number of Lj and Lk, and I j e Z is the framing 
number of Lj. 

6. Let V be an object of a ribbon category Y such that any endomorphism of 
V has the form £(g>idv for certain k e K = End(Uy). Let f l be a «-colored ribbon 
(0, 0)-graph containing an annulus of color V. Show that F(f l ) is divisible by 
dim(V) in the semigroup K. (Hint: present f l as the closure of a «-colored ribbon 
(l,l)-graph which is an endomorphism of (V, 1).) 

7. Show that if duality in a strict monoidal category Y is compatible with 
a braiding and a twist then the square of the duality functor (V V*, f 
/ * ) : Y Y is canonically equivalent to the identity functor Y -»• Y (cf. 
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Exercise 1.8.2). Show that for any endomorphism / of any object of Y, we have 
tr(/*) = t r ( / ) . 

3. Reduction of Theorem 2.5 to lemmas 

3.0. Outline. The functor F may be regarded as a "linear representation" of the 
category Riby. This point of view allows us to appeal to the standard technique 
of group theory: in order to define a linear representation of a group one assigns 
matrices to generators and checks definining relations. Following this line we 
shall introduce generators and relations for Riby and use them to construct F. 

The material of Sections 3 and 4 will not be used in the remaining part of the 
book and may be skipped without harm for what follows. Still, the author finds 
the arguments given in these two sections beautiful and instructive in themselves. 

3.1. Generators for Riby. Our immediate aim is to describe the category of 
u-colored ribbon graphs Riby and its subcategory of colored ribbon tangles in 
terms of generators and relations. 

We say that a family of morphisms in a strict monoidal category % generates 
if any morphism in % may be obtained from these generators and the identity 

endomorphisms of objects of dC using composition and tensor product. A system 
of relations between the generating morphisms is said to be complete if any 
relation between these morphisms may be deduced from the given ones using the 
axioms of strict monoidal category. For a more detailed discussion of generators 
and relations in monoidal categories, see Section 4.2. 

Recall the morphisms in Riby introduced at the end of Section 2.3. 

3.1.1. Lemma. The colored ribbon tangles 

(3.1.a) XyW, ZyW, (pV, (p'v, Uy, Hy 

where V, W run over objects ofY and v runs over +1,-1 generate the category 
of ribbon tangles. The same ribbon tangles together with all elementary v-colored 
ribbon graphs generate Riby. 

Proof. To prove the lemma we need the notion of a generic tangle diagram. Let 
D c R x [0, 1] be a diagram of a ribbon tangle. By the height function on D, we 
mean the projection l x [ 0 , 1] [0, 1] restricted to D. By an extremal point of D, 
we mean a point of D lying in E x (0, 1) (i.e., distinct from the end points of D) 
such that the height function on D attains its local maximum or local minimum in 
this point. By singular points on D, we mean extremal points and crossing points 
of D. We say that D is generic if its extremal points are distinct from its crossing 
points, the singular points of D are finite in number and lie on different levels 
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of the height function, and the height function is non-degenerate in all extremal 
points. The last condition means that in a neighborhood of any extremal point 
the diagram D looks like a cup or a cap, i.e., like the graph of the function x2 or 
—x2 near x = 0. 

It is obvious that a small deformation transforms any tangle diagram into a 
generic tangle diagram. Therefore every ribbon tangle may be presented by a 
generic tangle diagram. 

Take an arbitrary ribbon tangle and present it by a generic diagram D c 
E x [0, 1]. Consider the boundary lines of the strip E x [0, 1] and draw several 
parallel horizontal lines in this strip so that between any two adjacent lines lies 
no more than one singular point of D. It is clear that the part of D lying between 
such adjacent lines represents the tensor product of several identity morphisms 
and one morphism from the family of morphisms drawn in Figures 2.5 and 2.6 
(except <p, if!). The ribbon tangle presented by D is decomposed in this way 
in a composition of such tensor products. To prove the first assertion of the 
lemma it remains to express the tangles drawn in Figures 2.5 and 2.6 via the 
tangles (3.1.a) and the "identity" tangles f y , lv- Such expressions are provided 
by (2.5.d), (2.5.e), and 

(3.1.b) Yv
vw = ( i>® U ® t v X t v t v ) ( t v ® 4-w ®UV), 

(3.1.c) = (nv<g> tw ® t v X t v t v X t v ® U ®UV) 

where v = ±1. In the last formula we substitute (3.1.b) to get an expression for 
Ty W via the generators. (The reader is urged to draw the corresponding pictures.) 

The second assertion of Lemma is proven similarly: in addition to crossing 
points and local extrema on a diagram we should single out the coupons and 
apply the same argument. 

3.2. Relations between generating tangles. Here is a list of fundamental relations 
between the tangles (3.1.a): 

(3.2.a) (U ®X+V) (X+w® | v ) a t / = 

= Ic/) (iv (X~u,v® iw), 

(3.2.b) a v ®n v ) (uK® iv), 

(3.2.C) t v = ( n v ® U ) ( t ® U v ) , 

(3.2.d) Xv,w = {X+tV)~\ 

(3.2.e) <Pv = (<Pv) 1, 


