International Series in Operations Research & Management Science

Joseph C. Paradi H. David Sherman Fai Keung Tam

Data Envelopment Analysis in the Financial Services Industry

A guide for practitioners and analysts working in Operations Research using DEA

International Series in Operations Research & Management Science

Volume 266

Series Editor

Camille C. Price Stephen F. Austin State University, TX, USA

Associate Series Editor

Joe Zhu Worcester Polytechnic Institute, MA, USA

Founding Series Editor

Frederick S. Hillier Stanford University, CA, USA

More information about this series at http://www.springer.com/series/6161

Joseph C. Paradi • H. David Sherman Fai Keung Tam

Data Envelopment Analysis in the Financial Services Industry

A Guide for Practitioners and Analysts Working in Operations Research Using DEA

Joseph C. Paradi University of Toronto Toronto, ON, Canada

Fai Keung Tam University of Toronto Toronto, ON, Canada H. David Sherman Northeastern University Boston, MA, USA

ISSN 0884-8289 ISSN 2214-7934 (electronic) International Series in Operations Research & Management Science ISBN 978-3-319-69723-9 ISBN 978-3-319-69725-3 (eBook) https://doi.org/10.1007/978-3-319-69725-3

Library of Congress Control Number: 2017955958

© Springer International Publishing AG 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland To our significant others: Monika, Linda, and Bernice; David's supportive daughters Amanda and Caroline; and Joseph's sons Joseph and David and grandchildren Andrew, Laura, and Sophie

Foreword

I am extremely pleased that the authors have written this book and honored that they have invited me to develop the foreword.

I have known Joe Paradi and David Sherman for a number of years and have followed their pioneering research from the beginning. Joe was the first to utilize extensive data visualization to communicate DEA results to managers, while David wrote the first introductory monograph explaining DEA for the service sector. Both have extensive consulting experience and managerial expertise which produce a unique and valuable perspective. Over the years, they have developed separate impressive research agendas. I am very pleased that they have joined forces with Fai Keung Tam to produce this book. We have had many discussions of the critical need for such a book collecting together and showcasing studies of managerial importance. The result should help the reader better appreciate the power of DEA as a novel approach for organizing and analyzing data to produce valuable insight.

As mentioned in their introduction, there has been a host of DEA-related articles produced in the past 40 years. The DEA bibliography that I maintain now contains around 15,000 books, dissertations, and articles published since 1978. Unfortunately, the majority of these articles are not particularly useful. Many are a simple study of a specific industry in a single country at one point in time for which the results simply state the relative efficiency scores for a list of DMUs. Such articles are not valuable in that they are a simple ordering of units and do not provide helpful insight for managers such as trends, comparisons across regions, organizational subgroups or ownership types, multinational comparisons, etc. In short, the explanatory power is small frequently due to the shortage of temporal data, failure to perform a thorough analysis across multiple models, model extensions, and various subsets of the data and/or shortcomings of the experimental design.

This book seeks to address this problem by showcasing articles from the financial services area that describe innovative approaches and novel applications that provide insight and uncover transferable best practices. Of course the models, approaches, and advice while stated in the context of financial services are easily applicable to other industry sectors.

My hope is that DEA researchers will familiarize themselves with these compelling applications and approaches and heed the authors' guidance and advice. Hopefully this will result in a significant increase in the number of useful DEA articles for which rigorous analysis produces valuable insight and directly impacts managerial practice. Such an advancement will enhance the field and more fully realize the potential of the DEA methodology.

> Lawrence M. Seiford Department of Industrial and Operations Engineering The University of Michigan Ann Arbor, MI, USA

Acknowledgments

Once a person writes a book, s/he learns the hard lesson that it takes several times more effort than anticipated, longer than planned and the completion almost becomes an obsession. Of course, aside from the authors of the book, a lot of others make contributions, some more, some less, but all are essential to success.

First, we would like to thank the owners of the copyrighted materials they so graciously allowed us to use and include in this book. All good contributions to science are based on the work that has been done by many others in the far as well as in the recent past.

Aside from the use of copyrighted materials from external sources, we made use of a substantial amount of research results and work completed or being worked on by our own students. These outstanding young women and men form the foundation of the future in not only DEA but all aspects of our society. We appreciate their enthusiasm in helping us with this book. They deserve much of the credit for the ideas, development, and progress in the application of DEA to real-life problems. Here they are and our postdoctoral fellows:

Burçu Anadol	Parisa H. Ardehali	Maryam Badrizadeh
Barak Edelstein	Allison Hewlitt	Angela Tran Kingyens
Alex E. LaPlante	Denise McEachern	Elizabeth Min
Peter Pille	Stephen Rouatt	Paul C. Simak
Shabnam Sorkhi	Taraneh Sowlati	Niloofar Tochaie
Sandra A. Vela	D'Andre Wilson	Tracy Yang
Zijiang Yang		

Postdoctoral fellows: Mette Asmild, Dan Rosen, Claire Schaffnit, Xiaopeng Yang, and Haiyan Zhu

We also thank all who suggested ways to do things, provided examples of how to view real-world problems, and added the "reality" factor to the work we reported on. We thank dozens of professionals who collaborated with us in the work, without

Acknowledgments

whom the underlying research and therefore this book could not have been completed. Among these stands out David Paradi who is a master at using PowerPoint and has contributed his knowledge and enthusiasm to the production of figures we present here, and many other technical issues.

A special thank you is due to Professor Joe Zhu who suggested to us that a book like this was needed and then answered all our questions. He is one of today's most respected authors and authorities on DEA. Very much is owed to our late friend, Prof. W.W. (Bill) Cooper, who was one of the creators of DEA and was first to introduce us to the boundless problem-solving capabilities of this excellent tool.

And last, but not least, we thank our better halves Monika Paradi, Linda Sherman, and Bernice Cheng for their patience and even encouragements while they were neglected during the creation of this book.

Contents

Part I Data Envelopment Analysis, in Brief with Little Math!

1	DEA Models Overview	3
	Basic DEA Models	4
	Introduction	4
	Model Types	5
	Radial Models: CCR	5
	Radial Models: BCC	9
	Additive Models	11
	SBM Model	12
	Practical Extensions	13
	Input, Output, and Data Issues	16
	Inputs and Outputs	16
	The DEA "Family Tree": Evolution of Applications	
	and Methodology	17
	Summaries of DEA Research and Publications	18
	Methodological Developments	20
	Application Developments	23
	First Use of DEA in Banking by Topic: DEA Banking	
	Timeline	26
	Appendix: Chapter 1 (Sherman and Zhu 2006)	30
	How DEA Works and How to Interpret the Results	30
	The Mathematical Formulation of DEA	34
	References	37
2	Survey of the Banking Literature	41
	Introduction	41
	Literature Pertinent to This Work	41
	References	47

3 Survey	of Other Financial Services Literature
Introdu	ction
Thrifts	and Similar Institutions
Insuran	ce
Investm	ent Funds (Mutual Funds, Hedge Funds
and Per	sion Funds)
Mutu	al Funds
Hedg	e Funds
Pensi	on Funds
Stock S	election
Conclu	ling Remarks
Referen	ces

Part II DEA in Banking

4	Banking Corporation Studies: In-Country Studies Introduction Case 1: Indonesia	71 71 71
	Case 2: India	73 75 77
5	Banking Corporation Studies: Multinational StudiesIntroductionCross-Country Bank Branch ComparisonsReferences	79 79 79 86
6	Bank Branch Productivity Applications: Basic Applications – Efficiency Measurement Introduction References	87 87 99
7	Bank Branch Productivity Applications: Managing Bank ProductivityBank ProductivityIntroductionApplying DEA to Growth BankSpecifying Resource Inputs and Service OutputsDEA Branch Productivity ResultsConclusionsReferences	101 101 102 103 105 111 111
8	Bank Branch Productivity Applications: FocusedApplications to Improve PerformanceIntroductionImprovement Targets for Efficient DMUsReferences	113 113 117 127

9	Bank Branch Productivity Applications: Strategic Branch	
	Management Issues Addressed with DEA	129
	Introduction	129
	Concluding Remarks	141
	References	142
10	Bank Branch Operational Studies Using DEA	145
	Introduction	145
	Mergers and Acquisition: Potential Use of DEA	
	to Monitor and Manage the Process	145
	Product Efficiency and Business Growth	152
	Conclusions	157
	References	157
11	Bank Branch Benchmarking with Quality as a Component	159
	Introduction	159
	Topic 1: Incorporating Quality Variables into a DEA Model	159
	Topic 2: Incorporating Quality as a Separate Dimension	
	in DEA	164
	Introduction	164
	Incorporating Quality into DEA Benchmarking	165
	Model I: Standard DEA Model	167
	Model II: Quality as an Output in a Standard DEA Model	168
	Model III: Independent Quality	
	and Productivity Dimensions	171
	Model IV: Quality-Adjusted DEA: Q-DEA	173
	Q-DEA Benchmarking with Application	
	to a Bank Branch Network	176
	Phase 1: Improve Branch Network Quality	178
	Phase 2: Use Q-DEA to Reduce Branch	
	Network Operating Costs	178
	Results of Q-DEA Benchmarking	181
	Conclusion and Future Directions	183
	References	184
Par	t III Non-banking Financial Services	
12	Securities Market Applications: Risk Measurement of IPOs	187
	Introduction	187
	Objectives	189
	Phase I: Comparable Selection	190

Pool of Candidates

Algorithm of Phase I.....

Stock Pricing Model

Distribution of Stock Price 90 Days After the Issuing Day

192

193

198

199

200

201

	Calibrating the Distance Equation	203
	Validation of the Proposed Methodology	204
	Conclusion	204
	References	205
10		
13	Securities Market Applications: Pension, Mutual	207
	and Hedge Fund Insights with DEA	207
	Topic 1: Pension and Mutual Funds	207
	Introduction	207
	Background on Pension and Mutual Funds	208
	Pension Funds (PFs)	208
	Mutual Funds (MFs)	210
	Comparing Pension Funds and Mutual Funds	210
	Data and Variables	211
	Methodology: Directly Comparing PFs and MFs	212
	Results and Discussion: Directly Comparing PFs and MFs	214
	Considering All DMUs	215
	Combining Efficient DMUs	217
	Methodology: Bridging Pension Funds and Mutual	
	Funds Indirectly	218
	Results and Discussion: Bridging Pension Funds and Mutual	
	Funds Indirectly	221
	Conclusions	223
	Topic 2: Hedge Funds	224
	Introduction	224
	Examining Funds of Funds Type Hedge Funds	225
	Hedge Fund Performance	225
	Hedge Fund Efficiency	226
	Hedge Fund Strategies	227
	Concluding Remarks Regarding Hedge Funds and DEA	229
	References	229
14	Securities Market Applications: Stock Market Valuation	
	of Securities and Financial Services – Insights with DEA	233
	Introduction	233
	Topic 1: Stock Market Pricing Efficiency	233
	Topic 2: Private Firm Valuation	240
	Topic 3: Market Value Relationship to Corporate (Banking)	
	Activity	246
	Introduction	246
	Topic 4: Stock Selection for Portfolios	252
	Introduction	252
	Conclusions	256
	References	256

Content	ts

15	Financial Services Beyond Banking: Credit Unions	259 264
16	References	264 265
10	• •	265
	Introduction Topic 1: The Canadian Insurance Industry	265
	Insurance Models and Input/output Specifications	265
	Model I: Production Performance Approach	267
	Model II: Investment Performance Approach	267
	Analysis and Results	268
	Analysis by Insurer Characteristics	209
	Summary and Conclusions	275
	Topic 2: The Chinese Insurance Industry	276
	Conclusions	280
	References	281
		201
17	Financial Services Beyond Banking: Corporate Failure	
	Prediction	283
	Conclusions	308
	References	310
18	Financial Services Beyond Banking: Risk Tolerance	
	Measures for Portfolio Investors	313
	References	325
Par	rt IV Guidance on Applying DEA, Interpreting Results,	
	Recognizing Caveats and Other Useful Information	
19	Guide to DEA Model Formulation	329
1)	Introduction	329
	DEA Model Formulation: A Guide to Applying DEA	52)
	to Evaluate and Manage Performance	329
	Objectives of the Analysis	330
	Operations of the Set of DMUs	331
	Defining Inputs and Outputs: Adequacy and Completeness	551
	of the Data	333
	Preliminary DEA Analysis: Testing the Reasonableness	555
	of the Results	335
	Using the Efficiency Scores: Limitations of Ranking	337
	Using the Information on Excess Resources	551
	and Excess Capacity	338
	Increasing the Power of the Analysis: Adjusting	550
	Constraints and Weights on Inputs and Outputs	339
	Impact of Other DMU Characteristics: Categorical Variables,	559
	Segmenting the Analysis, Quality	340
	Developing Best Practice Benchmarks	341
	Developing Boot Finetice Benefinituno () () () () () () () () () (

Management of the Process: Converting DEA Results	
into Initiatives to Improve Performance	341
Pitfalls and Roadblocks	342
Results Interpretation (Graphs, Reports, Etc.)	345
Conclusions	350
References	351
Part V Conclusions	
20 Conclusions and Recommendations	355
Reference	356
List of DEA Software	357
About the Authors	359
DEA Books	363
Index	367

List of Figures

Fig. 1.1 Fig. 1.2	Radial improvement target (A') from CCR model for a 2-input and 1-output case Graphic representation of the five bank branches	6 31
Fig. 5.1 Fig. 5.2 Fig. 5.3	Profitability score distribution Productivity score distribution Comparison of efficiency scores for Country Red	82 84 85
Fig. 6.1	Sensitivity of spread ratio (scores from output wt. restricted/ unrestricted VRS models using all outputs) to permitted variation in AR constraints	94
Fig. 6.2	Number of efficient DMUs vs. permitted variation in AR constraints	94
Fig. 6.3	Convex envelopment surface defining DEA production possibility space – DMUs on blue hyperplanes are fully-efficient, those on red hyperplanes are weakly-efficient	97
Fig. 7.1	All branch types (A, B and C) use the same set of resources to provide all branch services used for the DEA analysis of Growth Bank's branch productivity. Each branch is using a different amount of each of the resources and offers all of the services. Each branch provides a different volume and mix of these services, depending upon its customer demand. Examples of branch types include urban, suburban, and shopping mall branches	104
Fig. 8.1 Fig. 8.2 Fig. 8.3	The theoretical, practical, and empirical frontiers Methodology to establish practical DEA frontier Comparison of DEA and P-DEA efficiency	117 118
-	score distributions	121 123
Fig. 8.4 Fig. 8.5	Input and output variables used in Tochaie 2003 CRS efficiency score distribution for all branches	123 123

Fig. 8.6	CRS efficiency score distribution for large branches	124
Fig. 8.7 Fig. 8.8	CRS efficiency score distribution for small branches Distribution of the bank's WFI score for large branches	124 126
Fig. 8.9	DEA efficiency score distribution vs. the bank's	120
1 15. 0.7	WFI scores for large branches	127
Fig. 9.1	Potential input reduction at the current output	
	level for Branch B	131
Fig. 9.2	Potential output enhancement at the current	
E' 0.2	input level for Branch B	131
Fig. 9.3 Fig. 9.4	Individual report for branch B Distribution of the scores obtained	132
1 1g. 9.4	from the second stage, overall model	137
Fig. 10.1	Branch operational efficiency model	
	from Paradi et al. (2010)	150
Fig. 10.2	Branch profitability model from Paradi et al. (2010)	151
Fig. 10.3	Churn model efficiency distribution	156
Fig. 10.4	Aggregate market model efficiency distribution	157
Fig. 11.1	Distribution of client service ratio by branch size group	161
Fig. 11.2	Distribution of throughput ratio by branch size group	162
Fig. 11.3	Comparison of DEA efficiency and client service ratio	162
Fig. 11.4	Comparison of DEA efficiency and the bank's	1.00
E. 115	existing customer satisfaction benchmark	163
Fig. 11.5	Efficient frontier (all branches service 1,000 transactions), where $A(100) =$ Branch A with quality rating = 100	167
Fig. 11.6	Quality-productivity branch distribution – high	107
1 ig. 11.0	and low quality and productivity quadrants	172
Eig. 12.1	General layout of the DEA model	193
Fig. 12.1 Fig. 12.2	Several potential improvement directions for DMU E	195
•		
Fig. 13.1	Snapshot of theoretical methodology	220
Fig. 14.1	Quarterly Treynor measure for software portfolios	239
Fig. 14.2	DEA inputs and outputs of modified valuation	0.41
Fig. 14.3	model from Anadol et al. (2014) Bank intermediation efficiencies, single	241
FIg. 14.5	DEA analysis on the entire data sample	249
Fig. 14.4	•	277
1.8.1.	using 5-year windows	250
Fig. 14.5	Bank production efficiencies, DEA	
	analysis using 5-year windows	251
Fig. 15.1	Difference of mean scores between healthy	
	and failed credit unions over time from different	
	models, assets greater than \$2 million	262

Fig. 16.1	Model I – inputs and outputs included in the production	•
Fig. 16.2	performance model Model II – inputs and outputs included in the investment	268
Fig. 10.2	performance model	269
Fig. 16.3	Unadjusted and adjusted mean risk management	207
1.8. 1010	efficiency of Chinese insurers	279
Fig. 16.4	Unadjusted and risk-adjusted mean	
C	efficiencies of Chinese insurers	279
Fig. 16.5	Differences in mean efficiencies between	
	SOEs and non-SOEs	280
Fig. 17.1	Current limitations of DEA and other methodologies	
-	in bankruptcy prediction	286
Fig. 17.2	Bankrupt and non-bankrupt classification	
	accuracy 1-year prior	289
Fig. 17.3	Total classification accuracy comparison	
	between Altman and DEA (SBM)	291
Fig. 17.4	Illustration comparing regular (<i>left</i>)	•••
D : 17.5	and Negative (<i>right</i>) DEA	292
Fig. 17.5	Type I error from Z-score by years prior to bankruptcy	301
Fig. 17.6	Variation of classification and error rates	
	by cut-off layer from IS model, up to 1 year prior to bankruptcy	303
Fig. 17.7	Comparison between layering and non-layering	303
11g. 17.7	techniques – 1 year prior to bankruptcy	306
Fig. 17.8	Distribution of second-stage layered scores	307
Fig. 17.9	Probability of bankruptcy as a function	201
1.8.1.0	of layered score	309
Fig. 18.1	Comparison of DEA and FinaMetrica scores	
11g. 10.1	for all clients only	318
Fig. 18.2	Comparison of DEA and FinaMetrica scores	510
8	for all subjects	319
Fig. 18.3	Quadratic fit of average risk tolerance vs. age	321
Fig. 19.1	Commercial bank branch DEA model	346
Fig. 19.2	Individual results: Branch 78 score = 0.91	346
Fig. 19.3	Comparison chart to benchmark:	
	Branch 6 cost-efficiency $= 0.78$	347
Fig. 19.4	Efficiency and asset size in two models	
	of the Canadian life and health insurance industry	348
Fig. 19.5	Insurer ownership type and efficiency	349
Fig. 19.6	Comparison between client results and DEA	349
Fig. 19.7	Portfolio types and their efficiency in earnings	350

List of Tables

Table 1.1	Timeline of DEA banking applications	27
Table 1.2	Illustrative example of five bank branches	28
Table 1.3	DEA results for five bank branches	32
Table 1.4	Inefficiency in branch B2 calculated by DEA	33
Table 1.5	Multiplier form of DEA mathematical model	35
Table 4.1	Descriptive statistics for inputs and output	
	in 2006 and 2007 (in billion rupiahs)	72
Table 4.2	Descriptive statistics of the DEA efficiency	
	measures, 2006 and 2007	73
Table 4.3	Banking data of commercial banks in India	74
T.1.1. 4 4	as of June 1998	74
Table 4.4	Descriptive statistics of efficiency scores	74
T 11 4 7	by bank ownership	74
Table 4.5	Key questions regarding stakeholder views	-
	from Avkiran and Morita (2010)	76
Table 5.1	Profitability model data – means, in USD	80
Table 5.2	Productivity model data – means	81
Table 5.3	Intra-country profitability model results	82
Table 5.4	Inter-country profitability model results	82
Table 5.5	Intra-country productivity model results	83
Table 5.6	Inter-country productivity model results	84
Table 6.1	Inputs of production model	89
Table 6.2	Average efficiency scores of the branch system	90
Table 6.3	Data statistics, standard times and average	
	salaries	91
Table 6.4	Results for DEA models	93
Table 6.5	Comparison of overall and within group DEA results:	
	all outputs, VRS	95

X X 11	

Table 6.6	Summary of normalized data for small	
	urban branches	98
Table 6.7	Efficiency results of technically inefficient branches	98
Table 6.8	Efficiency results of technically but	
	not scale efficient branches	98
Table 6.9	Summary of input-oriented efficiency results	
	for small urban branches	99
T 11 7 1		100
Table 7.1	Growth Bank branch productivity ratings	106
Table 7.2	Growth Bank, potential resource savings	107
T 11 T 2	in less productive branches	107
Table 7.3	Potential service volume expansion	108
Table 8.1	Example of a DEA benchmark	
	for an inefficient unit, i.e. DMU#12	115
Table 8.2	Optimal DEA input weights for DMU #12	116
Table 8.3	New DEA benchmark determined for an inefficient	
	DMU#12 by prioritizing <i>personnel</i> reduction,	
	i.e. DMU#12'	116
Table 8.4	Data statistics from Sowlati and Paradi 2004	119
Table 8.5	Input and output comparisons for original	
	and newly generated DMU #23	120
Table 8.6	Comparison of inputs, outputs and P-DEA	
	efficiency scores for real and artificial units	120
Table 8.7	Results of changing input and output bounds and δ	122
Table 8.8	Summary of CRS and VRS DEA mean efficiency results	
	by geographical area	125
Table 9.1	Individual report for branch B	133
Table 9.2	Comparison of regular and handicapped DEA	
	results, overall and by bank	136
Table 9.3	Reference vectors for input/output vectors	140
Table 9.4	Statistical descriptions of groups based only	
	on group leaders	141
Table 9.5	Comparison of within group referencing	
	of inefficient DMUs	142
Table 10.1	Annual and average corporate index scores	
	for largest Canadian banks and trust companies	147
Table 10.2	Simulation results summary with $RI = 1.5$	
Table 10.3	Spearman's rank correlation between the true	
	and estimated efficiencies	150
Table 10.4	Summary of branch efficiencies from basic,	
	CA and NC-DEA models	151
Table 10.5	"Component" market model	153
Table 10.6	"Aggregate" market model	154
Table 10.7	Churn model	154

Table 10.8 Table 10.9	Delta model	155 155
Table 11.1	CRS vs. VRS results DEA results for all branches	161
Table 11.2	DEA customer satisfaction results	
	for branch-hour DMUs	163
Table 11.3	Bank branch example	166
Table 11.4	Model I – benchmarking productivity	
	with DEA excluding quality	169
Table 11.5	Model II – benchmarking with quality as an output	170
Table 11.6	DEA productivity ratings	174
Table 11.7	Q-DEA benchmarking	175
Table 11.8	Branch data used for Q-DEA benchmarking	177
Table 11.9	Q-DEA benchmarking applied to a US branch network	179
Table 11.10	Q-DEA benchmarking distribution of productivity	
	ratings in Phase 2 in the US bank application	180
Table 11.11	Potential savings identified with Q-DEA	100
14010 11111	and actual resource savings realized within	
	6 months of completing the Q-DEA study	181
		101
Table 13.1	Inputs and outputs for DB plans and Combo plans	212
Table 13.2	Inputs and outputs for DC plans	212
Table 13.3	Considering all DB, Combo and MFs for VRS,	
	ND-VRS and MV-DEA models	215
Table 13.4	Considering all DC and MFs for VRS, ND-VRS	
	and MV-DEA models	216
Table 13.5	Combining efficient DB, Combo and MF DMUs	
	for VRS, ND-VRS and MV-DEA models	217
Table 13.6	Combining efficient DC and MF DMUs	
	for VRS, ND-VRS and MV-DEA models	218
Table 13.7	Theoretical classification of pension plans	220
Table 13.8	Results for DB, Combo and DC plans	223
Table 13.9	Input and output variables for the VRS hedge	
	fund model	225
Table 13.10	Input and output variables for hedge fund model	227
Table 13.11	List of hedge fund strategies	228
Table 13.12	Potential input and output variables	228
Table 14.1	DEA pricing efficiency model variables	
	from Tam (2001)	238
Table 14.2	Summary of inverse of DEA efficiency	
	scores from Tam (2001)	238
Table 14.3	Market cap. estimate and upper bound	
	for Cheniere Energy	243

Table 14.4	Distance indicators and MC ranges	
	for Cheniere Energy and its peers	244
Table 14.5	Lower bound MC determination for Costco	245
Table 14.6	Model variables in production model	247
Table 14.7	Model variables in intermediation model	248
Table 14.8	Change in results from adding total or excess return	
	as an additional output to DEA window analysis models	252
Table 14.9	Quarterly returns for the 22 portfolios	255
Table 15.1	Mean failure prediction index and standard	
	deviation for years prior to failure	263
Table 16.1	Number of insurers based on their characteristics	270
Table 16.2	Average efficiency scores and statistical tests of efficiency	
	differences	271
Table 16.3	DEA results – production performance model	272
Table 16.4	DEA results – investment performance model	273
Table 16.5	Efficiency comparison and statistical tests on subsets	
	of insurers	275
Table 16.6	Variables used by Huang and Paradi (2011), along with	
	descriptive statistics	278
Table 17.1	Confusion matrix for prediction outcomes	284
Table 17.2	Non-negative input and output variables	287
Table 17.3	Number of companies in Groups 1 and 2	288
Table 17.4	Cut-off points for SBM model	289
Table 17.5	Classification accuracies of Group 2 firms	290
Table 17.6	Summary of DMUs in data samples	293
Table 17.7	Corporate performance indicators identified	
	in the literature	293
Table 17.8	Variables identified as potential inputs and outputs	294
Table 17.9	Average efficiency scores for bankrupt	
	and non-bankrupt firms in normal DEA models,	
	with optimal cut-off values and the corresponding	
	classification accuracies	294
Table 17.10	Average efficiency scores for bankrupt	
	and non-bankrupt firms in (output-oriented) Negative DEA	
	models, with optimal cut-off values and the corresponding	
	classification accuracies	295
Table 17.11	Classification accuracies for Negative DEA	
	model #3 using the layering technique	296
Table 17.12	Out of sample (i.e. 1996 data) classification	
	accuracies from combining NDEA3 and DEA5	
	models, using layering	296
	, , , , ,	

Table 17.13	Input and output variables of IS, BSA	
	and BSL (financial) DEA models	298
Table 17.14	Average median ratio values by firm state	299
Table 17.15	Managerial decision-making (MDM) variables	300
Table 17.16	Market and economic (ME) factor models	300
Table 17.17	Summary of first-stage results for IS, BSA,	
	BSL and MDM models	302
Table 17.18	Correlations between first-stage DEA scores	302
Table 17.19	Cut-off layer, and type I error, type II error	
	and accuracy rates for first-stage models	303
Table 17.20	Second-stage model predictions with classifications	
	by zones	304
Table 17.21	Correlation of first-stage models' layered scores	305
Table 17.22	Error from classification by layering of second-stage	
	model and individual first-stage models	305
Table 17.23	Performance comparison of layering and non-layering	
	techniques	306
Table 17.24	Probabilities of bankruptcy (B) and non-bankruptcy	
	(NB) by layer number	308
Table 17.25	Classification by layering and fitted second	
	order 1 year prior to bankruptcy probability polynomials	
	for different windows	309
Table 18.1	Demography of risk tolerance	315
Table 18.2	Data statistics for all respondents and sample	
	of clients only	317
Table 18.3	Summary of results from the SBM DEA model	317
Table 18.4	Variation of average risk tolerance with education level	320
Table 18.5	Variation of average risk tolerance with income level	320
Table 18.6	Variables used in first-stage models	
	in Cooper et al. (2014)	323
Table 18.7	Results from first- and second-stage models	323
Table 18.8	Comparison of risk tolerance scores by gender	324
Table 19.1	DEA overcomes these issues that other methods lack	343
Table 19.2	Regional comparisons	347

Introduction

Data envelopment analysis was first titled with this name in the paper by Charnes, Cooper, and Rhodes in 1978. The initials DEA have since been widely adopted. The concept was previously exposed in Farrell's seminal paper (1957): "The measurement of productive efficiency." Farrell did not have the power of modern computing equipment at his disposal, so the development of practical applications was not feasible in a practical sense. But time passed and technology developed so that Farrell's work became possible to apply to complex problems with multiple inputs and outputs. Linear programming capabilities allowed the DEA models to be used for varied problems. Running DEA often required rerunning a linear program thousands of times, a capability that was not readily available in the 1950s. Today, running numerous linear programming iterations required for DEA can be done on the average personal computer by simply using DEA custom-coded programs or even Microsoft Excel.

Slowly, researchers in operational research and economics began to apply DEA to their problems. With few exceptions, their primary goal was to extend the theoretical foundations of the science and report this in traditional academic refereed journals in management science, economics, social science, and mathematics. As more researchers became involved in looking at DEA as a fruitful approach to management and economic problems and their works were published, the literature grew, at first slowly and in recent years quite rapidly. While in the early days it was possible to keep up with the new papers as they appeared (e.g., Seiford 1997; Emrouznejad et al. 2008), this is now essentially impossible as it would take a person working full time just to assemble the bibliography. The number of books alone now published is around 100 and growing. The DEA technology is now well established but still developing, and relatively small theoretical additions, extensions, and refinements continue to be reported in the academic literature. One of the best sources of the most up-to-date information on DEA is found at A. Emrouznejad's DEA Zone on the web (2017): www.deazone. com.

However, the major challenge and unfinished DEA work is, in our view, that only a small portion of the published works deal with applications of DEA to reallife problems and even fewer result in production systems making use of DEA. The reader might challenge this assertion, so let us clarify. While most recent papers used real data obtained from credible sources, such as the OECD, national statistics from agriculture to retirement homes, and the financial and economic data sources, studies based on such data do not enable managers to obtain directions on how to enact policy or improve practice in their businesses or other organizations. Even when there is the potential to apply the DEA findings to real operating organization datasets, the results of the analyses are published without pursuing the application to generate the potential benefits. While there are examples where the results have been applied and the positive and negative results are reported, these papers reflect an incredibly small fraction of the total DEA published literature. There are applications that have been successful that have not been published, and while we cannot know the universe of the works not published, discussions with academics and end users of DEA suggest that these unpublished applications are not likely to be very large in number. Two fields that stand out in these studies are health care and banking where hundreds of papers were written over the past couple of decades, but with very few being of practical use to the people who operate these institutions.

The early focus of DEA was applying it to units in any organization that have control over their activities, and where there is some manager that assesses performance of each unit and makes decisions about how the unit operates in an effort to improve its outcomes. The term adopted for these operating units was *decisionmaking units*, or DMUs. These initials, DMUs, are well understood by the DEA community, but this is not a term that is naturally found or used in business, government, or other organizations. The terminology in itself may be sufficiently arcane and unfamiliar to potential users that it may have contributed to the slow adoption of DEA. The current use of DEA continues to heavily focus on understanding and improving the performance of the defined DMUs, but has also broadened to recognize DEA's ability to identify relationships in complex operating data that offer new insights into the way organizations operate and other paths to manage performance (Sherman and Zhu 2013).

The definitions of what a DMU is determine the usability of the results. For economists, the aggregate data is useful when they advise governments on policy or evaluate the national or international health of certain sectors of interest. The DMU may be defined as a political unit, country, industry, etc. But useful direction for the managers of units such as bank branches, hospital departments, farms, retirement homes, etc. is seldom provided, yet this is where real operating benefits can be achieved. For example, when a study is conducted on the efficiency, productivity, or effectiveness of the banking industry, the outcomes for each bank (the DMUs in the models) offer no implementable findings as the data is aggregated and applies to the DMU as a whole. Of course, the outcome of such a study may well be useful for the regulator or government evaluation of the health of the industry and in identifying regulatory policies that would improve overall productivity. A concrete example of DEA being applied to help regulate an industry is the utilities sector, where it has been used to manage electricity producers in Europe and Brazil (Agrelle et al. 2005).

When the focus is on DMUs that are finite operating units such as bank branches, clinics, physicians, hospitals, nursing homes, and focused services in health care, DEA provides, in addition to an assessment of the DMUs, insights that can allow a manager to directly adjust methods of operations. These adjustments can provide the opportunity to measurably improve the performance of the DMUs analyzed with DEA.

This book is intended to address the challenge of how to apply the DEA technology to data, where the data is relevant and detailed enough to allow results to be useful to the managers by implementing the outcomes from the study to improve the performance of their organizations. In other words, we look at the practitioners' problem of applying improvements to the businesses or institutions where the benefits are directly received by the owners, employees, and/or customers of the firm. Of course, the entire firm benefits from the individual improvements. For example, an analysis of a retail chain store or franchising operation where managers do have the power to implement the improvements suggested by a DEA analysis could result in lower costs for individual operating units (the DMUs in this type of study), improving profitability of these units and thus an augmentation of the system-wide success and attractiveness of owning one of the franchised units.

Our intent and objective is to provide any reader of this book a set of useful approaches and techniques which they can apply and, if done as suggested in this volume, would enable the reader to improve their firm's performance (or that of their client firm if they are consulting for them). However, there are many sectors in a large economy and no single book can cover them all. Therefore, we restricted ourselves to the financial sector where there are a number of studies published examining the actual performance level of the firm and where the firm should go to reap the benefits of the study. Perhaps it would be appropriate to see this book as a *how-to* manual where the practitioner or analyst can find a study that relates to their problem, often directly, while other times they may find an example where there are similarities to their organization but which requires some adaptation to be effective.

References: Introduction

- Agrelle, P.J., Bogetoft, P., Jørgen, T: DEA and dynamic yardstick competition in Scandinavian electricity distribution. J. Product. Anal. **23**(2), 173–201 (2005)
- Charnes, A., Cooper, W.W., Rhodes, E.: Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2(6), 429–444 (1978)
- Emrouznejad, A.: Ali Emrouznejad's data envelopment analysis. http://www.deazone.com (2017). Accessed 30 Nov 2016
- Emrouznejad, A., Parker, B.R., Tavares, G.: Evaluation of research in efficiency and productivity: a survey and analysis of the first 30 years of scholarly literature in DEA. Socio-Econ. Plan. Sci. **42**(3), 151–157 (2008)

- Farrell, M.J.: The measurement of productive efficiency. J. R. Stat. Soc. 120(3), 253–290 (1957) Seiford, L.M.: A bibliography for data envelopment analysis (1978–1996). Ann. Oper. Res. 73, 393–438 (1997)
- Sherman, H. D., Zhu, J.: Analyzing performance of service organizations. MIT Sloan Manag. Rev. **54**(4), 37–44 (2013)

Part I Data Envelopment Analysis, in Brief, with Little Math!

Introduction

In Part I of this book we provide an overview of DEA but without a lot of mathematics, except to allow the explanations to make sense. Our intent is to allow the reader to assess the technology and understand it well enough to delve into whatever details he or she feels necessary to their needs. This part also provides a brief survey and summary of some of the large body of published DEA studies on banking and other financial services.

Chapter 1 DEA Models Overview

We begin with the basic DEA Models and some useful extensions (although we expect that some will see it as too much while others as too little). While we promised to minimize the mathematics, some are, unfortunately, unavoidable. We have excluded any specific discussion of the underlying linear programming (LP) mathematics that drives DEA, and while some general understanding of this is helpful for understanding the academic literature, it is not needed to understand the benefits and ways to apply DEA.

The next issue here is how to select what are "inputs" and what are "outputs". One would assume that this is easy since whatever is used in the production model is an input and what is produced is the output. But there are some issues, such as undesirable outputs (e.g. bad loans) and inputs where we might want more (e.g. deposits in a bank branch). To make matters more confusing, some measures may well be used as inputs in some models while outputs in others – such as bank deposits. We also address some data issues in this part.

Model formation is another subject fraught with controversy and we point to some issues and suggest ways to address these problems.

Finally, we provide a brief history of DEA and its development and sketch out the DEA models family tree to show how things connect together from the Charnes et al. (1978) model to some of the more sophisticated models that have been developed since that seminal paper saw the light of day. Some of the milestone applications of DEA in the financial services are also provided.

International Series in Operations Research & Management Science 266, https://doi.org/10.1007/978-3-319-69725-3_1

Basic DEA Models

Introduction

Data Envelopment Analysis (DEA) is an example of a frontier approach. Frontier approaches identify and assess the areas or examples of best performance or best practice within the sample, i.e. those located on the "frontier". The frontier identified by DEA suggests the best performance within the group of operating units being evaluated and does not promise or even suggest that these represent the theoretically best performance. These methods can be contrasted with regression techniques that seek to explain the average behavior within a sample. Frontier techniques can be divided into two types: parametric and non-parametric. Parametric techniques specify a frontier function to be fitted to the data, with or without accounting for noise in the data. DEA is a non-parametric approach, meaning that no prior functional form is assumed for the frontier, outside of a simple assumption of piecewise linear connections of units on the frontier. The ability to apply DEA without assuming a functional form is a very powerful characteristic. This means that the analysis can proceed without knowing the production function, which is the way inputs are transformed into outputs. Non-parametric approaches can simultaneously handle multiple inputs and outputs, but do not account for noise in the data, treating all deviations from the frontier as inefficiencies (Cummins and Zi 1998).

As an efficiency measurement and evaluation methodology, DEA is particularly useful in cases where sample units, termed decision making units (DMU), use multiple inputs and outputs, and are operating under comparable conditions. DEA primarily measures technical efficiency, i.e. focusing on levels of inputs relative to outputs, as opposed to economic efficiency which would also consider market prices. The use of levels of inputs and outputs is another powerful characteristic of DEA, in that it can incorporate inputs and outputs in the natural units in which they are measured and does not require them to be converted to the same units of measure – specifically, they are not required to be converted to monetary units.

DEA permits the evaluated DMUs to appear to be as good as possible, a feature that can be deemed as providing a "fair" evaluation of the DMUs in the sense that the analysis should limit objections amongst DMUs regarding their evaluations. This characteristic stems from the optimization underpinning of DEA, where DEA assigns the highest efficiency rating to each DMU compared with the set of DMUs being analyzed. It essentially gives the "benefit of the doubt" to each unit. From a management perspective, DEA will be less likely to erroneously identify an efficient unit as inefficient, and while it may not capture all inefficient units, the ones identified as inefficient will have real potential for improvement.

On the contrary, this same "fairness" can permit DMUs to select evaluation criteria that may be deemed as inappropriate or unrealistic. The DEA results, including the evaluation criteria, can be reviewed and adjusted by the user to rerun DEA to include more appropriate criteria. This is one of several ways DEA can be adapted to the specific operating environment of the DMUs. These adaptations make DEA more powerful but also require that the user understand the nature of these added constraints and how that nature affects the way the DEA results are analyzed.

Another advantage of DEA is that it suggests explicit improvement targets for inefficient DMUs, namely the *benchmark* or point on the frontier to which it is being compared in order to measure its efficiency. Furthermore, this frontier point will be defined as the linear combination of one or more actual DMUs that are efficient (i.e. on the efficient frontier). The inefficient DMU is presented with a relevant set of efficient DMUs, called its *reference set* (sometimes referred to as the efficient reference set). The reference set represents the specific efficient DMUs against which the inefficient DMU is judged to be inefficient, and changes to improve the inefficient DMU can be most directly determined by analyzing differences between the inefficient DMU and its reference set. The unit managers thus receive actionable advice that is perceived by them as fair and equitable. Identifying the amount of excess resources consumed or potential increase in outputs possible in inefficient units compared to the DMUs in the efficient reference set may be the most powerful and useful feature of DEA. This perspective offered by DEA is unique, in that it is not provided by any other method known to the authors.

If one were to reread these introductory paragraphs, the clear implication is that DEA is an extremely powerful analytic and management tool. We believe it has been underutilized and hope this volume will open the path to greater utilization. At the same time, we emphasize that DEA is a complement to operating and financial analytical tools, and is not offered as a replacement or a method that must be used exclusively for enhancing business operations.

Model Types

There are three types of basic DEA models: radial, additive and slack-based measure models. These models are detailed in the following sections, along with a discussion of their properties.

Radial Models: CCR

The original DEA model proposed by Charnes et al. (1978), also termed the CCR model, was a radial model. In such a model, a DMU's efficiency score is derived from the extent to which all of its inputs can be contracted and/or its outputs expanded, where this contraction or expansion occurs proportionately. For example, in the case of a model seeking to reduce inputs, the greatest percentage reduction in all inputs is sought; hence the term "radial", as the examined input possibilities occur on the line extending radially from the origin of the input space

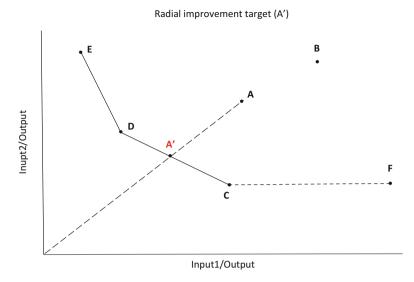


Fig. 1.1 Radial improvement target (A') from CCR model for a 2-input and 1-output case

(i.e. zero values for all inputs) to the DMU's original inputs (c.f. DMU A in Fig. 1.1).

The CCR model assumed that the production technology, also called the production possibility set, exhibited constant returns to scale (CRS). Charnes, Cooper and Rhodes gave the model in two orientations: input- and output-orientations. The orientation corresponds to the viewpoint taken in improving the inefficient units, whether the goal would be to reduce excess inputs consumed or expand shortfalls in outputs produced, respectively, to move the inefficient unit to the frontier. The frontier – sometimes referred to as the best practice frontier – in Fig. 1.1 is composed of the lines joining points EDC. The line joining CF is termed a *weakly efficient skirt* of the frontier, since points on this line – other than C – will have a radial efficiency score of one, but could still reduce Input 1 without adversely affecting other variables, see Eq. 1.3 below. For a model with *m* inputs variables, *s* output variables, and *n* DMUs, the envelopment form of the input-oriented model is given by Cooper et al. (2007):

subject to
$$\begin{array}{l} \min_{\substack{\theta,\lambda \\ \theta,\lambda}} \theta \\ \varphi_{x_{o}} - \mathbf{X} \lambda \geq 0 \\ \mathbf{Y} \lambda \geq y_{o} \\ \lambda \geq 0, \end{array}$$
(1.1)

where x_o and y_o are the column vectors of inputs and outputs respectively for DMU_o, **X** and **Y** are the matrices of input and output vectors respectively for all DMUs, λ is the column vector of intensity variables denoting linear combinations of DMUs, and the objective function θ is a radial contraction factor that can be applied

to DMU_o's inputs. As DEA measures efficiency *empirically* relative to the data sample, having too few DMUs will generally result in a large proportion of them being found to be efficient. A general rule of thumb as to the minimum number of DMUs in relation to the number of variables to have a meaningful result with a clear set of efficient and inefficient units is given by Banker et al. (1989):

$$n \ge \max\{m \times s, 3(m+s)\},\tag{1.2}$$

where m, s and n are the numbers of inputs, outputs and DMUs respectively. This is more a rule of thumb than a rule, which by its nature is a qualitative judgment. When using DEA, it is possible to get very useful results with fewer DMUs than are suggested by this guideline as long as the results are analyzed understanding that there is a small sample of DMUs and thus limited discriminatory power in the model.

The model given in Eq. 1.1 seeks to identify the largest proportion by which all inputs can be reduced (i.e. 1- θ), while at least producing the same level of outputs as the original DMU. Also note that it is assumed that all linear combinations of two or more actual DMUs also represent possible productions, i.e. combinations of inputs and outputs. The linear programming (LP) optimization given in Eq. 1.1 is repeated for each DMU. The optimal value of θ , denoted by θ^* , obtained can be considered the efficiency score of the DMU in question, and this value will range from zero to one, inclusive. (Frequently, the 0–1 scores are reported as percentages – 0% to 100%.) Efficient units will not be able to further reduce inputs and hence have an efficiency score (θ^*) of one. The efficient unit with a rating of 1 or 100% is relatively efficient compared to the DMUs in the study and is not represented as having reached absolute efficiency in an engineering of theoretical sense.

In some instances, it may be possible to further improve the DMU's production performance after the radial optimization. For example, in an input-oriented model, it may be possible to reduce the usage of the first input to 80% of the initial amount, while only reducing the remainder of the inputs to 85%. The θ^* would be 0.85, but in suggesting an improvement target for the DMU, it would be more intuitive to incorporate the additional possible improvement in the first input. Similarly, even though the input-oriented model focuses on reducing inputs, it may be possible to produce more outputs using the same amount of inputs. These additional possible input reductions and output expansions are termed *slacks*, and can be optimized through a second stage to the DEA model, which is given as Eq. 1.3 (Cooper et al. 2007):

$$\max_{\lambda, s^{-}, s^{+}} \qquad \omega = e_{m}s^{-} + e_{s}s^{+}$$
subject to
$$s^{-} = \theta^{*}x_{o} - X\lambda$$

$$s^{+} = Y\lambda - y_{o}$$

$$\lambda \ge 0, s^{-} \ge 0, s^{+} \ge 0,$$
(1.3)

where e_m and e_s are row vectors of *m* and *s* ones respectively, s^- and s^+ are column vectors of input and output slacks respectively, θ^* is the optimal input contraction

obtained from the first stage (Eq. 1.1), and the remaining variables are as previously described.

Equation 1.1 is termed the *envelopment* form of DEA. The same model can be presented in another, equivalent model, termed the *multiplier* form (Cooper et al. 2007):

$$\begin{array}{ll}
\max_{v,u} & uy_o \\
\text{subject to} & vx_o = 1 \\
& -vX + uY \le 0 \\
& u \ge 0, v \ge 0.
\end{array}$$
(1.4)

As with Eq. 1.1, the multiplier form of the DEA model is run once for each DMU in the sample. The model selects virtual or marginal weights for the input and output variables, v's and u's respectively, in such a way as to maximize the efficiency score of the DMU_o, where efficiency is measured as the ratio of the virtual output (i.e. sum of outputs weighted by the virtual weights) to the virtual input. The only restriction on the chosen weights are that they be non-negative and feasible for the sample, i.e. that applying the same weights to any DMU in the sample will not produce an efficiency score greater than one. It is this interpretation of the multiplier form of DEA that lends to the prior assertion of the fairness of DEA models to the evaluated DMUs.

Note that the above model allows the weights, u and v to be greater than or equal to zero. The intention is that the weights should be greater than zero, as allowing a weight to be zero effectively eliminates that input or output from the assessment of a DMU. For computational and other reasons, some DEA programs allow zero weights. Some may use a very small minimum value to at least include all inputs and outputs in the assessment of every DMU in the dataset. If one uses a DEA program and there are zero weights, the interpretation of the results should explicitly consider the implications of the zero weights, as each DMU can look relatively more efficient by removing the inputs/outputs that it tends to use/produce least efficiently via assigning zero weight to those inputs and outputs. Most commercial DEA software will run both envelopment and multiplier forms of the models, as well as any second-stage slack optimizations.

The envelopment and multiplier forms of the model form a primal-dual pair of LPs, and as such the optimal solutions to Eqs. 1.1 and 1.4, and thus the determined efficiency scores, will be the same. Any LP problem, termed the *primal*, can be transformed, through a set procedures known as *taking the dual* (c.f. Appendix A, Cooper et al. 2007) into another LP, the *dual*, and the optimal solutions to each of the two will be the same, provided a solution exists. The primal-dual terminology is non-specific, since taking the dual of the dual program retrieves the original primal program. As such, each of two could be considered the primal or the dual. Hence, this book will avoid the labels *primal* and *dual* and instead employ the more descriptive and specific labels of *envelopment* and *multiplier* forms of DEA. It should be noted that most DEA studies tend to refer to the multiplier form as the primal LP model.

The envelopment form of the output-oriented CRS radial model is presented as Eq. 1.5 (Cooper et al. 2007).

$$\begin{array}{ll} \max_{\substack{\phi, \lambda \\ \text{subject to}}} \phi \\ \mathbf{x}_{o} - \mathbf{X} \lambda \geq 0 \\ \mathbf{Y} \lambda \geq \phi y_{o} \\ \lambda \geq 0, \end{array}$$
(1.5)

where φ is the radial expansion factor that can be applied to DMU_o's outputs.

Analogous to the input-oriented version of the model, the model seeks the maximum factor by which all outputs can be simultaneously expanded. Taking the inverse of the optimal expansion factor, ϕ^* , produces an efficiency score in the standard sense, i.e. ranging from zero to one. Efficient units will not be able to increase outputs produced from the same inputs, and thus have a ϕ^* and efficiency score of one. One property of radial CRS DEA models is that the efficiency scores determined for DMUs are the same in both input- and output-oriented models, i.e. $\theta^* = 1/\phi^*$. For the multiplier form of the output-oriented CCR model, refer to Cooper et al. (2007).

Appendix – Basic DEA model illustration: The DEA model assuming no knowledge of linear programming is explained and applied to a simple dataset in the appendix to this chapter. This fundamental description of DEA illustrates the way it might be used to identify best practice DMUs, inefficient DMUs, and the potential benefits if inefficient DMUs become as efficient as the efficient DMUs by making the changes suggested by DEA.

Radial Models: BCC

Banker et al. (1984) developed a radial DEA model where the production technology exhibits variable returns to scale (VRS). The envelopment form of the inputoriented version of the model is given by Cooper et al. (2007):

$$\begin{array}{ll} \min_{\substack{\theta_B, \lambda \\ \text{subject to} \\ }} & \theta_B \\ \psi_{\lambda} \geq y_o \\ e_n \lambda = 1 \\ \lambda \geq 0. \end{array}$$

$$\begin{array}{l} \theta_B \\ \theta_B \\ \lambda \geq 0 \\ \end{array}$$

$$(1.6)$$

Comparing Eqs. 1.1 and 1.6, it can be seen that they differ in the addition of a constraint that the sum of the intensity variables, λ 's, be equal to one in the VRS model. The effect of this constraint is to limit a DMU to being compared to other

DMUs that are of roughly the same operational scale, which allows for the existence of VRS, i.e. increasing, constant or decreasing returns to scale (RTS). The CRS efficiency score will be less than or equal to the VRS score, and the ratio of CRS/VRS scores gives a measure of the DMU's scale efficiency, i.e. the effect on its productivity from potentially not operating at the optimal scale. This relationship between CRS and VRS scores holds for all DEA models.

Varying the constraint on the sum of λ 's to being less than or equal to one results in a non-increasing returns to scale (i.e. permitting constant or decreasing RTS) model. Restricting the sum of lambdas to be greater than or equal to one yields a non-decreasing RTS model. The effect of these constraints on the λ 's affects the RTS properties of other DEA models in the same manner.

The VRS model is frequently applied and can offer useful additional insights to those obtained from a CRS model on the same dataset. When the VRS or CRS model is specified, the reason for choosing one over the other should also be noted. One of the advantages of DEA is that one need not know the functional form, which would include knowing the returns to scale characteristics. There are also cases where a larger unit is less efficient than a smaller unit, and analyzing this situation where there are expected to be increasing returns to scale can overlook the real possibility that the large unit is less efficient due to the way it operates and not due to decreasing returns or any scale affect. Applying both CRS and VRS would help identify the inefficiency in the larger unit.

The reader is referred to Cooper et al. (2007) for the multiplier form of the inputoriented BCC model, as well as the two formulations for its output-oriented version. Note that unlike the case for CRS models, it is not generally the case that the efficiency scores from the input- and output-oriented versions of VRS models will be the same.

In some analysis situations, there may not be an intuitive reason to emphasize either input reduction or output maximization, and instead it may be reasonable to pursue both. To address this situation, radial DEA models can express in a non-oriented form. The CRS version of the envelopment form of the non-oriented radial model is (Tam 2004):

$$\begin{array}{ll} \max_{g,\overline{\lambda}} & g \\ \text{subject to} & x_o - X\overline{\lambda} \ge 0 \\ & Y\overline{\lambda} \ge g y_o \\ & \frac{g}{\lambda} \ge e_n \overline{\lambda} \\ & \frac{g}{\lambda} \ge 0, \end{array}$$
(1.7)

where $g = \varphi/\theta$, $\overline{\lambda} = \lambda/\theta$, and the other variables are as defined in Eqs. 1.1, 1.5, and 1.6. In this model both a radial contraction, θ , and radial expansion, φ , are determined, subject to constraints that the target to which a DMU is being compared cannot use more inputs ($\theta \le 1$) or produce less outputs ($\varphi \ge 1$). The efficiency score for the DMU is given by $1/g^* = \theta^*/\varphi^*$. For the CRS model, the efficiency score from the non-oriented radial model will be the same as those obtained from the input- and output-oriented models.

Tam (2004) also gave a non-oriented radial model operating under VRS, presented as (Eq. 1.8):

$$\begin{array}{ll} \max_{g, \overline{\lambda}} & g \\ \text{subject to} & x_o - X\overline{\lambda} \ge 0 \\ & Y\overline{\lambda} \ge g y_o \\ & e_n \overline{\lambda} \ge 1 \\ & g \ge e_n \overline{\lambda} \\ & \overline{\lambda} \ge 0. \end{array}$$
(1.8)

In the case of VRS models, the efficiency scores from Eq. 1.8 will be less than or equal to scores for the same DMUs in both the input- and output-oriented VRS radial models, i.e. Eqs. 1.1 and 1.5. The multiplier forms of the non-oriented radial models can be found in Tam (2004).

Additive Models

DEA is most useful for modelling production situations involving multiple inputs and multiple outputs. One of the inherent difficulties in dealing with these situations is the evaluation of trade-offs, for example between substituting one input for another. This evaluation is referred to as considering the mix or allocative efficiency of the DMUs. In situations with known prices for all inputs and outputs, the cost, revenue or profit can be optimized to decide upon the best input and/or output mixes. However, in many situations, prices or values are not known or not fixed for all inputs and outputs. Radial DEA models generally avoid dealing with mix issues by looking at proportional changes to inputs and outputs in their first stage. Proportional changes keep the input and output mixes the same as those originally employed by the DMU.

The additive model of DEA does address the input and output mixes of the DMUs. Its goal is to determine the maximum extent to which slacks can be removed from the DMU being evaluated. It is generally used as a non-oriented model, the VRS envelopment form of which is given as [refer to Cooper et al. (2007) – the multiplier form of the additive model can also be found therein]:

$$\max_{\substack{\lambda, s^-, s^+ \\ \text{subject to}}} z = e_m s^- + e_s s^+$$

$$\sum_{\substack{\lambda, s^-, s^+ \\ \text{subject to}}} X\lambda + s^- = x_o$$

$$Y\lambda - s^+ = y_o$$

$$e_n \lambda = 1$$

$$\lambda \ge 0, s^- \ge 0, s^+ \ge 0.$$
(1.9)

The characteristics of the additive model are very different from those of the radial DEA models. Its results are not easily expressed as standard efficiency scores,

i.e. values ranging from zero to one, with one representing efficiency. The optimal objective function value for efficient units in Eq. 1.9 is zero, as efficient units will have no slacks, and there is no defined upper limit on the total slacks. Unlike most forms of DEA (e.g. radial and slack-based measure models), the additive model can have zeros or negative values in the variable data, and is translation invariant, meaning that a constant could be added or subtracted from the values of a particular variable across all the DMUs without affecting the results. However, unlike most other DEA models, it is not unit invariant, and as such measuring a variable in miles as opposed to kilometers could affect the analysis results.

SBM Model

Tone (2001) formulated the slack-based measure (SBM) as a development of the additive model that would generate a standard efficiency score and be unit invariant, while also allowing for input and/or output mix considerations. The envelopment form of the input-oriented CRS SBM is given by:

$$\min_{\substack{\lambda, s^-, s^+}} \qquad \rho = 1 - \frac{1}{m} \sum_{i=1}^m s_i^- / x_{io}$$
subject to $x_0 = X\lambda + s^ y_0 = Y\lambda - s^+$
 $\lambda \ge 0, s^- \ge 0, s^+ \ge 0.$

$$(1.10)$$

From Eq. 1.10, it can be seen that the SBM, like the additive model, is maximizing the total input slacks, but the slacks are considered as a proportion of the initial input value, as opposed to being considered in absolute terms. Similarly, outputand non-oriented, and VRS forms of the SBM, as well as corresponding multiplier forms of these models can be formulated, c.f. Tone (2001) and Cooper et al. (2007). The input- and output-oriented SBM models could undergo a second stage slack optimization, as occurs with radial DEA models, in the outputs and inputs respectively.

Comparing Eqs. 1.1 and 1.10, it can be seen that the SBM is similar in form and function to a radial DEA model. Whereas an input-oriented radial DEA model maximizes the proportional input contraction that is applied to all input variables, the SBM model maximizes the average proportional input contraction across all the inputs. Hence the SBM model is implicitly assuming that a 1% reduction in one input has the exact same value as 1% reduction in any other input, or as another example, the combination of a 0.4% reduction in a second input and a 0.6% reduction in a third input. Further, it can be noted that the efficiency score from an SBM model will be less than or equal to that from the corresponding (i.e. same orientation and RTS assumption) radial DEA model.