
Martin P. Robillard · Walid Maalej
Robert J. Walker · Thomas Zimmermann
 Editors

Recommendation
Systems in
Software
Engineering

Recommendation Systems in Software Engineering

Martin P. Robillard • Walid Maalej •
Robert J. Walker • Thomas Zimmermann
Editors

Recommendation
Systems in
Software
Engineering

123

Editors
Martin P. Robillard
McGill University
Montréal, QC
Canada

Walid Maalej
University of Hamburg
Hamburg
Germany

Robert J. Walker
University of Calgary
Calgary, AB
Canada

Thomas Zimmermann
Microsoft Research
Redmond, WA
USA

ISBN 978-3-642-45134-8 ISBN 978-3-642-45135-5 (eBook)
DOI 10.1007/978-3-642-45135-5
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014931203

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Preface

Software developers have always used tools to perform their work. In the earliest
days of the discipline, the tools provided basic compilation and assembly function-
ality. Then came tools and environments that increasingly provided sophisticated
data about the software under development. Around the turn of the millennium, the
systematic and large-scale accumulation of software engineering data opened up
new opportunities for the creation of tools that infer information estimated to be
helpful to developers in a given context. This new type of software development
tools came to be known as recommendation systems, in parallel with similar
developments in other domains such as the e-commerce.

Recommendation systems in software engineering (RSSEs) share commonalities
with conventional recommendation systems: mainly in their usage model, the
usual reliance on data mining, and in the predictive nature of their functionality.
Beyond these superficial traits, recommendation systems in software engineering
are generally different from those in other domains. Traditional recommendation
systems are heavily user centric. Users generally create the data items directly,
e.g., in the form of ratings. An important challenge for traditional recommendation
systems is to infer and model evolving user preferences and needs. In contrast,
the major challenge for designing RSSEs is to automatically interpret the highly
technical data stored in software repositories.

Realizing that some of the important knowledge that is necessary to build
recommendation systems in a technical domain would not be readily found in
existing books and other resources on conventional recommendation systems, we
set about to capture as much of this knowledge as possible in this book.

About This Book

This book has been a community effort. Prospective authors submitted chapter
proposals to an open call for contributions. The proposals and later the selected
chapters were reviewed by the editors over four review iterations. In addition,

v

vi Preface

the authors participating in this book were asked to review chapters by other
contributors.

A unique aspect of this book was the RSSE Hamburg Meeting in April 2013.
The contributing authors were invited to this 2-day event to present their chapter
ideas, discuss the RSSE state of the art, and participate in editing and networking
sessions. The meeting greatly helped to unify the presentation and content of this
book and to further consolidate the RSSE community effort. The meeting has
been part of a series of events that started with a workshop on software analysis
for recommendation systems at McGill University’s Bellairs Research Station in
Barbados in 2008 and follow-up workshops at the ACM SIGSOFT International
Symposium on the Foundations of Software Engineering in 2008 and at the
ACM/IEEE International Conference on Software Engineering in 2010 and 2012.
The last workshop in 2012 had over 70 participants, which shows a large interest in
the topic.

Structure and Content

This book collects, structures, and formalizes knowledge on recommendation
systems in software engineering. It adopts a pragmatic approach with an explicit
focus on system design, implementation, and evaluation. The book is intended to
complement existing texts on recommender systems, which cover algorithms and
traditional application domains.

The book consists of three parts:

Part I: Techniques This part introduces basic techniques for building recom-
menders in software engineering, including techniques not only to collect and
process software engineering data but also to present recommendations to users
as part of their workflow.

Part II: Evaluation This part summarizes methods and experimental designs to
evaluate recommendations in software engineering.

Part III: Applications This part describes needs, issues, and solution concepts
involved in entire recommendation systems for specific software engineering
tasks, focusing on the engineering insights required to make effective recom-
mendations.

Target Audience

The book contains knowledge relevant to software professionals and to computer
science or software engineering students with an interest in the application of
recommendation technologies to highly technical domains, including:

Preface vii

• senior undergraduate and graduate students working on recommendation systems
or taking a course in software engineering or applied data mining;

• researchers working on recommendation systems or on software engineering
tools;

• software engineering practitioners developing recommendation systems or simi-
lar applications with predictive functionality; and

• instructors teaching a course on recommendation systems, applied data mining,
or software engineering. The book will be particularly suited to graduate courses
involving a project component.

Website and Resources

This book has a webpage at rsse.org/book, which is part of the RSSE community
portal rsse.org. This webpage contains free supplemental materials for readers of
this book and anyone interested in recommendation systems in software engineer-
ing, including:

• lecture slides, datasets, and source code;
• an archive of previous RSSE workshops and meetings;
• a collection of people, papers, groups, and tools related to RSSE. Please contact

any of the editors if you would like to be added or to suggest additional resources.

In addition to the RSSE community, there are several other starting points.

• The article “Recommendation Systems for Software Engineering,” IEEE Soft-
ware, 27(4):80–86, July–August 2010, provides a short introduction to the topic.

• The latest research on RSSE systems is regularly published and presented at
the International Conference on Software Engineering (ICSE), International
Symposium on the Foundations of Software Engineering (FSE), International
Conference on Automated Software Engineering (ASE), Working Conference on
Mining Software Repositories (MSR), and International Conference on Software
Maintenance (ICSM).

• Many researchers working on RSSE systems meet at the International Workshop
on Recommendation Systems for Software Engineering, which is typically held
every other year.

• The ACM Conference on Recommender Systems (RecSys) covers recommender
research in general and in many different application domains, not just software
engineering.

• Several books on building conventional recommendation systems have been writ-
ten. To get started, we recommend “Recommender Systems: An Introduction”
(2010) by Jannach, Zanker, Felfernig, and Friedrich.

http://rsse.org
http://rsse.org/book

viii Preface

Acknowledgments

We are indebted to the many people who have made this book possible through their
diverse contributions. In particular, we thank:

• The authors of the chapters in this book for the great work that they have done in
writing about topics related to RSSEs and their timely and constructive reviews
of other chapters.

• The Springer staff, in particular Ralf Gerstner, for their dedication and helpful-
ness throughout the project.

• The Dean of the MIN faculty and Head of Informatics Department at the
University of Hamburg, for their financial and logistical support for the editing
workshop, and Rebecca Tiarks and Tobias Roehm, for their help with the local
organization of the workshop.

• The attendees at the past RSSE workshops, for their enthusiasm about the topic
and their influx of ideas.

• The McGill Bellairs Research Institute, for providing an ideal venue for an initial
workshop on the topic.

Montréal, QC, Canada Martin P. Robillard
Hamburg, Germany Walid Maalej
Calgary, AB, Canada Robert J. Walker
Redmond, WA, USA Thomas Zimmermann
October 2013

Contents

1 An Introduction to Recommendation Systems in Software
Engineering . 1
Martin P. Robillard and Robert J. Walker

Part I Techniques

2 Basic Approaches in Recommendation Systems . 15
Alexander Felfernig, Michael Jeran, Gerald Ninaus,
Florian Reinfrank, Stefan Reiterer, and Martin Stettinger

3 Data Mining . 39
Tim Menzies

4 Recommendation Systems in-the-Small . 77
Laura Inozemtseva, Reid Holmes, and Robert J. Walker

5 Source Code-Based Recommendation Systems . 93
Kim Mens and Angela Lozano

6 Mining Bug Data . 131
Kim Herzig and Andreas Zeller

7 Collecting and Processing Interaction Data
for Recommendation Systems . 173
Walid Maalej, Thomas Fritz, and Romain Robbes

8 Developer Profiles for Recommendation Systems . 199
Annie T.T. Ying and Martin P. Robillard

9 Recommendation Delivery . 223
Emerson Murphy-Hill and Gail C. Murphy

ix

x Contents

Part II Evaluation

10 Dimensions and Metrics for Evaluating Recommendation
Systems . 245
Iman Avazpour, Teerat Pitakrat, Lars Grunske,
and John Grundy

11 Benchmarking . 275
Alan Said, Domonkos Tikk, and Paolo Cremonesi

12 Simulation . 301
Robert J. Walker and Reid Holmes

13 Field Studies . 329
Ayşe Tosun Mısırlı, Ayşe Bener, Bora Çağlayan, Gül Çalıklı,
and Burak Turhan

Part III Applications

14 Reuse-Oriented Code Recommendation Systems . 359
Werner Janjic, Oliver Hummel, and Colin Atkinson

15 Recommending Refactoring Operations in Large Software
Systems . 387
Gabriele Bavota, Andrea De Lucia, Andrian Marcus,
and Rocco Oliveto

16 Recommending Program Transformations . 421
Miryung Kim and Na Meng

17 Recommendation Systems in Requirements Discovery 455
Negar Hariri, Carlos Castro-Herrera, Jane Cleland-Huang,
and Bamshad Mobasher

18 Changes, Evolution, and Bugs. 477
Markus Borg and Per Runeson

19 Recommendation Heuristics for Improving Product Line
Configuration Processes . 511
Raúl Mazo, Cosmin Dumitrescu, Camille Salinesi,
and Daniel Diaz

Glossary . 539

Index . 555

List of Contributors

Colin Atkinson Software-Engineering Group, University of Mannheim,
Mannheim, Germany

Iman Avazpour Faculty of ICT, Centre for Computing and Engineering Soft-
ware and Systems (SUCCESS), Swinburne University of Technology, Hawthorn,
Australia

Gabriele Bavota University of Sannio, Benevento, Italy

Ayşe Bener Ryerson University, Toronto, ON, Canada

Markus Borg Department of Computer Science, Lund University, Lund, Sweden

Bora Çağlayan Boğaziçi University, Istanbul, Turkey

Gül Çalıklı Ryerson University, Toronto, ON, Canada

Carlos Castro-Herrera GOOGLE, Chicago, IL, USA

Jane Cleland-Huang School of Computing, DePaul University, Chicago, IL, USA

Paolo Cremonesi Politecnico di Milano, Milano, Italy

Andrea De Lucia University of Salerno, Fisciano, Italy

Daniel Diaz Université Paris 1 Panthéon-Sorbonne, Paris, France

Cosmin Dumitrescu Université Paris 1 Panthéon-Sorbonne, Paris, France

Alexander Felfernig Institute for Software Technology, Graz University of
Technology, Graz, Austria

Thomas Fritz Department of Informatics, University of Zurich, Zurich,
Switzerland

John Grundy Faculty of ICT, Centre for Computing and Engineering Soft-
ware and Systems (SUCCESS), Swinburne University of Technology, Hawthorn,
Australia

xi

xii List of Contributors

Lars Grunske Institute of Software Technology, Universität Stuttgart, Stuttgart,
Germany

Negar Hariri School of Computing, DePaul University, Chicago, IL, USA

Kim Herzig Saarland University, Saarbrücken, Germany

Reid Holmes David R. Cheriton School of Computer Science, University of
Waterloo, Waterloo, ON, Canada

Oliver Hummel Institute for Program Structures and Data Organization, Karlsruhe
Institute of Technology, Karlsruhe, Germany

Laura Inozemtseva David R. Cheriton School of Computer Science, University
of Waterloo, Waterloo, ON, Canada

Werner Janjic Software-Engineering Group, University of Mannheim,
Mannheim, Germany

Michael Jeran Institute for Software Technology, Graz University of Technology,
Graz, Austria

Miryung Kim The University of Texas at Austin, Austin, TX, USA

Angela Lozano ICTEAM, Université catholique de Louvain, Louvain-la-Neuve,
Belgium

Walid Maalej Department of Informatics, University of Hamburg, Hamburg,
Germany

Andrian Marcus Wayne State University, Detroit, MI, USA

Raúl Mazo Université Paris 1 Panthéon-Sorbonne, Paris, France

Na Meng The University of Texas at Austin, Austin, TX, USA

Kim Mens ICTEAM, Université Catholique de Louvain, Louvain-la-Neuve,
Belgium

Tim Menzies Lane Department of Computer Science and Electrical Engineering,
West Virginia University, Morgantown, WV, USA

Ayşe Tosun Mısırlı University of Oulu, Oulu, Finland

Bamshad Mobasher School of Computing, DePaul University, Chicago, IL, USA

Gail C. Murphy University of British Columbia, Vancouver, BC, Canada

Emerson Murphy-Hill North Carolina State University, Raleigh, NC, USA

Gerald Ninaus Institute for Software Technology, Graz University of Technology,
Graz, Austria

Rocco Oliveto University of Molise, Pesche, Italy

List of Contributors xiii

Teerat Pitakrat Institute of Software Technology, Universität Stuttgart, Stuttgart,
Germany

Florian Reinfrank Institute for Software Technology, Graz University of Technol-
ogy, Graz, Austria

Stefan Reiterer Institute for Software Technology, Graz University of Technology,
Graz, Austria

Romain Robbes Computer Science Department (DCC), University of Chile,
Santiago, Chile

Martin P. Robillard McGill University, Montréal, QC, Canada

Per Runeson Department of Computer Science, Lund University, Lund, Sweden

Alan Said Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

Camille Salinesi Université Paris 1 Panthéon-Sorbonne, Paris, France

Martin Stettinger Institute for Software Technology, Graz University of Technol-
ogy, Graz, Austria

Domonkos Tikk Gravity R&D, Budapest, Hungary

Óbuda University, Budapest, Hungary

Burak Turhan University of Oulu, Oulu, Finland

Robert J. Walker Department of Computer Science, University of Calgary,
Calgary, AB, Canada

Annie T.T. Ying McGill University, Montréal, QC, Canada

Andreas Zeller Saarland University, Saarbrücken, Germany

Chapter 1
An Introduction to Recommendation Systems
in Software Engineering

Martin P. Robillard and Robert J. Walker

Abstract Software engineering is a knowledge-intensive activity that presents
many information navigation challenges. Information spaces in software engineer-
ing include the source code and change history of the software, discussion lists
and forums, issue databases, component technologies and their learning resources,
and the development environment. The technical nature, size, and dynamicity of
these information spaces motivate the development of a special class of applications
to support developers: recommendation systems in software engineering (RSSEs),
which are software applications that provide information items estimated to be
valuable for a software engineering task in a given context. In this introduction, we
review the characteristics of information spaces in software engineering, describe
the unique aspects of RSSEs, present an overview of the issues and considerations
involved in creating, evaluating, and using RSSEs, and present a general outlook
on the current state of research and development in the field of recommendation
systems for highly technical domains.

1.1 Introduction

Despite steady advancement in the state of the art, software development remains a
challenging and knowledge-intensive activity. Mastering a programming language
is no longer sufficient to ensure software development proficiency. Developers are
continually introduced to new technologies, components, and ideas. The systems on

M.P. Robillard (�)
McGill University, Montréal, QC, Canada
e-mail: martin@cs.mcgill.ca

R.J. Walker
University of Calgary, Calgary, AB, Canada
e-mail: walker@ucalgary.ca

M.P. Robillard et al. (eds.), Recommendation Systems in Software Engineering,
DOI 10.1007/978-3-642-45135-5__1, © Springer-Verlag Berlin Heidelberg 2014

1

mailto:walker@ucalgary.ca
mailto:martin@cs.mcgill.ca

2 M.P. Robillard and R.J. Walker

which they work tend to keep growing and to depend on an ever-increasing array of
external libraries and resources.

We have long since reached the point where the scale of the information space—
facing a typical developer easily exceeds an individual’s capacity to assimilate it.
Software developers and other technical knowledge workers must now routinely
spend a large fraction of their working time searching for information, for example,
to understand existing code or to discover how to properly implement a feature.
Often, the timely or serendipitous discovery of a critical piece of information can
have a dramatic impact on productivity [6].

Although rigorous training and effective interpersonal communication can help
knowledge workers orient themselves in a sea of information, these strategies are
painfully limited by scale. Data mining and other knowledge inference techniques
are among the ways to provide automated assistance to developers in navigating
large information spaces. Just as recommendation systems for popular e-commerce
Web sites can help expose users to interesting items previously unknown to
them [15], recommendation systems can be used in technical domains to help
surface previously unknown information that can directly assist knowledge workers
in their task.

Recommendation systems in software engineering (RSSEs) are now emerging
to assist software developers in various activities—from reusing code to writing
effective bug reports.

1.2 Information Spaces in Software Engineering

When developers join a project, they are typically faced with a landscape [4]
of information with which they must get acquainted. Although this information
landscape will vary according to the organization and the development process
employed, the landscape will typically involve information from a number of
sources.

The project source code. In the case of large software systems, the codebase itself
will already represent a formidable information space. According to Ohloh.net,
in October 2013 the source code of the Mozilla Firefox Web browser totaled close
to 10 million lines written in 33 different programming languages. Understanding
source code, even at a much smaller scale, requires answering numerous different
types of questions, such as “where is this method called?” [19]. Answering
such structural questions can require a lot of navigation through the project
source code [11, 17], including reading comments and identifiers, following
dependencies, and abstracting details.

The project history. Much knowledge about a software project is captured in
the version control system (VCS) for the project. Useful information stored
in a VCS includes systematic code change patterns (e.g., files A and B were
often changed together [22]), design decisions associated with specific changes

1 An Introduction to Recommendation Systems in Software Engineering 3

(stored in commit logs), and, more indirectly, information about which developers
have knowledge of which part of the code [13]. Unfortunately, the information
contained in a VCS is not easily searchable or browsable. Useful knowledge
must often be inferred from the VCS and other repositories, typically by using a
combination of heuristics and data mining techniques [21].

Communication archives. Forums and mailing lists, often used for informal
communication among developers and other stakeholders of a project, contain
a wealth of knowledge about a system [3]. Communication is also recorded in
issue management systems and code review tools.

The dependent APIs and their learning resources. Most modern software devel-
opment relies on reusable software assets (frameworks and libraries) exported
through application programming interfaces (APIs). Like the project source code
itself, APIs introduce a large, heavily structured information space that devel-
opers must understand and navigate to complete their tasks. In addition, large
and popular APIs typically come with extensive documentation [5], including
reference documentation, user manuals, and code examples.

The development environment. The development environment for a software sys-
tem includes all the development tools, scripts, and commands used to build and
test the system. Such an environment can quickly become complex to the point
where developers perform suboptimally simply because they are unaware of the
tools and commands at their disposal [14].

Interaction traces. It is now common practice for many software applications to
collect user interaction data to improve the user experience. User interaction data
consists of a log of user actions as they visit a Web site or use the various com-
ponents of the user interface of a desktop or mobile application [8]. In software
engineering, this collection of usage data takes the form of the monitoring of
developer actions as they use an integrated development environment such as
Eclipse [10].

Execution traces. Data collected during the execution of a software system [16,
Table 3] also constitutes a source of information that can be useful to software
engineers, and in particular to software quality assurance teams. This kind of
dynamically collected information includes data about the state of the system, the
functions called, and the results of computation at different times in the execution
of the system.

The web. Ultimately, some of the knowledge sought by or useful to developers
can be found in the cloud, hosted on servers unrelated to a given software
development project. For example, developers will look for code examples on
the web [2], or visit the StackOverflow Questions-and-Answers (Q&A) site in the
hopes of finding answers to common programming problems [12]. The problem
with the cloud is that it is often difficult to assess the quality of the information
found in some Web sites, and near impossible to estimate what information exists
beyond the results of search queries.

Together, the various sources of data described above create the information
space that software developers and other stakeholders of a software project will

4 M.P. Robillard and R.J. Walker

face. Although, in principle, all of this information is available to support ongoing
development and other engineering activities, in reality it can be dispiritingly hard
to extract the answer to a specific information need from software engineering
data, or in some cases to even know that the answer exists. A number of aspects
of software engineering data make discovering and navigating information in this
domain particularly difficult.

1. The sheer amount of information available (the information overload problem),
while not unique to software engineering, is an important factor that only grows
worse with time. Automatically collected execution traces and interaction traces,
and the cumulative nature of project history data, all contribute to making this
challenge more acute.

2. The information associated with a software project is heterogeneous. While a
vast array of traditional recommender systems can rely on the general concepts
of item and rating [15], there is no equivalent universal baseline in software
engineering. The information sources described above involve a great variety of
information formats, including highly structured (source code), semi-structured
(bug reports), and loosely structured (mailing lists, user manuals).

3. Technical information is highly context-sensitive. To a certain extent, most
information is context-sensitive; for example, to interpret a restaurant review,
it may be useful to know about the expectations and past reviews of the author.
However, even in the absence of such additional context, it will still be possible
to construct a coarse interpretation of the information, especially if the restaurant
in question is either very good or very bad. In contrast, software engineering
data can be devoid of meaning without an explicit connection to the underlying
process. For example, if a large amount of changes are committed to a system’s
version control system on Friday afternoons, it could mean either that team
members have chosen that time to merge and integrate their changes or that a
scheduled process updates the license headers at that time.

4. Software data evolves very rapidly. Ratings for movies can have a useful lifetime
measured in decades. Restaurant and product reviews are more ephemeral, but
could be expected to remain valid for at least many months. In contrast, some
software data experiences high churn, meaning that it is modified in some cases
multiple times a day [9]. For example, the Mozilla Firefox project receives
around 4,000 commits per month, or over 100 per day. Although not all software
data gets invalidated on a daily basis (APIs can remain stable for years), the
highly dynamic nature of software means that inferred facts must, in principle,
continually be verified for consistency with the underlying data.

5. Software data is partially generated. Many software artifacts are the result of a
combination of manual and automated processes and activities, often involving
a complex cycle of artifact generation with manual feedback. Examples include
the writing of source code with the help of refactoring or style-checking tools,
the authoring of bug reports in which the output or log of a program is copied
and pasted, and the use of scripts to automatically generate mailing list messages,
for example, when a version of the software is released. These complex and

1 An Introduction to Recommendation Systems in Software Engineering 5

semiautomated processes can be contrasted, for example, with the authoring of
reviews by customers who have bought a certain product. In the latter case, the
process employed for generating the data is transparent, and interpreting it will
be a function of the content of the item and the attributes of the author; the
data generation process would not normally have to be taken into account to
understand the review.

Finally, in addition to the challenging attributes of software engineering data that
we noted above, we also observe that many problems in software engineering are
not limited by data, but rather by computation. Consider a problem like change
impact analysis [1, 20]: the basic need of the developer—to determine the impact
of a proposed change—is clear, but in general it is impossible to compute a precise
solution. Thus, in software engineering and other technical domains, guidance in the
form of recommendations is needed not only to navigate large information spaces
but also to deal with formally undecidable problems, or problems where no precise
solutions can be computed in a practical amount of time.

1.3 Recommendation Systems in Software Engineering

In our initial publication on the topic, we defined a recommendation system for
software engineering to be [18, p.81]:

. . . a software application that provides information items estimated to be valuable for a
software engineering task in a given context.

With the perspective of an additional four years, we still find this definition to be
the most useful for distinguishing RSSEs from other software engineering tools.
RSSEs’ focus is on providing information as opposed to other services such as
build or test automation. The reference to estimation distinguishes RSSEs from
fact extractors, such as classical search tools based on regular expressions or the
typical cross-reference tools and call-graph browsers found in modern integrated
development environments. At the same time, estimation is not necessarily predic-
tion: recommendation systems in software engineering need not rely on the accurate
prediction of developer behavior or system behavior. The notion of value captures
two distinct aspects simultaneously: (1) novelty and surprise, because RSSEs
support discovering new information and (2) familiarity and reinforcement, because
RSSEs support the confirmation of existing knowledge. Finally, the reference to a
specific task and context distinguishes RSSEs from generic search tools, e.g., tools
to help developers find code examples.

Our definition of RSSEs is, however, still broad and allows for great variety in
recommendation support for developers. Specifically, a large number of different
information items can be recommended, including the following:

6 M.P. Robillard and R.J. Walker

Source code within a project. Recommenders can help developers navigate the
source code of their own project, for example, by attempting to guess the areas
of the project’s source code a developer might need, or want, to look at.

Reusable source code. Other recommenders in software engineering attempt to
help users discover the API elements (such as classes, functions, or scripts) that
can help to complete a task.

Code examples. In some cases, a developer may know which source code or API
elements are required to complete a task, but may ignore how to correctly employ
them. As a complement to reading textual documentation, recommendation
systems can also provide code examples that illustrate the use of the code
elements of interest.

Issue reports. Much knowledge about a software project can reside in its issue
database. When working on a piece of code or attempting to solve a problem,
recommendation systems can discover related issue reports.

Tools, commands, and operations. Large software development environments are
getting increasingly complex, and the number of open-source software devel-
opment tools and plug-ins is unbounded. Recommendation systems can help
developers and other software engineers by recommending tools, commands, and
actions that should solve their problem or increase their efficiency.

People. In some situations recommendation systems can also help finding the best
person to assign a task to, or the expert to contact to answer a question.

Although dozens of RSSEs have been built to provide some of the recom-
mendation functionality described above, no reference architecture has emerged
to-date. The variety in RSSE architectures is likely a consequence of the fact that
most RSSEs work with a dominant source of data, and are therefore engineered
to closely integrate with that data source. Nevertheless, the major design concerns
for recommendation systems in general are also found in the software engineering
domain, each with its particular challenges.

Data preprocessing. In software engineering, a lot of preprocessing effort is
required to turn raw character data into a sufficiently interpreted format. For
example, source code has to be parsed, commits have to be aggregated, and
software has to be abstracted into dependency graphs. This effort is usually
needed in addition to more traditional preprocessing tasks such as detecting
outliers and replacing missing values.

Capturing context. While in traditional domains, such as e-commerce, recom-
mendations are heavily dependent on user profiles, in software engineering, it is
usually the task that is the central concept related to recommendations. The
task context is our representation of all information about the task to which
the recommendation system has access in order to produce recommendations.
In many cases, a task context will consist of a partial view of the solution to the
task: for example, some source code that a developer has written, an element
in the code that a user has selected, or an issue report that a user is reading.
Context can also be specified explicitly, in which case the definition of the context
becomes fused with that of a query in a traditional information retrieval system.

1 An Introduction to Recommendation Systems in Software Engineering 7

In any case, capturing the context of a task to produce recommendations involves
somewhat of a paradox: the more precise the information available about the
task is, the more accurate the recommendations can be, but the less likely the
user can be expected to need recommendations. Put another way, a user in great
need of guidance may not be able to provide enough information to the system to
obtain usable recommendations. For this reason, recommendation systems must
take into account that task contexts will generally be incomplete and noisy.

Producing recommendations. Once preprocessed data and a sufficient amount of
task context are available, recommendation algorithms can be executed. Here
the variety of recommendation strategies is only bounded by the problem space
and the creativity of the system designer. However, we note that the traditional
recommendation algorithms commonly known as collaborative filtering are only
seldom used to produce recommendations in software engineering.

Presenting the recommendations. In its simplest form, presenting a recommenda-
tion boils down to listing items of potential interest—functions, classes, code
examples, issue reports, and so on. Related to the issue of presentation, however,
lies the related question of explanation: why was an item recommended? The
answer to this question is often a summary of the recommendation strategy:
“average rating,” “customers who bought this item also bought,” etc. In software
engineering, the conceptual distance between a recommendation algorithm and
the domain familiar to the user is often much larger than in other domains. For
example, if a code example is recommended to a user because it matches part
of the user’s current working code, how can this matching be summarized? The
absence of a universal concept such as ratings means that for each new type of
recommendation, the question of explanation must be revisited.

1.4 Overview of the Book

In the last decade, research and development on recommendation systems has seen
important advances, and the knowledge relevant to recommendation systems now
easily exceeds the scope of a single book. This book focuses on the development
of recommendation systems for technical domains and, in particular, for software
engineering. The topic of recommendation systems in software engineering is broad
to the point of multidisciplinarity: it requires background in software engineering,
data mining and artificial intelligence, knowledge modeling, text analysis and
information retrieval, human–computer interaction, as well as a firm grounding in
empirical research methods. This book was designed to present a self-contained
overview that includes sufficient background in all of the relevant areas to allow
readers to quickly get up to speed on the most recent developments, and to
actively use the knowledge provided here to build or improve systems that can take
advantage of large information spaces that include technical content.

Part I of the book covers the foundational aspects of the field. Chapter 2
presents an overview of the general field of recommendation systems, including

8 M.P. Robillard and R.J. Walker

a presentation of the major classes of recommendation approaches: collaborative
filtering, content-based recommendations, and knowledge-based recommendations.
Many recommendation systems rely on data mining algorithms; to help readers ori-
ent themselves in the space of techniques available to infer facts from large data sets,
Chap. 3 presents a tutorial on popular data mining techniques. In contrast, Chap. 4
examines how recommendation systems can be built without data mining, by relying
instead on carefully designed heuristics. To-date, the majority of RSSEs have
targeted the recommendation of source code artifacts; Chap. 5 is an extensive review
of recommendation systems based on source code that includes many examples of
RSSEs. Moving beyond source code, we examine two other important sources
of data for RSSE: bug reports in Chap. 6, and user interaction data in Chap. 7.
We conclude Part I with two chapters on human–computer interaction (HCI) topics:
the use of developer profiles to take personal characteristics into account, in Chap. 8,
and the design of user interfaces for delivering recommendations, in Chap. 9.

Now that the field of recommendation systems has matured, many of the basic
ideas have been tested, and further progress will require careful, well-designed
evaluations. Part II of the book is dedicated to the evaluation of RSSEs with four
chapters on the topic. Chapter 10 is a review of the most important dimensions and
metrics for evaluating recommendation systems. Chapter 11 focuses on the problem
of creating quality benchmarks for evaluating recommendation systems. The last
two chapters of Part II describe two particularly useful types of studies for evaluating
RSSEs: simulation studies that involve the execution of the RSSE (or of some of its
components) in a synthetic environment (Chap. 12), and field studies, which involve
the development and deployment of an RSSE in a production setting (Chap. 13).

Part III of the book takes a detailed look at a number of specific applications
of recommendation technology in software engineering. By discussing RSSEs in an
end-to-end fashion, the chapters in Part III provide not only a discussion of the major
concerns and design decisions involved in developing recommendation technology
in software engineering but also insightful illustrations of how computation can
assist humans in solving a wide variety of complex, information-intensive tasks.
Chapter 14 discusses the techniques underlying the recommendation of reusable
source code elements. Chapters 15 and 16 present two different approaches to
recommend transformations to an existing codebase. Chapter 17 discusses how
recommendation technology can assist requirements engineering, and Chap. 18
focuses on recommendations that can assist tasks involving issue reports, such as
issue triage tasks. Finally, Chap. 19 shows how recommendations can assist with
product line configuration tasks.

1.5 Outlook

As the content of this book shows, the field of recommendation systems in software
engineering has already benefited from much effort and attention from researchers,
tool developers, and organizations interested in leveraging large collections of

1 An Introduction to Recommendation Systems in Software Engineering 9

software artifacts to improve software engineering productivity. We conclude this
introduction with a look at the current state of the field and the road ahead.

Most of the work on RSSEs to-date has focused on the development of algorithms
for processing software data. Much of this work has proceeded in the context of the
rapid progress in techniques to mine software repositories. As a result, developers
of recommendation systems in software engineering can now rely on a mature body
of knowledge on the automated extraction and interpretation of software data [7].
At the same time, developments in RSSEs had, up to recently, proceeded somewhat
in isolation of the work on traditional recommender systems. However, the parallel
has now been recognized, which we hope will lead to a rapid convergence in
terminology and concepts that should facilitate further exchange of ideas between
the two communities.

Although many of the RSSEs mentioned in this book have been fully imple-
mented, much less energy has been devoted to research on the human aspects
of RSSEs. For a given RSSE, simulating the operation of a recommendation
algorithm can allow us to record very exactly how the algorithm would behave in
a large number of contexts, but provides no clue as to how users would react to
the recommendations (see Part II). For this purpose, only user studies can really
provide an answer. The dearth of user studies involving recommendation systems
in software engineering can be explained and justified by their high cost, which
would not always be in proportion to the importance of the research questions
involved. However, the consequence is that we still know relatively little about how
to best integrate recommendations into a developer’s workflow, how to integrate
recommendations from multiple sources, and more generally how to maximize the
usefulness of recommendation systems in software engineering.

An important distinction between RSSEs and traditional recommendation sys-
tems is that RSSEs are task-centric, as opposed to user-centric. In many recom-
mendation situations, we know much more about the task than about the developer
carrying it out. This situation is reflected in the limited amount of personalization
in RSSEs. It remains an open question whether personalization is necessary or even
desirable in software engineering. As in many cases, the accumulation of personal
information into a user (or developer) profile has important privacy implications.
In software engineering, the most obvious one is that this information could be
directly used to evaluate developers. A potential development that could lead to
more personalization in recommender systems for software engineering is the
increasingly pervasive use of social networking in technical domains. Github is
already a platform where the personal characteristics of users can be used to navigate
information. In this scenario, we would see a further convergence between RSSEs
and traditional recommenders.

Traditional recommendation systems provide a variety of functions [15,
Sect. 1.2]. Besides assisting the user in a number of ways, these functions
also include a number of benefits to other stakeholders, including commercial
organizations. For example, recommendation systems can help increase the number
of items sold, sell more diverse items, and increase customer loyalty. Although,
in the case of RSSEs developed by commercial organizations, these functions

10 M.P. Robillard and R.J. Walker

can be assumed, we are not aware of any research that focuses on assessing the
nontechnical virtues of RSSEs. At this point, most of the work on assessing RSSEs
has focused on the support they directly provide to developers.

1.6 Conclusion

The information spaces encountered in software engineering contexts differ
markedly from those in nontechnical domains. Five aspects—quantity, hetero-
geneity, context-sensitivity, dynamicity, and partial generation—all contribute to
making it especially difficult to analyze, interpret, and assess the quality of software
engineering data. The computational intractability of many questions that surface
in software engineering only add to the complexity. Those are the challenges facing
organizations that wish to leverage their software data.

Recommendation systems in software engineering are one way to cope with
these challenges. At heart, RSSEs must be designed to acknowledge the realities
of the tasks, of the people, and of the organizations involved. And while developing
effective RSSEs gives rise to new challenges, we have already learned a great deal
about the techniques to create them, the methodologies to evaluate them, and the
details of their application.

References

1. Arnold, R.S., Bohner, S.A.: Impact analysis: Towards a framework for comparison.
In: Proceedings of the Conference on Software Maintenance, pp. 292–301 (1993).
DOI 10.1109/ICSM.1993.366933

2. Brandt, J., Guo, P.J., Lewenstein, J., Dontcheva, M., Klemmer, S.R.: Two studies of oppor-
tunistic programming: Interleaving web foraging, learning, and writing code. In: Proceedings
of the ACM SIGCHI Conference on Human Factors in Computing Systems, pp. 1589–1598
(2009). DOI 10.1145/1518701.1518944

3. Čubranić, D., Murphy, G.C., Singer, J., Booth, K.S.: Hipikat: A project memory for software
development. IEEE Trans. Software Eng. 31(6), 446–465 (2005). DOI 10.1109/TSE.2005.71

4. Dagenais, B., Ossher, H., Bellamy, R.K., Robillard, M.P.: Moving into a new software
project landscape. In: Proceedings of the ACM/IEEE International Conference on Software
Engineering, pp. 275–284 (2010)

5. Dagenais, B., Robillard, M.P.: Creating and evolving developer documentation: Understand-
ing the decisions of open source contributors. In: Proceedings of the ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 127–136 (2010).
DOI 10.1145/1882291.1882312

6. Duala-Ekoko, E., Robillard, M.P.: Asking and answering questions about unfamiliar APIs: An
exploratory study. In: Proceedings of the ACM/IEEE International Conference on Software
Engineering, pp. 266–276 (2012)

7. Hemmati, H., Nadi, S., Baysal, O., Kononenko, O., Wang, W., Holmes, R., Godfrey, M.W.:
The MSR cookbook: Mining a decade of research. In: Proceedings of the Inter-
national Working Conference on Mining Software Repositories, pp. 343–352 (2013).
DOI 10.1109/MSR.2013.6624048

1 An Introduction to Recommendation Systems in Software Engineering 11

8. Hill, W.C., Hollan, J.D., Wroblewski, D.A., McCandless, T.: Edit wear and read wear. In:
Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, pp.
3–9 (1992). DOI 10.1145/142750.142751

9. Holmes, R., Walker, R.J.: Customized awareness: Recommending relevant external change
events. In: Proceedings of the ACM/IEEE International Conference on Software Engineering,
pp. 465–474 (2010). DOI 10.1145/1806799.1806867

10. Kersten, M., Murphy, G.C.: Mylar: A degree-of-interest model for IDEs. In: Proceedings of
the International Conference on Aspect-Oriented Software Deveopment, pp. 159–168 (2005).
DOI 10.1145/1052898.1052912

11. Ko, A.J., Myers, B.A., Coblenz, M.J., Aung, H.H.: An exploratory study of how developers
seek, relate, and collect relevant information during software maintenance tasks. IEEE Trans.
Software Eng. 32(12), 971–987 (2006). DOI 10.1109/TSE.2006.116

12. Kononenko, O., Dietrich, D., Sharma, R., Holmes, R.: Automatically locating relevant
programming help online. In: Proceedings of the IEEE Symposium on Visual Languages and
Human-Centric Computing, pp. 127–134 (2012). DOI 10.1109/VLHCC.2012.6344497

13. Mockus, A., Herbsleb, J.D.: Expertise Browser: A quantitative approach to identifying exper-
tise. In: Proceedings of the ACM/IEEE International Conference on Software Engineering, pp.
503–512 (2002). DOI 10.1145/581339.581401

14. Murphy-Hill, E., Jiresal, R., Murphy, G.C.: Improving software developers’ fluency by
recommending development environment commands. In: Proceedings of the ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 42:1–42:11 (2012).
DOI 10.1145/2393596.2393645

15. Ricci, F., Rokach, L., Shapira, B.: Introduction to Recommender Systems Handbook. In:
Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 1–35. Springer,
New York (2011). DOI 10.1007/978-0-387-85820-3_1

16. Robillard, M.P., Bodden, E., Kawrykow, D., Mezini, M., Ratchford, T.: Automated API
property inference techniques. IEEE Trans. Software Eng. 39(5), 613–637 (2013).
DOI 10.1109/TSE.2012.63

17. Robillard, M.P., Coelho, W., Murphy, G.C.: How effective developers investigate source
code: An exploratory study. IEEE Trans. Software Eng. 30(12), 889–903 (2004).
DOI 10.1109/TSE.2004.101

18. Robillard, M.P., Walker, R.J., Zimmermann, T.: Recommendation systems for software
engineering. IEEE Software 27(4), 80–86 (2010). DOI 10.1109/MS.2009.161

19. Sillito, J., Murphy, G.C., De Volder, K.: Asking and answering questions during a programming
change task. IEEE Trans. Software Eng. 34(4), 434–451 (2008). DOI 10.1109/TSE.2008.26

20. Weiser, M.: Program slicing. IEEE Trans. Software Eng. 10(4), 352–357 (1984).
DOI 10.1109/TSE.1984.5010248

21. Zimmermann, T., Weißgerber, P.: Preprocessing CVS data for fine-grained analysis. In:
Proceedings of the International Workshop on Mining Software Repositories, pp. 2–6 (2004)

22. Zimmermann, T., Weißgerber, P., Diehl, S., Zeller, A.: Mining version histories to guide soft-
ware changes. IEEE Trans. Software Eng. 31(6), 429–445 (2005). DOI 10.1109/TSE.2005.72

Part I
Techniques

Chapter 2
Basic Approaches in Recommendation Systems

Alexander Felfernig, Michael Jeran, Gerald Ninaus, Florian Reinfrank,
Stefan Reiterer, and Martin Stettinger

Abstract Recommendation systems support users in finding items of interest.
In this chapter, we introduce the basic approaches of collaborative filtering, content-
based filtering, and knowledge-based recommendation. We first discuss principles
of the underlying algorithms based on a running example. Thereafter, we provide
an overview of hybrid recommendation approaches which combine basic variants.
We conclude this chapter with a discussion of newer algorithmic trends, especially
critiquing-based and group recommendation.

2.1 Introduction

Recommendation systems [7,33] provide suggestions for items that are of potential
interest for a user. These systems are applied for answering questions such as which
book to buy? [39], which website to visit next? [49], and which financial service
to choose? [19]. In software engineering scenarios, typical questions that can be
answered with the support of recommendation systems are, for example, which
software changes probably introduce a bug? [3], which requirements to implement
in the next software release? [25], which stakeholders should participate in the
upcoming software project? [38], which method calls might be useful in the current
development context? [59], which software components (or APIs) to reuse? [45],
which software artifacts are needed next? [40], and which effort estimation methods
should be applied in the current project phase? [50]. An overview of the application
of different types of recommendation technologies in the software engineering
context can be found in Robillard et al. [53].

A. Felfernig (�) • M. Jeran • G. Ninaus • F. Reinfrank • S. Reiterer • M. Stettinger
Institute for Software Technology, Graz University of Technology,
Inffeldgasse 16b/2, 8010 Graz, Austria
e-mail: alexander.felfernig@ist.tugraz.at; mjeran@ist.tugraz.at; gninaus@ist.tugraz.at;
florian.reinfrank@ist.tugraz.at; reiterer@ist.tugraz.at; mstettinger@ist.tugraz.at

M.P. Robillard et al. (eds.), Recommendation Systems in Software Engineering,
DOI 10.1007/978-3-642-45135-5__2, © Springer-Verlag Berlin Heidelberg 2014

15

mailto:mstettinger@ist.tugraz.at
mailto:reiterer@ist.tugraz.at
mailto:florian.reinfrank@ist.tugraz.at
mailto:gninaus@ist.tugraz.at
mailto:mjeran@ist.tugraz.at
mailto:alexander.felfernig@ist.tugraz.at

16 A. Felfernig et al.

The major goal of this book chapter is to shed light on the basic properties of
the three major recommendation approaches of (1) collaborative filtering [12,26,36],
(2) content-based filtering [49], and (3) knowledge-based recommendation [5, 16].
Starting with the basic algorithmic approaches, we exemplify the functioning of the
algorithms and discuss criteria that help to decide which algorithm should be applied
in which context.

The remainder of this chapter is organized as follows. In Sect. 2.2 we give an
overview of collaborative filtering recommendation approaches. In Sect. 2.3 we
introduce the basic concepts of content-based filtering. We close our discussion of
basic recommendation approaches with the topic of knowledge-based recommen-
dation (see Sect. 2.4). In Sect. 2.5, we explain example scenarios for integrating the
basic recommendation algorithms into hybrid ones. Hints for practitioners interested
in the development of recommender applications are given in Sect. 2.6. A short
overview of further algorithmic approaches is presented in Sect. 2.7.

2.2 Collaborative Filtering

The item-set in our running examples is software engineering-related learning
material offered, for example, on an e-learning platform (see Table 2.1). Each
learning unit is additionally assigned to a set of categories, for example, the learning
unit l1 is characterized by Java and UML.

Collaborative filtering [12, 36, 56] is based on the idea of word-of-mouth
promotion: the opinion of family members and friends plays a major role in personal
decision making. In online scenarios (e.g., online purchasing [39]), family members
and friends are replaced by the so-called nearest neighbors (NN) who are users
with a similar preference pattern or purchasing behavior compared to the current
user. Collaborative filtering (see Fig. 2.1) relies on two different types of background
data: (1) a set of users and (2) a set of items. The relationship between users and
items is primarily expressed in terms of ratings which are provided by users and
exploited in future recommendation sessions for predicting the rating a user (in our
case user Ua) would provide for a specific item. If we assume that user Ua currently
interacts with a collaborative filtering recommendation system, the first step of the
recommendation system is to identify the nearest neighbors (users with a similar
rating behavior compared to Ua) and to extrapolate from the ratings of the similar
users the rating of user Ua.

The basic procedure of collaborative filtering can best be explained based on
a running example (see Table 2.2) which is taken from the software engineering
domain (collaborative recommendation of learning units). Note that in this chapter
we focus on the so-called memory-based approaches to collaborative filtering
which—in contrast to model-based approaches—operate on uncompressed versions
of the user/item matrix [4]. The two basic approaches to collaborative filtering are
user-based collaborative filtering [36] and item-based collaborative filtering [54].
Both variants are predicting to which extent the active user would be interested in
items which have not been rated by her/him up to now.

2 Basic Approaches in Recommendation Systems 17

Table 2.1 Example set of software engineering-related learning units (LU). This
set will be exploited for demonstration purposes throughout this chapter. Each
of the learning units is additionally characterized by a set of categories (Java,
UML, Management, Quality), for example, the learning unit l1 is assigned to the
categories Java and UML

Learning unit Name Java UML Management Quality

l1 Data Structures in Java yes yes
l2 Object Relational Mapping yes yes
l3 Software Architectures yes
l4 Project Management yes yes
l5 Agile Processes yes
l6 Object Oriented Analysis yes yes
l7 Object Oriented Design yes yes
l8 UML and the UP yes yes
l9 Class Diagrams yes
l10 OO Complexity Metrics yes

Fig. 2.1 Collaborative filtering (CF) dataflow. Users are rating items and receive recommenda-
tions for items based on the ratings of users with a similar rating behavior—the nearest neighbors
(NN)

User-Based Collaborative Filtering. User-based collaborative filtering identifies
the k-nearest neighbors of the active user—see Eq. (2.1)1—and, based on these
nearest neighbors, calculates a prediction of the active user’s rating for a specific
item (learning unit). In the example of Table 2.2, user U2 is the nearest neighbor
(k D 1) of user Ua, based on Eq. (2.1), and his/her rating of learning unit l3 will
be taken as a prediction for the rating of Ua (rating D 3.0). The similarity between
a user Ua (the current user) and another user Ux can be determined, for example,
based on the Pearson correlation coefficient [33]; see Eq. (2.1), where LUc is the set
of items that have been rated by both users, r˛;li is the rating of user ˛ for item li , and

1For simplicity we assume k D 1 throughout this chapter.

18 A. Felfernig et al.

Table 2.2 Example collaborative filtering data structure (rating matrix): learning
units (LU) versus related user ratings (we assume a rating scale of 1–5)

LU Name U1 U2 U3 U4 Ua

l1 Data Structures in Java 5.0 4.0
l2 Object Relational Mapping 4.0
l3 Software Architectures 3.0 4.0 3.0
l4 Project Management 5.0 5.0 4.0
l5 Agile Processes 3.0
l6 Object Oriented Analysis 4.5 4.0 4.0
l7 Object Oriented Design 4.0
l8 UML and the UP 2.0
l9 Class Diagrams 3.0
l10 OO Complexity Metrics 5.0 3.0

average rating (rα) 4.33 3.625 4.0 3.75 3.67

Table 2.3 Similarity between
user Ua and the users Uj ¤ Ua

determined based on Eq. (2.1).
If the number of commonly
rated items is below 2, no sim-
ilarity between the two users is
calculated

U1 U2 U3 U4

Ua – 0.97 0.70 –

r˛ is the average rating of user ˛. Similarity values resulting from the application of
Eq. (2.1) can take values on a scale of Œ�1; : : : ;C1�.

similarity.Ua; Ux/ D
P

li2LUc
.ra;li � ra/ � .rx;li � rx/

qP
li2LUc

.ra;li � ra/2 �
qP

li2LUc
.rx;li � rx/2

(2.1)

The similarity values for Ua calculated based on Eq. (2.1) are shown in Table 2.3.
For the purposes of our example we assume the existence of at least two items per
user pair (Ui , Uj), for i ¤ j , in order to be able to determine a similarity. This
criterion holds for users U2 and U3.

A major challenge in the context of estimating the similarity between users is
the sparsity of the rating matrix since users are typically providing ratings for only
a very small subset of the set of offered items. For example, given a large movie
dataset that contains thousands of entries, a user will typically be able to rate only
a few dozens. A basic approach to tackle this problem is to take into account the
number of commonly rated items in terms of a correlation significance [30], i.e.,
the higher the number of commonly rated items, the higher is the significance of

2 Basic Approaches in Recommendation Systems 19

Table 2.4 User-based collaborative filtering-based recommendations (predic-
tions) for items that have not been rated by user Ua up to now

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

U2 – – 3.0 5.0 – 4.5 – 2.0 – –
Ua – – – 4.0 – 4.0 – – 3.0
prediction(Ua; li) – – 3.045 – – – – 2.045 – –

the corresponding correlation. For further information regarding the handling of
sparsity, we refer the reader to [30, 33].

The information about the set of users with a similar rating behavior compared
to the current user (NN, the set of nearest neighbors) is the basis for predicting the
rating of user Ua for an item that has not been rated up to now by Ua; see Eq. (2.2).

prediction.Ua; item/ D ra C
P

Uj2NN similarity.Ua; Uj / � .rj;item � rj /
P

Uj2NN similarity.Ua; Uj /
(2.2)

Based on the rating of the nearest neighbor of Ua, we are able to determine a
prediction for user Ua (see Table 2.4). The nearest neighbor of Ua is user U2 (see
Table 2.3). The learning units rated by U2 but not rated by Ua are l3 and l8. Due to
the determined predictions—Eq. (2.2)—item l3 would be ranked higher than item
l8 in a recommendation list.

Item-Based Collaborative Filtering. In contrast to user-based collaborative filter-
ing, item-based collaborative filtering searches for items (nearest neighbors—NN)
rated by Ua that received similar ratings as items currently under investigation. In
our running example, learning unit l4 has already received a good evaluation (4.0 on
a rating scale of 1–5) by Ua. The item which is most similar to l4 and has not been
rated by Ua is item l3 (similarity(l3; l4) D 0.35). In this case, the nearest neighbor of
item l3 is l4; this calculation is based on Eq. (2.3).

If we want to determine a recommendation based on item-based collaborative
filtering, we have to determine the similarity (using the Pearson correlation coeffi-
cient) between two items la and lb where U denotes the set of users who both rated
la and lb , ru;li denotes the rating of user u on item li , and rli is the average rating of
the i -th item.

similarity.la; lb/ D
P

u2U .ru;la � rla / � .ru;lb � rlb /qP
u2U .ru;la � rla /

2 �pPu2U .ru;lb � rlb /
2

(2.3)

The information about the set of items with a similar rating pattern compared
to the item under consideration is the basis for predicting the rating of user Ua for
the item; see Eq. (2.4). Note that in this case NN represents a set of items already
evaluated by Ua. Based on the assumption of k D 1, prediction(Ua; l3) D 4.0, i.e.,
user Ua would rate item l3 with 4.0.

20 A. Felfernig et al.

prediction.Ua; item/ D
P

it2NN similarity.item; it/ � ra;it
P

it2NN similarity.item; it/
(2.4)

For a discussion of advanced collaborative recommendation approaches, we refer
the reader to Koren et al. [37] and Sarwar et al. [54].

2.3 Content-Based Filtering

Content-based filtering [49] is based on the assumption of monotonic personal
interests. For example, users interested in the topic Operating Systems are typically
not changing their interest profile from one day to another but will also be interested
in the topic in the (near) future. In online scenarios, content-based recommendation
approaches are applied, for example, when it comes to the recommendation of
websites [49] (news items with a similar content compared to the set of already
consumed news).

Content-based filtering (see Fig. 2.2) relies on two different types of background
data: (1) a set of users and (2) a set of categories (or keywords) that have been
assigned to (or extracted from) the available items (item descriptions). Content-
based filtering recommendation systems calculate a set of items that are most similar
to items already known to the current user Ua.

The basic approach of content-based filtering is to compare the content of already
consumed items (e.g., a list of news articles) with new items that can potentially
be recommended to the user, i.e., to find items that are similar to those already
consumed (positively rated) by the user. The basis for determining such a similarity
are keywords extracted from the item content descriptions (e.g., keywords extracted
from news articles) or categories in the case that items have been annotated with the
relevant meta-information. Readers interested in the principles of keyword extrac-
tion are referred to Jannach et al. [33]. Within the scope of this chapter we focus on
content-based recommendation which exploits item categories (see Table 2.1).

Content-based filtering will now be explained based on a running example which
relies on the information depicted in Tables 2.1, 2.5, and 2.6. Table 2.1 provides an
overview of the relevant items and the assignments of items to categories. Table 2.5
provides information on which categories are of relevance for the different users.
For example, user U1 is primarily interested in items related to the categories Java
and UML. In our running example, this information has been derived from the
rating matrix depicted in Table 2.2. Since user Ua already rated the items l4, l6,
and l10 (see Table 2.2), we can infer that Ua is interested in the categories UML,
Management, and Quality (see Table 2.5) where items related to the category UML
and Management have been evaluated two times and items related to Quality have
been evaluated once.

If we are interested in an item recommendation for the user Ua we have to search
for those items which are most similar to the items that have already been consumed

2 Basic Approaches in Recommendation Systems 21

Fig. 2.2 Content-based filtering (CBF) dataflow. Users rate items and receive recommendations
of items similar to those that have received a good evaluation from the current user Ua

Table 2.5 Degree of interest in different categories. For example,
user U1 accessed a learning unit related to the category Java three
times. If a user accessed an item at least once, it is inferred that
the user is interested in this item

Category U1 U2 U3 U4 Ua

Java 3 (yes) 1 (yes)
UML 3 (yes) 4 (yes) 3 (yes) 3 (yes) 2 (yes)

Management 3 (yes) 3 (yes) 2 (yes)
Quality 1 (yes) 1 (yes)

(evaluated) by the Ua. This relies on the simple similarity metric shown in Eq. (2.5)
(the Dice coefficient, which is a variation of the Jaccard coefficient that “intensively”
takes into account category commonalities—see also Jannach et al. [33]). The major
difference from the similarity metrics introduced in the context of collaborative
filtering is that in this case similarity is measured using keywords (in contrast to
ratings).

similarity.Ua; item/ D 2 � categories.Ua/ \ categories.item/

categories.Ua/C categories.item/
(2.5)

2.4 Knowledge-Based Recommendation

Compared to the approaches of collaborative filtering and content-based filtering,
knowledge-based recommendation [5,14,16,23,42] does not primarily rely on item
ratings and textual item descriptions but on deep knowledge about the offered items.
Such deep knowledge (semantic knowledge [16]) describes an item in more detail
and thus allows for a different recommendation approach (see Table 2.7).

22 A. Felfernig et al.

Table 2.6 Example of content-based filtering. User Ua has already consumed
the items l4, l6, and l10; see Table 2.2. The item most similar—see Eq. (2.5)—
to the preferences of Ua is l8 and is now the best recommendation candidate for
the current user

LU
Rating

ofUa
Name Java UML Management Quality similarity(Ua, li)

l1
Data Structures

in Java yes yes 2/5

l2
Object

Relational
Mapping

yes yes 2/5

l3
Software

Architectures yes 2/4

l4 4.0 Project
Management yes yes –

l5 Agile Processes yes 2/4

l6 4.0 Object Oriented
Analysis yes yes –

l7
Object Oriented

Design yes yes 2/5

l8
UML and the

UP yes yes 4/5

l9 Class Diagrams yes 2/4

l10 3.0 OO Complexity
Metrics yes –

Ua yes yes yes

Table 2.7 Software engineering learning units (LU) described based on deep
knowledge: obligatory vs. nonobligatory (Oblig.), duration of consumption
(Dur.), recommended semester (Sem.), complexity of the learning unit (Compl.),
associated topics (Topics), and average user rating (Eval.)

LU Name Oblig. Dur. Sem. Compl. Topics Eval

l1
Data Structures

in Java yes 2 2 3 Java, UML 4.5

l2
Object

Relational
Mapping

yes 3 3 4 Java, UML 4.0

l3
Software

Architectures no 3 4 3 UML 3.3

l4
Project

Management yes 2 4 2 UML,
Management 5.0

l5 Agile Processes no 1 3 2 Management 3.0

l6
Object Oriented

Analysis yes 2 2 3 UML,
Management 4.7

l7
Object Oriented

Design yes 2 2 3 Java, UML 4.0

l8
UML and the

UP no 3 3 2 UML,
Management 2.0

l9 Class Diagrams yes 4 3 3 UML 3.0

l10
OO Complexity

Metrics no 3 4 2 Quality 5.0

2 Basic Approaches in Recommendation Systems 23

Fig. 2.3 Knowledge-based recommendation (KBR) dataflow: users are entering their preferences
and receive recommendations based on the interpretation of a set of rules (constraints)

Knowledge-based recommendation (see Fig. 2.3) relies on the following
background data: (a) a set of rules (constraints) or similarity metrics and (b)
a set of items. Depending on the given user requirements, rules (constraints)
describe which items have to be recommended. The current user Ua articulates
his/her requirements (preferences) in terms of item property specifications which
are internally as well represented in terms of rules (constraints). In our example,
constraints are represented solely by user requirements, no further constraint types
are included (e.g., constraints that explicitly specify compatibility or incompatibility
relationships). An example of such a constraint is topics D Java. It denotes the fact
that the user is primarily interested in Java-related learning units. For a detailed
discussion of further constraint types, we refer the reader to Felfernig et al. [16].
Constraints are interpreted and the resulting items are presented to the user.2

A detailed discussion of reasoning mechanisms that are used in knowledge-based
recommendation can be found, for example, in Felfernig et al. [16, 17, 22].

In order to determine a recommendation in the context of knowledge-based
recommendation scenarios, a recommendation task has to be solved.

Definition 2.1. A recommendation task is a tuple .R; I / whereR represents a set of
user requirements and I represents a set of items (in our case: software engineering
learning units li 2 LU). The goal is to identify those items in I which fulfill the
given user requirements (preferences).

A solution for a recommendation task (also denoted as recommendation) can be
defined as follows.

2Knowledge-based recommendation approaches based on the determination of similarities
between items will be discussed in Sect. 2.7.

24 A. Felfernig et al.

Definition 2.2. A solution for a recommendation task .R; I / is a set S � I such
that 8li 2 S W li 2 �.R/I where � is the selection operator of a conjunctive
query [17], R represents a set of selection criteria (represented as constraints), and
I represents an item table (see, for example, Table 2.7). If we want to restrict the
set of item properties shown to the user in a result set (recommendation), we have
to additionally include projection criteria � as follows: �.attributes.I //.�.R/I /.

In our example, we show how to determine a solution for a given recom-
mendation task based on a conjunctive query where user requirements are used
as selection criteria (constraints) on an item table I . If we assume that the user
requirements are represented by the set R D fr1 W semester � 3; r2 W topics D
Javag and the item table I consists of the elements shown in Table 2.7, then
�.LU/.�.semester� 3 ^ topicsDJava/I / D {l1; l2; l7}, i.e., these three items are consistent
with the given set of requirements.

Ranking Items. Up to this point we only know which items can be recommended
to a user. One widespread approach to rank items is to define a utility scheme
which serves as a basis for the application of multi-attribute utility theory (MAUT).3

Alternative items can be evaluated and ranked with respect to a defined set of interest
dimensions. In the domain of e-learning units, example interest dimensions of users
could be time effort (time needed to consume the learning unit) and quality (quality
of the learning unit). The first step to establish a MAUT scheme is to relate the
interest dimensions to properties of the given set of items. A simple example of such
a mapping is shown in Table 2.8. In this example, we assume that obligatory learning
units (learning units that have to be consumed within the scope of a study path)
trigger more time efforts than nonobligatory ones, a longer duration of a learning
unit is correlated with higher time efforts, and low complexity correlates with lower
time efforts. In this context, lower time efforts for a learning unit are associated with
a higher utility. Furthermore, we assume that the more advanced the semester, the
higher is the quality of the learning unit (e.g., in terms of education degree). The
better the overall evaluation (eval), the higher the quality of a learning unit (e.g., in
terms of the used pedagogical approach).

We are now able to determine the user-specific utility of each individual item.
The calculation of item utilities for a specific user Ua can be based on Eq. (2.6).

utility.Ua; item/ D
X

d2Dimensions

contribution.item; d / � weight.Ua; d/ (2.6)

If we assume that the current user Ua assigns a weight of 0.2 to the dimension
time effort (weight.Ua; time effort/ D 0:2) and a weight of 0.8 to the dimension
quality (weight.Ua; quality/ D 0:8), then the user-specific utilities of the individual
items (li) are the ones shown in Table 2.9.

3A detailed discussion of the application of MAUT in knowledge-based recommendation scenarios
can be found in Ardissono et al. [1] and Felfernig et al. [16, 18].

2 Basic Approaches in Recommendation Systems 25

Table 2.8 Contributions of
item properties to the
dimensions time effort and
quality

Item property
Time effort

(1–10)
Quality

(1–10)

obligatory = yes 4 -

obligatory = no 7 -

duration = 1 10 -

duration = 2 5 -

duration = 3 1 -

duration = 4 1 -

complexity = 2 8 -

complexity = 3 5 -

complexity = 4 2 -

semester = 2 - 3

semester = 3 - 5

semester = 4 - 7

eval = 0–2 - 2

eval = >2–3 - 5

eval = >3–4 - 8

eval = >4 - 10

Table 2.9 Item-specific
utility for user Ua (i.e.,
utility.Ua; li /) assuming the
personal preferences for time
effort D 0.2 and quality D
0.8. In this scenario, item l4
has the highest utility for
user Ua

LU Time effort Quality Utility

l1 14 13 2.8+10.4 = 13.2
l2 7 13 1.4+10.4 = 11.8
l3 13 15 2.6+12.0 = 14.6
l4 17 17 3.4+13.6 = 17.0
l5 25 10 5.0+8.0 = 13.0
l6 14 13 2.8+10.4 = 13.2
l7 14 11 2.8+8.8 = 11.6
l8 16 7 3.2+5.6 = 8.8
l9 10 10 2.0+8.0 = 10.0
l10 16 17 3.2+13.6 = 16.8

Dealing with Inconsistencies. Due to the logical nature of knowledge-based
recommendation problems, we have to deal with scenarios where no solution
(recommendation) can be identified for a given set of user requirements, i.e.,
�.R/I D ;. In such situations we are interested in proposals for requirements
changes such that a solution (recommendation) can be identified. For example, if a
user is interested in learning units with a duration of 4 h, related to management,
and a complexity level > 3, then no solution can be provided for the given set
of requirements R D fr1 W duration D 4; r2 W topics D management; r3 W
complexity > 3g.

User support in such situations can be based on the concepts of conflict
detection [34] and model-based diagnosis [13, 15, 51]. A conflict (or conflict set)

26 A. Felfernig et al.

Fig. 2.4 Determination of
the complete set of diagnoses
(hitting sets) �i for the given
conflict sets CS1 D fr1; r2g
and CS2 D fr2; r3g:
�1 D fr2g and �2 D fr1; r3g

with regard to an item set I in a given set of requirements R can be defined as
follows.

Definition 2.3. A conflict set is a set CS � R such that �.CS/I D ;. CS is minimal
if there does not exist a conflict set CS0 with CS0 � CS.

In our running example we are able to determine the following minimal conflict
sets CSi : CS1 W fr1; r2g, CS2 W fr2; r3g. We will not discuss algorithms that
support the determination of minimal conflict sets but refer the reader to the
work of Junker [34] who introduces a divide-and-conquer-based algorithm with a
logarithmic complexity in terms of the needed number of consistency checks.

Based on the identified minimal conflict sets, we are able to determine the
corresponding (minimal) diagnoses. A diagnosis for a given set of requirements
which is inconsistent with the underlying item table can be defined as follows.

Definition 2.4. A diagnosis for a set of requirements R D fr1; r2; : : : ; rng is a set
� � R such that �.R��/I ¤ ;. A diagnosis � is minimal if there does not exist a
diagnosis �0 with �0 � �.

In other words, a diagnosis (also called a hitting set) is a minimal set of
requirements that have to be deleted from R such that a solution can be found for
R��. The determination of the complete set of diagnoses for a set of requirements
inconsistent with the underlying item table (the corresponding conjunctive query
results in ;) is based on the construction of hitting set trees [51]. An example
of the determination of minimal diagnoses is depicted in Fig. 2.4. There are two
possibilities of resolving the conflict set CS1. If we decide to delete the requirement
r2, �.fr1;r3g/I ¤ ;, i.e., a diagnosis has been identified (�1 D fr2g) and—as
a consequence—all CSi have been resolved. Choosing the other alternative and
resolving CS1 by deleting r1 does not result in a diagnosis since the conflict CS2

is not resolved. Resolving CS2 by deleting r2 does not result in a minimal diagnosis,
since r2 already represents a diagnosis. The second (and last) minimal diagnosis that
can be identified in our running example is �2 D fr1; r3g. For a detailed discussion
of the underlying algorithm and analysis we refer the reader to Reiter [51]. Note
that a diagnosis provides a hint to which requirements have to be changed. For a
discussion of how requirement repairs (change proposals) are calculated, we refer
the reader to Felfernig et al. [17].

2 Basic Approaches in Recommendation Systems 27

Table 2.10 Examples of hybrid recommendation approaches (RECS D set of recommenders,
s D recommender-individual prediction, score D item score)

Method Description Example formula

weighted

predictions of
individual

recommenders are
summed up

score(item) = recS ∈RECS s(item,rec)

mixed

recommender-
individual

predictions are
combined into one
recommendation

result

score(item) = zipper-function(item,RECS)

cascade

the predictions of
one recommender

are used as input for
the next

recommender

score(item) = score(item,recn)

score(item,reci)=

⎧
⎨

⎩

s(item,rec1) , if i= 1
s(item,reci)×

score(item,reci−1) , otherwise.

2.5 Hybrid Recommendations

After having discussed the three basic recommendation approaches of collaborative
filtering, content-based filtering, and knowledge-based recommendation, we will
now present some possibilities to combine these basic types.

The motivation for hybrid recommendations is the opportunity to achieve a
better accuracy [6]. There are different approaches to evaluate the accuracy of
recommendation algorithms. These approaches (see also Avazpour et al. [2] and
Tosun Mısırlı et al. [58] in Chaps. 10 and 13, respectively) can be categorized into
predictive accuracy metrics such as the mean absolute error (MAE), classification
accuracy metrics such as precision and recall, and rank accuracy metrics such as
Kendall’s Tau. For a discussion of accuracy metrics we refer the reader also to
Gunawardana and Shani [28] and Jannach et al. [33].

We now take a look at example design types of hybrid recommendation
approaches [6, 33] which are weighted, mixed, and cascade (see Table 2.10). These
approaches will be explained on the basis of our running example. The basic
assumption in the following is that individual recommendation approaches return
a list of five recommended items where each item has an assigned (recommender-
individual) prediction out of {1.0, 2.0, 3.0, 4.0, 5.0}. For a more detailed discussion
of hybridization strategies, we refer the reader to Burke [6] and Jannach et al. [33].

Weighted. Weighted hybrid recommendation is based on the idea of deriving
recommendations by combining the results (predictions) computed by individual
recommenders. A corresponding example is depicted in Table 2.11 where the

28 A. Felfernig et al.

Table 2.11 Example of weighted hybrid recommendation: individual predictions
are integrated into one score. Item l8 receives the best overall score (9.0)

Items l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

s(li;collaborative filtering) 1.0 3.0 – 5.0 – 2.0 – 4.0 – –

s(li;content-based filtering) – 1.0 2.0 – – 3.0 4.0 5.0 – –

score(li) 1.0 4.0 2.0 5.0 0.0 5.0 4.0 9.0 0.0 0.0

ranking(li) 7 4 6 2 8 3 5 1 9 10

Table 2.12 Example of mixed hybrid recommendation. Individual predictions are
integrated into one score conform the zipper principle (best collaborative filtering
prediction receives score D 10, best content-based filtering prediction receives
score D 9 and so forth)

Items l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

s(li;collaborative filtering) 1.0 3.0 – 5.0 – 2.0 – 4.0 – –

s(li;content-based filtering) – 1.0 2.0 – – 3.0 4.0 5.0 – –

score(li) 4.0 8.0 5.0 10.0 0.0 6.0 7.0 9.0 0.0 0.0

ranking(li) 7 3 6 1 8 5 4 2 9 10

individual item scores of a collaborative and a content-based recommender are
summed up. Item l8 receives the highest overall score (9.0) and is ranked highest
by the weighted hybrid recommender.4

Mixed. Mixed hybrid recommendation is based on the idea that predictions of
individual recommenders are shown in one integrated result. For example, the
results of a collaborative filtering and a content-based recommender can be ranked
as sketched in Table 2.12. Item scores can be determined, for example, on the basis
of the zipper principle, i.e., the item with highest collaborative filtering prediction
value receives the highest overall score (10.0), the item with best content-based
filtering prediction value receives the second best overall score, and so forth.

Cascade. The basic idea of cascade-based hybridization is that recommenders
in a pipe of recommenders exploit the recommendation of the upstream recom-
mender as a basis for deriving their own recommendation. The knowledge-based
recommendation approach presented in Sect. 2.4 is an example of a cascade-
based hybrid recommendation approach. First, items that are consistent with the
given requirements are preselected by a conjunctive query Q. We can assume, for
example, that s.item;Q/ D 1.0 if the item has been selected and s.item;Q/ D 0:0

if the item has not been selected. In our case, the set of requirements R D
fr1 W semester � 3; r2 W topics D Javag in the running example leads to the
selection of the items {l1; l2; l7}. Thereafter, these items are ranked conform to

4If two or more items have the same overall score, a possibility is to force a decision by lot; where
needed, this approach can also be applied by other hybrid recommendation approaches.

2 Basic Approaches in Recommendation Systems 29

their utility for the current user (utility-based ranking U). The utility-based ranking
U would determine the item order utility(l1) > utility(l2) > utility(l7) assuming
that the current user assigns a weight of 0.8 to the interest dimension quality
(weight(Ua,quality) D 0.8) and a weight of 0.2 to the interest dimensions time effort
(weight(Ua,time effort) D 0.2). In this example the recommender Q is the first one
and the results of Q are forwarded to the utility-based recommender.

Other examples of hybrid recommendation approaches include the following [6].
Switching denotes an approach where—depending on the current situation—a
specific recommendation approach is chosen. For example, if a user has a low
level of product knowledge, then a critiquing-based recommender will be chosen
(see Sect. 2.7). Vice versa, if the user is an expert, an interface will be provided
where the user is enabled to explicitly state his/her preferences on a detailed level.
Feature combination denotes an approach where different data sources are exploited
by a single recommender. For example, a recommendation algorithm could exploit
semantic item knowledge in combination with item ratings (see Table 2.7). For an
in-depth discussion of hybrid recommenders, we refer the reader to Burke [6] and
Jannach et al. [33].

2.6 Hints for Practitioners

In this section we provide several hints for practitioners who are interested in
developing recommendation systems.

2.6.1 Usage of Algorithms

The three basic approaches of collaborative filtering, content-based filtering, and
knowledge-based recommendation exploit different sources of recommendation
knowledge and have different strengths and weaknesses (see Table 2.13). Collabo-
rative filtering (CF) and content-based filtering (CBF) are easy to set up (only basic
item information is needed, e.g., item name and picture), whereas knowledge-based
recommendation requires a more detailed specification of item properties (and in
many cases also additional constraints). Both CF and CBF are more adaptive in
the sense that new ratings are automatically taken into account in future activations
of the recommendation algorithm. In contrast, utility schemes in knowledge-based
recommendation (see, for example, Table 2.9) have to be adapted manually (if no
additional learning support is available [21]).

Serendipity effects are interpreted as a kind of accident of being confronted
with something useful although no related search has been triggered by the user.
They can primarily be achieved when using CF approaches. Due to the fact that
content-based filtering does not take into account the preferences (ratings) of other
users, no such effects can be achieved. Achieving serendipity effects for the users
based on KBR is possible in principle, however, restricted to and depending on

30 A. Felfernig et al.

Table 2.13 Summary of the
strengths and weaknesses of
collaborative filtering (CF),
content-based filtering (CBF),
and knowledge-based
recommendation (KBR)

Property CF CBF KBR

easy setup yes yes no

adaptivity yes yes no

serendipity effects yes no no

ramp-up problem yes yes no

transparency no no yes

high-involvement items no no yes

the creativity of the knowledge engineer (who is able to foresee such effects when
defining recommendation rules). The ramp-up problem (also called the cold start
problem) denotes a situation where there is the need to provide initial rating data
before the algorithm is able to determine reasonable recommendations. Ramp-up
problems exist with both CF and CBF: in CF users have to rate a set of items before
the algorithm is able to determine the nearest neighbors; in CBF, the user has to
specify interesting/relevant items before the algorithm is able to determine items
that are similar to those that have already been rated by the user.

Finally, transparency denotes the degree to which recommendations can be
explained to users. Explanations in CF systems solely rely on the interpretation
of the relationship to nearest neighbors, for example, users who purchased item X
also purchased item Y. CBF algorithms explain their recommendations in terms of
the similarity of the recommended item to items already purchased by the user:
we recommend Y since you already purchased X which is quite similar to Y.
Finally—due to the fact that they rely on deep knowledge—KBR is able to provide
deep explanations which take into account semantic item knowledge. An example
of such an explanation is diagnoses that explain the reasons as to why a certain
set of requirements does not allow the calculation of a solution. Other types of
explanations exist: why a certain item has been included in the recommendation
and why a certain question has been asked to the user [16, 24].

Typically, CF and CBF algorithms are used for recommending low-involvement
items5 such as movies, books, and news articles. In contrast, knowledge-based
recommender functionalities are used for the recommendation of high-involvement
items such as financial services, cars, digital cameras, and apartments. In the latter
case, ratings are provided with a low frequency which makes these domains less
accessible to CF and CBF approaches. For example, user preferences regarding a
car could significantly change within a couple of years without being detected by the
recommender system, whereas such preference shifts are detected by collaborative
and content-based recommendation approaches due to the fact that purchases occur
more frequently and—as a consequence—related ratings are available for the

5The impact of a wrong decision (selection) is rather low, therefore users invest less evaluation
effort in a purchase situation.

2 Basic Approaches in Recommendation Systems 31

recommender system. For an overview of heuristics and rules related to the selection
of recommendation approaches, we refer the reader to Burke and Ramezani [9].

2.6.2 Recommendation Environments

Recommendation is an artificial intelligence (AI) technology successfully applied in
different commercial contexts [20]. As recommendation algorithms and heuristics
are regarded as a major intellectual property of a company, recommender systems
are often not developed on the basis of standard solutions but are rather based
on proprietary solutions that are tailored to the specific situation of the company.
Despite this situation, there exist a few recommendation environments that can be
exploited for the development of different recommender applications.

Strands is a company that provides recommendation technologies covering the
whole range of collaborative, content-based, and knowledge-based recommendation
approaches. MyMediaLite is an open-source library that can be used for the devel-
opment of collaborative filtering-based recommender systems. LensKit [11] is an
open-source toolkit that supports the development and evaluation of recommender
systems—specifically it includes implementations of different collaborative filtering
algorithms. A related development is MovieLens which is a noncommercial movie
recommendation platform. The MovieLens dataset (user � item ratings) is publicly
available and popular dataset for evaluating new algorithmic developments. Apache
Mahout is a machine learning environment that also includes recommendation
functionalities such as user-based and item-based collaborative filtering.

Open-source constraint libraries such as Choco and Jacop can be exploited for
the implementation of knowledge-based recommender applications. WeeVis is a
Wiki-based environment for the development of knowledge-based recommender
applications—resulting recommender applications can be deployed on different
handheld platforms such as iOS, Android, and Windows 8. Finally, Choicla is a
group recommendation platform that allows the definition and execution of group
recommendation tasks (see Sect. 2.7).

2.7 Further Algorithmic Approaches

We examine two further algorithmic approaches here: general critiquing-based
recommendations and group recommendations.

http://choicla.com/
http://www.weevis.org/
http://jacop.osolpro.com/
http://www.emn.fr/
http://mahout.apache.org/
http://www.movielens.org/
http://lenskit.grouplens.org/
http://www.mymedialite.net/
http://strands.com/
http://mahout.apache.org/

32 A. Felfernig et al.

Fig. 2.5 Example of a critiquing scenario. The entry item l7 is shown to the user. The user specifies
the critique “less time effort.” The new entry item is l9 since it is consistent with the critique and
the item most similar to l7

2.7.1 Critiquing-Based Recommendation

There are two basic approaches to support item identification in the context of
knowledge-based recommendation.

First, search-based approaches require the explicit specification of search criteria
and the recommendation algorithm is in charge of identifying a set of corresponding
recommendations [16,57] (see also Sect. 2.4). If no solution can be found for a given
set of requirements, the recommendation engine determines diagnoses that indicate
potential changes such that a solution (recommendation) can be identified. Second,
navigation-based approaches support the navigation in the item space where in
each iteration a reference item is presented to the user and the user either accepts
the (recommended) item or searches for different solutions by specifying critiques.
Critiques are simple criteria that are used for determining new recommendations
that take into account the (changed) preferences of the current user. Examples
of such critiques in the context of our running example are less time efforts and
higher quality (see Fig. 2.5). Critiquing-based recommendation systems are useful
in situations where users are not experts in the item domain and prefer to specify
their requirements on the level of critiques [35]. If users are knowledgeable in the
item domain, the application of search-based approaches makes more sense. For an
in-depth discussion of different variants of critiquing-based recommendation, we
refer the reader to [8, 10, 27, 41, 46, 52].

2.7.2 Group Recommendation

Due to the increasing popularity of social platforms and online communities,
group recommendation systems are becoming an increasingly important technology

2 Basic Approaches in Recommendation Systems 33

Table 2.14 Example of group recommendation: selection of a
learning unit for a group. The recommendation (l7) is based on
the least misery heuristic

Items l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

alex 1.0 3.0 1.0 5.0 4.0 2.0 4.0 2.0 1.0 4.0
dorothy 5.0 1.0 2.0 1.0 4.0 3.0 4.0 2.0 2.0 3.0

peter 2.0 4.0 2.0 5.0 3.0 5.0 4.0 3.0 2.0 2.0
ann 3.0 4.0 5.0 2.0 1.0 1.0 3.0 3.0 3.0 4.0

least misery 1.0 1.0 1.0 1.0 1.0 1.0 3.0 2.0 1.0 2.0

[29, 44]. Example application domains of group recommendation technologies
include tourism [47] (e.g., which hotels or tourist destinations should be visited by a
group?) and interactive television [43] (which sequence of television programs will
be accepted by a group?). In the majority, group recommendation algorithms are
related to simple items such as hotels, tourist destinations, and television programs.
The application of group recommendation in the context of our running example is
shown in Table 2.14 (selection of a learning unit for a group).

The group recommendation task is to figure out a recommendation that will
be accepted by the whole group. The group decision heuristics applied in the
context is least misery which returns the lowest voting for alternative li as group
recommendation. For example, the least misery value for alternative l7 is 3:0 which
is the highest value of all possible alternatives, i.e., the first recommendation for the
group is l7. Other examples of group recommendation heuristics are most pleasure
(the group recommendation is the item with the most individual votes) and majority
voting (the voting for an individual solution is defined by the majority of individual
user votes: the group recommendation is the item with the highest majority value).
Group recommendation technologies for high-involvement items (see Sect. 2.6) are
the exception of the rule [e.g., 31, 55]. First applications of group recommendation
technologies in the software engineering context are reported in Felfernig et al. [25].
An in-depth discussion of different types of group recommendation algorithms can
be found in O’Connor et al. [48], Jameson and Smyth [32], and Masthoff [44].

2.8 Conclusion

This chapter provides an introduction to the recommendation approaches of col-
laborative filtering, content-based filtering, knowledge-based recommendation, and
different hybrid variants thereof. While collaborative filtering-based approaches
exploit ratings of nearest neighbors, content-based filtering exploits categories
and/or extracted keywords for determining recommendations. Knowledge-based
recommenders should be used, for example, for products where there is a need
to encode the recommendation knowledge in terms of constraints. Beside algo-
rithmic approaches, we discussed criteria to be taken into account when deciding

34 A. Felfernig et al.

about which recommendation technology to use in a certain application context.
Furthermore, we provided an overview of environments that can be exploited for
recommender application development.

References

1. Ardissono, L., Felfernig, A., Friedrich, G., Goy, A., Jannach, D., Petrone, G., Schäfer, R.,
Zanker, M.: A framework for the development of personalized, distributed web-based config-
uration systems. AI Mag. 24(3), 93–108 (2003)

2. Avazpour, I., Pitakrat, T., Grunske, L., Grundy, J.: Dimensions and metrics for evaluating
recommendation systems. In: Robillard, M., Maalej, W., Walker, R.J., Zimmermann, T. (eds.)
Recommendation Systems in Software Engineering, Chap. 10. Springer, New York (2014)

3. Bachwani, R.: Preventing and diagnosing software upgrade failures. Ph.D. thesis, Rutgers
University (2012)

4. Billsus, D., Pazzani, M.: Learning collaborative information filters. In: Proceedings of the
International Conference on Machine Learning, pp. 46–54 (1998)

5. Burke, R.: Knowledge-based recommender systems. Encyclopedia Libr. Inform. Sci. 69(32),
180–200 (2000)

6. Burke, R.: Hybrid recommender systems: Survey and experiments. User Model. User-Adapt.
Interact. 12(4), 331–370 (2002). DOI 10.1023/A:1021240730564

7. Burke, R., Felfernig, A., Goeker, M.: Recommender systems: An overview. AI Mag. 32(3),
13–18 (2011)

8. Burke, R., Hammond, K., Yound, B.: The FindMe approach to assisted browsing. IEEE Expert
12(4), 32–40 (1997). DOI 10.1109/64.608186

9. Burke, R., Ramezani, M.: Matching recommendation technologies and domains. In: Ricci, F.,
Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 367–386.
Springer, New York (2011). DOI 10.1007/978-0-387-85820-3_11

10. Chen, L., Pu, P.: Critiquing-based recommenders: Survey and emerging trends. User Model.
User-Adapt. Interact. 22(1–2), 125–150 (2012). DOI 10.1007/s11257-011-9108-6

11. Ekstrand, M.D., Ludwig, M., Kolb, J., Riedl, J.: LensKit: A modular recommender framework.
In: Proceedings of the ACM Conference on Recommender Systems, pp. 349–350 (2011a).
DOI 10.1145/2043932.2044001

12. Ekstrand, M.D., Riedl, J.T., Konstan, J.A.: Collaborative filtering recommender systems.
Found. Trends Hum. Comput. Interact. 4(2), 81–173 (2011b). DOI 10.1561/1100000009

13. Falkner, A., Felfernig, A., Haag, A.: Recommendation technologies for configurable products.
AI Mag. 32(3), 99–108 (2011)

14. Felfernig, A., Friedrich, G., Gula, B., Hitz, M., Kruggel, T., Melcher, R., Riepan, D.,
Strauss, S., Teppan, E., Vitouch, O.: Persuasive recommendation: Serial position effects in
knowledge-based recommender systems. In: Proceedings of the International Conference of
Persuasive Technology, Lecture Notes in Computer Science, vol. 4744, pp. 283–294 (2007a).
DOI 10.1007/978-3-540-77006-0_34

15. Felfernig, A., Friedrich, G., Jannach, D., Stumptner, M.: Consistency-based diagnosis of
configuration knowledge bases. Artif. Intell. 152(2), 213–234 (2004). DOI 10.1016/S0004-
3702(03)00117-6

16. Felfernig, A., Friedrich, G., Jannach, D., Zanker, M.: An integrated environment for the
development of knowledge-based recommender applications. Int. J. Electron. Commerce
11(2), 11–34 (2006a). DOI 10.2753/JEC1086-4415110201

17. Felfernig, A., Friedrich, G., Schubert, M., Mandl, M., Mairitsch, M., Teppan, E.: Plausible
repairs for inconsistent requirements. In: Proceedings of the International Joint Conference on
Artificial Intelligence, pp. 791–796 (2009)

2 Basic Approaches in Recommendation Systems 35

18. Felfernig, A., Gula, B., Leitner, G., Maier, M., Melcher, R., Teppan, E.: Persuasion in
knowledge-based recommendation. In: Proceedings of the International Conference on
Persuasive Technology, Lecture Notes in Computer Science, vol. 5033, pp. 71–82 (2008).
DOI 10.1007/978-3-540-68504-3_7

19. Felfernig, A., Isak, K., Szabo, K., Zachar, P.: The VITA financial services sales support
environment. In: Proceedings of the Innovative Applications of Artificial Intelligence
Conference, pp. 1692–1699 (2007b)

20. Felfernig, A., Jeran, M., Ninaus, G., Reinfrank, F., Reiterer, S.: Toward the next generation
of recommender systems: Applications and research challenges. In: Multimedia Services
in Intelligent Environments: Advances in Recommender Systems, Smart Innovation, Systems
and Technologies, vol. 24, pp. 81–98. Springer, New York (2013a). DOI 10.1007/978-3-319-
00372-6_5

21. Felfernig, A., Ninaus, G., Grabner, H., Reinfrank, F., Weninger, L., Pagano, D., Maalej, W.: An
overview of recommender systems in requirements engineering. In: Managing Requirements
Knowledge, Chap. 14, pp. 315–332. Springer, New York (2013b). DOI 10.1007/978-3-642-
34419-0_14

22. Felfernig, A., Schubert, M., Reiterer, S.: Personalized diagnosis for over-constrained problems.
In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 1990–1996
(2013c)

23. Felfernig, A., Shchekotykhin, K.: Debugging user interface descriptions of knowledge-based
recommender applications. In: Proceedings of the International Conference on Intelligent User
Interfaces, pp. 234–241 (2006). DOI 10.1145/1111449.1111499

24. Felfernig, A., Teppan, E., Gula, B.: Knowledge-based recommender technologies for
marketing and sales. Int. J. Pattern Recogn. Artif. Intell. 21(2), 333–354 (2006b).
DOI 10.1142/S0218001407005417

25. Felfernig, A., Zehentner, C., Ninaus, G., Grabner, H., Maaleij, W., Pagano, D., Weninger, L.,
Reinfrank, F.: Group decision support for requirements negotiation. In: Advances in
User Modeling, no. 7138 in Lecture Notes in Computer Science, pp. 105–116 (2012).
DOI 10.1007/978-3-642-28509-7_11

26. Goldberg, D., Nichols, D., Oki, B., Terry, D.: Using collaborative filtering to weave an
information tapestry. Comm. ACM 35(12), 61–70 (1992). DOI 10.1145/138859.138867

27. Grasch, P., Felfernig, A., Reinfrank, F.: ReComment: Towards critiquing-based recommen-
dation with speech interaction. In: Proceedings of the ACM Conference on Recommender
Systems pp. 157–164 (2013)

28. Gunawardana, A., Shani, G.: A survey of accuracy evaluation metrics of recommendation
tasks. J. Mach. Learn. Res. 10, 2935–2962 (2009)

29. Hennig-Thurau, T., Marchand, A., Marx, P.: Can automated group recommender systems help
consumers make better choices? J. Market. 76(5), 89–109 (2012)

30. Herlocker, J., Konstan, J., Borchers, A., Riedl, J.: An algorithmic framework for per-
forming collaborative filtering. In: Proceedings of the ACM SIGIR International Con-
ference on Research and Development in Information Retrieval, pp. 230–237 (1999).
DOI >10.1145/312624.312682

31. Jameson, A.: More than the sum of its members: Challenges for group recommender systems.
In: Proceedings of the Working Conference on Advanced Visual Interfaces, pp. 48–54 (2004).
DOI 10.1145/989863.989869

32. Jameson, A., Smyth, B.: Recommendation to groups. In: Brusilovsky, P., Kobsa, A.,
Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web Personalization, Lecture
Notes in Computer Science, vol. 4321, Chap. 20, pp. 596–627. Springer, New York (2007).
DOI 10.1007/978-3-540-72079-9_20

33. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems: An Introduction.
Cambridge University Press, Cambridge (2010)

34. Junker, U.: QUICKXPLAIN: Preferred explanations and relaxations for over-constrained
problems. In: Proceedings of the National Conference on Artifical Intelligence, pp. 167–172
(2004)

36 A. Felfernig et al.

35. Knijnenburg, B., Reijmer, N., Willemsen, M.: Each to his own: How different users call
for different interaction methods in recommender systems. In: Proceedings of the ACM
Conference on Recommender Systems, pp. 141–148 (2011). DOI 10.1145/2043932.2043960

36. Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R., Riedl, J.: GroupLens:
Applying collaborative filtering to Usenet news. Comm. ACM 40(3), 77–87 (1997).
DOI 10.1145/245108.245126

37. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems.
Computer 42(8), 30–37 (2009). DOI 10.1109/MC.2009.263

38. Lim, S., Quercia, D., Finkelstein, A.: StakeNet: Using social networks to analyse the
stakeholders of large-scale software projects. In: Proceedings of the ACM/IEEE International
Conference on Software Engineering, pp. 295–304 (2010). DOI 10.1145/1806799.1806844

39. Linden, G., Smith, B., York, J.: Amazon.com recommendations: Item-to-item collaborative
filtering. IEEE Internet Comput. 7(1), 76–80 (2003). DOI 10.1109/MIC.2003.1167344

40. Maalej, W., Sahm, A.: Assisting engineers in switching artifacts by using task semantic
and interaction history. In: Proceedings of the International Workshop on Recommendation
Systems for Software Engineering, pp. 59–63 (2010). DOI 10.1145/1808920.1808935

41. Mandl, M., Felfernig, A.: Improving the performance of unit critiquing. In: Proceedings of
the International Conference on User Modeling, Adaptation, and Personalization, pp. 176–187
(2012). DOI 10.1007/978-3-642-31454-4_15

42. Mandl, M., Felfernig, A., Teppan, E., Schubert, M.: Consumer decision making
in knowledge-based recommendation. J. Intell. Inform. Syst. 37(1), 1–22 (2010).
DOI 10.1007/s10844-010-0134-3

43. Masthoff, J.: Group modeling: Selecting a sequence of television items to suit
a group of viewers. User Model. User-Adapt. Interact. 14(1), 37–85 (2004).
DOI 10.1023/B:USER.0000010138.79319.fd

44. Masthoff, J.: Group recommender systems: Combining individual models. In: Ricci, F.,
Rokach, L., Shapira, B., Kantor, P. (eds.) Recommender Systems Handbook, Chap. 21, pp.
677–702. Springer, New York (2011). DOI 10.1007/978-0-387-85820-3_21

45. McCarey, F., Ó Cinnéide, M., Kushmerick, N.: RASCAL: A recommender agent for agile
reuse. Artif. Intell. Rev. 24(3–4), 253–276 (2005). DOI 10.1007/s10462-005-9012-8

46. McCarthy, K., Reilly, J., McGinty, L., Smyth, B.: On the dynamic generation of compound
critiques in conversational recommender systems. In: Proceedings of the International
Conference on Adaptive Hypermedia and Adaptive Web-Based Systems, Lecture Notes in
Computer Science, vol. 3137, pp. 176–184 (2004)

47. McCarthy, K., Salamo, M., Coyle, L., McGinty, L., Smyth, B., Nixon, P.: Group recommender
systems: A critiquing based approach. In: Proceedings of the International Conference on
Intelligent User Interfaces, pp. 267–269 (2006). DOI 10.1145/1111449.1111506

48. O’Connor, M., Cosley, D., Konstan, J., Riedl, J.: PolyLens: A recommender system for groups
of users. In: Proceedings of the European Conference on Computer Supported Cooperative
Work, pp. 199–218 (2001). DOI 10.1007/0-306-48019-0_11

49. Pazzani, M., Billsus, D.: Learning and revising user profiles: The identification of interesting
web sites. Mach. Learn. 27(3), 313–331 (1997). DOI 10.1023/A:1007369909943

50. Peischl, B., Zanker, M., Nica, M., Schmid, W.: Constraint-based recommendation for
software project effort estimation. J. Emerg. Tech. Web Intell. 2(4), 282–290 (2010).
DOI 10.4304/jetwi.2.4.282-290

51. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987).
DOI 10.1016/0004-3702(87)90062-2

52. Ricci, F., Nguyen, Q.: Acqiring and revising preferences in a critiquing-based mobile recom-
mender systems. IEEE Intell. Syst. 22(3), 22–29 (2007). DOI 10.1109/MIS.2007.43

53. Robillard, M.P., Walker, R.J., Zimmermann, T.: Recommendation systems for software
engineering. IEEE Software 27(4), 80–86 (2010). DOI 10.1109/MS.2009.161

54. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommenda-
tion algorithms. In: Proceedings of the International Conference on the World Wide Web, pp.
285–295 (2001). DOI 10.1145/371920.372071

2 Basic Approaches in Recommendation Systems 37

55. Stettinger, M., Ninaus, G., Jeran, M., Reinfrank, F., Reiterer, S.: WE-DECIDE: A decision
support environment for groups of users. In: Proceedings of the International Conference on
Industrial, Engineering, and Other Applications of Applied Intelligent Systems, pp. 382–391
(2013). DOI 10.1007/978-3-642-38577-3_39

56. Takács, G., Pilászy, I., Németh, B., Tikk, D.: Scalable collaborative filtering approaches for
large recommender systems. J. Mach. Learn. Res. 10, 623–656 (2009)

57. Tiihonen, J., Felfernig, A.: Towards recommending configurable offerings. Int. J. Mass
Customization 3(4), 389–406 (2010). DOI 10.1504/IJMASSC.2010.037652

58. Tosun Mısırlı, A., Bener, A., Çağlayan, B., Çalıklı, G., Turhan, B.: Field studies: A methodol-
ogy for construction and evaluation of recommendation systems in software engineering. In:
Robillard, M., Maalej, W., Walker, R.J., Zimmermann, T. (eds.) Recommendation Systems in
Software Engineering, Chap. 13. Springer, New York (2014)

59. Tsunoda, M., Kakimoto, T., Ohsugi, N., Monden, A., Matsumoto, K.: Javawock: A Java class
recommender system based on collaborative filtering. In: Proceedings of the International
Conference on Software Engineering and Knowledge Engineering, pp. 491–497 (2005)

Chapter 3
Data Mining

A Tutorial

Tim Menzies

Abstract Recommendation systems find and summarize patterns in the structure
of some data or in how we visit that data. Such summarizing can be implemented
by data mining algorithms. While the rest of this book focuses specifically on
recommendation systems in software engineering, this chapter provides a more
general tutorial introduction to data mining.

3.1 Introduction

A recommendation system finds and summarizes patterns in some structure (and
those patterns can include how, in the past, users have explored that structure). One
way to find those patterns is to use data mining algorithms.

The rest of this book focuses specifically on recommendation systems in software
engineering (RSSEs). But, just to get us started, this chapter is a tutorial introduction
to data mining algorithms:

• This chapter covers C4.5, K-means, Apriori, AdaBoost, kNN, naive Bayesian,
CART, and SVM.

• Also mentioned will be random forests, DBScan, canopy clustering, mini-batch
K-means, simple single-pass K-means, GenIc, the Fayyad–Irani discretizer,
InfoGain, TF–IDF, PDDP, PCA, and LSI.

• There will also be some discussion on how to use the above for text mining.

T. Menzies (�)
Lane Department of Computer Science and Electrical Engineering, West Virginia University,
Morgantown, WV, USA
e-mail: tim@menzies.us

M.P. Robillard et al. (eds.), Recommendation Systems in Software Engineering,
DOI 10.1007/978-3-642-45135-5__3, © Springer-Verlag Berlin Heidelberg 2014

39

mailto:tim@menzies.us

40 T. Menzies

Data mining is a very active field. Hence, any summary of that field must be
incomplete. Therefore this chapter ends with some suggested readings for those
who want to read more about this exciting field.

Every learning method is biased in some way, and it is important to understand
those biases. Accordingly, it is important to understand two biases of this chapter.
Firstly, it will be the view of this chapter that it is a mistake to use data miners
as black box tools. In that black box view, the learners are applied without any
comprehension of their internal workings. To avoid that mistake, it is useful for data
mining novices to reflect on these algorithms, as a menu of design options can be
mixed and matched and mashed-up as required. Accordingly, where appropriate,
this chapter will take care to show how parts of one learner might be used for
another. Secondly, this chapter discusses newer methods such as CLIFF, WHERE,
W2, and the QUICK active learner: work of the author, his collaborators, and/or his
graduate students. Caveat emptor!

3.2 Different Learners for Different Data

Let us start at the very beginning (a very good place to start). When you read you
begin with A-B-C. When you mine, you begin with data.

Different kinds of data miners work best of different kinds of data. Such data
may be viewed as tables of examples:

• Tables have one column per feature and one row per example.
• The columns may be numeric (have numbers) or discrete (contain symbols).
• Also, some columns are goals (things we want to predict using the other

columns).
• Finally, columns may contain missing values.

For example, in text mining, where there is one column per word and one row per
document, the columns contain many missing values (since not all words appear in
all documents) and there may be hundreds of thousands of columns.

While text mining applications can have many columns, Big Data applications
can have any number of columns and millions to billions of rows. For such very large
datasets, a complete analysis may be impossible. Hence, these might be sampled
probabilistically (e.g., using the naive Bayesian algorithm discussed below).

On the other hand, when there are very few rows, data mining may fail since
there are too few examples to support summarization. For such sparse tables, k-
nearest neighbors (kNN) may be best. kNN makes conclusions about new examples
by looking at their neighborhood in the space of old examples. Hence, kNN only
needs a few (or even only one) similar examples to make conclusions.

If a table has no goal columns, then this is an unsupervised learning problem
that might be addressed by (say) finding clusters of similar rows using, say, K-
means or expectation maximization. An alternate approach, taken by the Apriori

3 Data Mining 41

association rule learner, is to assume that every column is a goal and to look for
what combinations of any values predict for any combination of any other.

If a table has one goal, then this is a supervised learning problem where the task
is to find combinations of values from the other columns that predict for the goal
values. Note that for datasets with one discrete goal feature, it is common to call
that goal the class of the dataset.

For example, here is a table of data for a simple data mining problem:
outlook	temp	humidity	windy	play?
overcast | 64 | 65 | TRUE | yes
overcast | 72 | 90 | TRUE | yes
overcast | 81 | 75 | FALSE | yes
overcast | 83 | 86 | FALSE | yes
rainy | 65 | 70 | TRUE | no
rainy | 71 | 91 | TRUE | no
rainy | 68 | 80 | FALSE | yes
rainy | 70 | 96 | FALSE | yes
rainy | 75 | 80 | FALSE | yes
sunny | 69 | 70 | FALSE | yes
sunny | 72 | 95 | FALSE | no
sunny | 75 | 70 | TRUE | yes
sunny | 80 | 90 | TRUE | no
sunny | 85 | 85 | FALSE | no

In this table, we are trying to predict for the goal of play?, given a record of the
weather. Each row is one example where we did or did not play golf (and the goal
of data mining is to find what weather predicts for playing golf).

Note that temp and humidity are numeric columns and there are no missing
values.

Such simple tables are characterized by just a few columns and not many rows
(say, dozens to thousands). Traditionally, such simple data mining problems have
been explored by C4.5 and CART. However, with some clever sampling of the data,
it is possible to scale these traditional learners to Big Data problems [7, 8].

3.3 Association Rules

The Apriori learner seeks association rules, i.e., sets of ranges that are often
found in the same row. First published in the early 1990s [1], Apriori is a classic
recommendation algorithm for assisting shopper. It was initially developed to
answer the shopping basket problem, i.e., “if a customer buys X , what else might
they buy?”

Apriori can be used by, say, an online book store to make recommendations
about what else a user might like to see. To use Apriori, all numeric values must
be discretized, i.e., the numeric ranges replaced with a small number of discrete
symbols. Later in this chapter, we discuss several ways to perform discretization
but an X% chop is sometimes as good as anything else. In this approach, numeric

42 T. Menzies

feature values are sorted and then divided into X equal-sized bins. A standard
default is X D 10, but the above table is very small, so we will use X D 2 to
generate:

outlook	temp	humidity	windy	play?
overcast | over 73.5 | over 82.5 | FALSE | yes
overcast | up to 73.5 | up to 82.5 | TRUE | yes
overcast | up to 73.5 | over 82.5 | TRUE | yes
overcast | over 73.5 | up to 82.5 | FALSE | yes
rainy | over 73.5 | up to 82.5 | FALSE | yes
rainy | up to 73.5 | over 82.5 | TRUE | no
rainy | up to 73.5 | up to 82.5 | TRUE | no
rainy | up to 73.5 | over 82.5 | FALSE | yes
rainy | up to 73.5 | up to 82.5 | FALSE | yes
sunny | over 73.5 | over 82.5 | TRUE | no
sunny | over 73.5 | over 82.5 | FALSE | no
sunny | over 73.5 | up to 82.5 | TRUE | yes
sunny | up to 73.5 | over 82.5 | FALSE | no
sunny | up to 73.5 | up to 82.5 | FALSE | yes

In the discretized data, Apriori then looks for sets of ranges where the larger set
is found often in the smaller. For example, one such rule in our table is:
play=yes ==> humidity=up to 82.5 & windy=FALSE

That is, sometimes when we play, humidity is high and there is no wind. Other
associations in this dataset include:
humidity= up to 82.5 & windy=FALSE ==> play = no
humidity= over 82.5 ==> play = no
humidity= up to 82.5 ==> play = yes
temperature= up to 73.5 ==> outlook = rainy
outlook=overcast ==> play = yes
outlook=rainy ==> temperature = up to 73.5
play= yes ==> humidity = up to 82.5
play=no ==> humidity = over 82.5
play=yes ==> outlook = overcast

Note that in association rule learning, the left- or right-hand side of the rule can
contain one or more ranges. Also, while all the above are associations within our
play data, some are much rarer than others. Apriori can generate any number of
rules depending on a set of tuning parameters that define, say, the minimum number
of examples needed before we can print a rule.

Formally, we say that an association rule learner takes as input D “transactions”
of items I (e.g., see the above example table). As shown above, association rule
learners return rules of the form LHS) RHS where LHS � I and RHS � I and
LHS \ RHS D ;. In the terminology of Apriori, an association rule X) Y has
support s if s% of D contains X ^ Y , i.e., s D jX^Y j

jD j , where jX ^ Y j denotes the
number of transactions/examples in D containing both X and Y . The confidence
c of an association rule is the percentage of transactions/examples containing X

which also contain Y , i.e., c D jX^Y j
jX j . As an example of these measures, consider

the following rule:

3 Data Mining 43

play=yes ==> outlook = overcast

In this rule, LHS D X D play=yes and RHS D Y D outlook=overcast.
Hence:

• support D jX^Y j
jD j D 4

14
D 0:29

• confidence D jX^Y j
jX j D 4

9
D 0:44.

Apriori was the first association rule pruning approach. When it was first
proposed (1993), it was famous for its scalability. Running on a 33MHz machine
with 64MB of RAM, Apriori was able to find associations in 838MB of data in
under 100 s, which was quite a feat for those days. To achieve this, Apriori explored
progressively larger combinations of ranges. Furthermore, the search for larger
associations was constrained to smaller associations that occurred frequently. These
frequent itemsets were grown incrementally and Apriori only explored itemsets of
size N using items that occurred frequently of size M < N . Formally speaking,
Apriori uses support-based pruning, i.e., when searching for rules with high
confidence, sets of items Ii ; : : : ; Ik are examined only if all its subsets are above
some minimum support value. After that, confidence-based pruning is applied to
reject all rules that fall below some minimal threshold of adequate confidence.

3.3.1 Technical Aside: How to Discretize?

In the above example, we used a discretization policy before running Apriori. Such
discretization is a useful technique for many other learning schemes (and we will
return to discretization many times in this chapter).

For now, we just say that discretization need not be very clever [58]. For example,
a 10 % chop is often as good as anything else (exception: for small tables of data like
that shown above, it may be necessary to use fewer chops, just in case not enough
information falls into each bin).

A newer method for discretization is to generate many small bins (e.g., 10 bins)
then combine adjacent bins whose mean values are about the same. To apply this
newer approach, we need some definition of “about the same” such as Hedges’s test
of Fig. 3.1.

3.4 Learning Trees

Apriori finds sets of interesting associations. For some applications this is useful
but, when the query is more directed, another kind of learner may be more suited.

44 T. Menzies

Hedges’s test [28] explores two populations, each of which is characterized by its size,
their mean, and standard deviation (denoted n, mean, and sd, respectively).
When testing if these two populations are different, we need to consider the following:

• If the standard deviation is large, then this confuses our ability to distinguish the
bins.

• But if the sample size is large then we can attenuate the effects of the large standard
deviation, i.e., the more we know about the sample, the more certain we are of the
mean values.

Combining all that, we arrive at an informal measure of the difference between two
means (note that this expression weights confusion by how many samples are trying to
confuse us):

attenuate = n1 + n2
confusion = (n1*sd1 + n2*sd2) / attenuate
delta = abs(mean1 - mean2) / confusion

A more formally accepted version of the above, as endorsed by Kampenes et al. [31], is
the following. To explain the difference between the above expression and Hedges’s test,
note the following.

• This test returns true if the delta is less than some “small” amount. The correct value
of “small” is somewhat debatable but the values shown below are in the lower third
of the “small” values seen in the 284 tests from the 64 experiments reviewed by
Kampenes et al..

• A c term is added to handle small sample sizes (less than 20).
• Standard practice in statistics is to:

– use n−1 in standard deviation calculations; and
– use variance sd2 rather than standard deviation.

function hedges(n1,mean1,sd1, n2,mean2,sd2) {
small = 0.17 # for a strict test. for a less severe

test, use 0.38
m1 = n1 - 1
m2 = n2 - 1
attenuate = m1 + m2
confusion = sqrt((m1 * (sd1)ˆ2 + m2 * (sd2)ˆ2) /

attenuate)
delta = abs(mean1 - mean2) / confusion
c = 1 - 3/(4*(m1 + n1) - 1)
return delta * c < small

}

Fig. 3.1 A tutorial on Hedges’s test of the effect size of the difference between two popula-
tions [28, 31]

3.4.1 C4.5

The C4.5 decision tree learner [50] tries to ignore everything except the minimum
combination of feature ranges that lead to different decisions. For example, if C4.5
reads the raw golf data (from Sect. 3.2), it would focus on the play? feature.
It would then report what other feature ranges lead to such playful behavior. That
report would take the form of the following tree:

3 Data Mining 45

outlook = sunny
| humidity <= 75: yes
| humidity > 75: no
outlook = overcast: yes
outlook = rainy
| windy = TRUE: no
| windy = FALSE: yes

To read this decision tree, note that subtrees are indented and that any line containing
a colon (:) is a prediction. For example, the top branch of this tree says: “If outlook
is sunny and humidity � 75 then we will play golf.” Note that this decision tree
does not include temp, i.e., the temperature. This is not to say that golf playing
behavior is unaffected by cold or heat. Rather, it is saying that, for this data, the
other features are more important.

C4.5 looks for a feature value that simplifies the data. For example, consider the
above table with five examples of no playing of golf and nine examples of yes,
we played golf. Note that the baseline distributions in the table are p1 D 5=14 and
p2 D 9=14 for no and yes (respectively). Now look at the middle of the above tree,
at the branch outlook = overcast. C4.5 built this branch since within that region,
the distributions are very simple indeed: all the rows where the outlook is overcast
have play? = yes. That is, in this subtree p1 D 0 and p2 D 100%.

Formally, we say that decision tree learners look for splits in the data that
reduce the diversity of the data. This diversity is measured by the entropy equation
discussed in Fig. 3.2. For example, in the golf example, the relative frequency of
each class was p1 D 5=14 and p2 D 9=14. In that case:
e = entropy([5/14, 9/14])

= -5/14 * log2(5/14) - 9/14 *log2(9/14) = 0.94

For the subtree selected by outlook = overcast, where p1 D 0 and p2 D 100%,
we ignore the zero value (since there is no information there) and compute:
n1 = 4
e1 = entropy([1]) = -1 * log2(1) = 0

Note that for the subtree with five rows selected by outlook = sunny, there are
two yes and one no. That is:
n2 = 5
e2 = entropy([2/5, 3/5]) = 0.97

Also, and for the subtree with five rows selected by outlook = rainy, there are
three yes and two no. Hence:
n3 = 5
e3 = entropy([3/5, 2/5]) = 0.97

