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The more constraints one imposes, the more one frees one’s self of the

chains that shackle the spirit.

IGOR STRAVINSKY
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PR E FACE

This book is an account of my ongoing research into how mathemati-

cal and computer-science-based optimization techniques can be used to

design visual artwork. It contains many equations and inequalities, but

all of them are linear, which are the simplest and easiest to understand.

It also contains hundreds of images, the vast majority of which I created

using the techniques described within.

At the end of the book, there is a long list of references for anyone

who wishes to delve deeper into more technical writings on the subject.

Many chapters grew out of articles I’ve written for the Bridges Math/Art

conference series and for the Journal of Mathematics and the Arts.

I have benefited enormously from my collaborations with many won-

derful, brilliant, and creative people: Kurt Anstreicher, Derek Bosch,

Tim Chartier, Martin Chlond, Robert Fathauer, Craig Kaplan, Robert

Lang, Doug McKenna, Henry Segerman, Michael Trick, Tom Wexler,

and my current and former students Melanie Hart Buehler, Michael

Cardiff, Abagael Cheng, Adrienne Herman Cohen, Urchin Colley, Sarah

Fries, Gwyneth Hughes, Sage Jenson, Aaron Kreiner, Nikrad Mahdi,

Julia Olivieri, Andrew Pike, Mäneka Puligandla, Karen Ressler, Michael

Rowan, Harry Rubin-Falcone, Rachael Schwartz, Ari Smith, Jason

Smith, Natasha Stout, Elbert Tsai, and Zhifu Xiao.

I am immensely grateful for my colleagues at Oberlin College—its

faculty, staff, and students—and my friends in the Bridges and Gather-

ing for Gardner (G4G) communities. I am equally grateful to William

Cook’s Concorde team and Gurobi Optimization for allowing me to use

their extraordinary software packages, and to Vickie Kearn, Susannah

Shoemaker, Lauren Bucca, and the rest of the terrific team at Princeton

University Press (Mark Bellis, Elizabeth Blazejewski, Alison Durham,

Chris Ferrante, Sara Henning-Stout, Dimitri Karetnikov, Meghan

Kanabay, Katie Lewis, Jacquie Poirier, Kathryn Stevens, Erin Suydam,
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and Matthew Taylor) for their expertise, enthusiasm, and patience. With-

out Oberlin College, Bridges, G4G, Concorde, Gurobi, and PUP, I

wouldn’t have been able to carry out this project.

I couldn’t have even envisioned this project if I hadn’t encountered

the work of Ken Knowlton, computer graphics pioneer and mosaicist

extraordinaire. His domino mosaics blew me away when I first encoun-

tered them at age 17, and again at age 21, and then a third time at age

37, when I finally realized that I had acquired the mathematical tools to

be able to make them myself.

I wouldn’t have had the confidence to commit myself to this project if

I hadn’t met Annalisa Crannell and Marc Frantz and participated in their

2005 Viewpoints workshop at Franklin and Marshall College.

And I wouldn’t have kept at this project without the encouragement

of those who commissioned artwork; exhibited my pieces; invited me

to give talks or workshops; conversed with me about mathematics, art,

or writing; asked me questions that pushed me to dive deeper; eval-

uated portions of the manuscript; or just told me to keep going. So

thank you to the Bosch and Fried families, to Jim and Debbi Walsh,

to Laura Albert, Roger Antonsen, Pau Atela, Julie Beier, Nick Bennett,

Sharon Blecher, Gail Burton, Case Conover, Bill Cook, Randy Coleman

and Rebecca Cross, Simon Ever-Hale, Gwen Fisher, Julian Fleron,

Nat Friedman, Joey Gonzalez-Dones, Susan Goldstine, Henry Lionni

Guss, James Gyre, George Hart, Allison Henrich, Judy Holdener, Jerry

Johnson, Ava Keating, Josh Laison, Cindy Lawrence, Erin McAdams,

Doug McKenna, Colm Mulcahy, Mike Naylor, James Peake, Jennifer

Quinn, Dana Randall, Reza Sarhangi, J. Cole Smith, David Swart, David

Stull, Eve Torrence, Mike Trick, John Watkins, Carolyn Yackel, and the

seven anonymous reviewers of my book proposal and manuscript.

This book has been a labor of love, and like most labors of love, it has

been fueled by love: the love of my mother, Charlotte Woebcke Bosch

(1933–2016); the love of my brother, Derek Bosch; the love of my son,

Dima Bosch; and most especially, the love of my best friend, wife, soul

mate, and unending source of inspiration, Kathy Bosch.
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Optimization and
the Visual Arts?

Optimization is the branch of mathematics and computer science con-

cerned with optimal performance, with finding the best way to complete

a task. As such, it is extremely applicable, as everyone from time to

time attempts to perform some task at the highest level possible. A UPS

driver, for instance, may sequence their stops to minimize total distance

traveled, time spent on the road, fuel costs, pollutant emissions, or even

the number of left turns. Finding an optimal tour, or at least one that

is close to optimal, will benefit not only the driver and UPS, but also

their customers (through lower prices) and the rest of society (through

reduced pollution).

Some optimization problems are easy, while others are extremely dif-

ficult. Which is the case depends in large part on the constraints—the

rules, the restrictions, the limitations—that specify the underlying task.

If every stop on the UPS driver’s list falls on the same thoroughfare, then

finding the optimal route—and proving it to be optimal—is trivial. But if

the city is filled with one-way streets, the stops are scattered throughout

the city, and some stops must be made during specified time windows,

then determining how to perform this task at a high level can require

considerable algorithmic ingenuity and computing power.

Optimization has been put to good use in a great number of diverse

disciplines: from advertising, agriculture, biology, business, economics,

and engineering to manufacturing, medicine, telecommunications, and

transportation (to name but a few). Numerous excellent books describe

these important, practical applications, and if you turn to the bibliogra-

phy, you will find my favorites.

The book you hold in your hands is quite different. It is a highly per-

sonal account of my more than sixteen-year-long obsession with using

mathematical and computer-science-based optimization techniques to

create visual artwork. As obsessions go, it is a harmless one, and not
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nearly as strange as it sounds! Within these pages, I will provide evi-

dence that supports a bold claim: that the mathematical optimizer and

the artist have more similarities than differences.

The mathematical optimizer studies problems that involve opti-

mizing—that is, maximizing or minimizing—some quantity of interest

(profit or total cost, for example, in business applications). The opti-

mizer’s goal is to come up with an optimal solution—perhaps a way of

making the profit as large as possible or the total cost as low as possible.

In some cases, the optimizer will be satisfied with a local optimum, a

solution that is better than all neighboring solutions. If you find a local

optimum, you can be confident that when you present it to the board, no

one sitting there will be able to improve upon your solution by making

minor tweaks to it. But in other cases, the optimizer will not rest until

they find a global optimum, a solution that is provably better than every

other solution. If you find a global optimum, you will be able to get a

good night’s sleep before the board meeting, for you will be certain that

no one there—or anywhere—will be able to find a solution that is better

than yours.

The artist is also a problem solver and a seeker of high-quality solu-

tions. The creation of a piece of artwork can be considered a problem to

be solved. And isn’t it difficult to imagine an artist who, when creating

a piece, does not try to do their best? For some small number of artists,

the goal may be to maximize profit, but for most, the goal may be to

make the piece as beautiful as possible, or to have as great an emotional

impact on viewers as possible. Beauty and emotional impact are impos-

sible to quantify, but haven’t we all been in the presence of the critic, the

museum-goer, or the gallery-opening shmoozer who in a burst of enthu-

siasm blurts out something like, “Don’t you just love this piece? Don’t

you think that if the artist had added anything more to it, or had left any-

thing out, it would have failed to have the same impact?” (an assertion,

to the mathematical optimizer, about local optimality).

Mathematical optimizers are mindful of the roles that constraints play.

They know that in some cases, if they impose additional constraints on an

optimization problem, the problem will become much more difficult, but

in other cases it will become considerably easier. Some constraints seem

to be structured in such a way that in their presence, algorithms have trou-

ble working their way to the best part of the feasible region (the set of all

feasible solutions—the solutions that satisfy all the constraints), whereas
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other constraints provide the equivalent of handholds and toeholds that

form an easily traversed path to optimality.

Artists are similarly mindful. Artists are well aware that they must

deal with constraints. They must work within budgets. They must meet

deadlines. If they enter competitions or juried shows, they must make

sure that their pieces satisfy the rules of entry. If they take commis-

sions, they must follow their clients’ instructions. And no matter what

media they choose to work with, they must deal with the particular

constraints—imposed by the laws of physics—that govern how those

media work. Painting with watercolors is different from painting with

oils, and painting on rice paper is different from painting on canvas.

So, given that artists are creative, we might think that if it were up

to them, they would do away with constraints. After all, constraints

constrain. They restrict. They limit our choices. It would seem that

constraints inhibit creativity.

But actually there is much evidence to the contrary. Many artists

embrace constraints. Some need deadlines to be able to finish their work,

and some believe that when their choices are limited, they are much

more focused and creative. Joseph Heller (while paraphrasing T. S. Eliot)

wrote,

When forced to work within a strict framework the imagination is

taxed to its utmost—and will produce its richest ideas.

And the psychologist Rollo May wrote,

Creativity arises out of the tension between spontaneity and limita-

tions, the latter (like the river banks) forcing the spontaneity into the

various forms which are essential to the work of art or poem.

In fact, many artists go so far as to create their own constraints. Con-

sider George-Pierre Seurat. While viewing his painting A Sunday on La
Grande Jatte–1884 from up close, one sees a mass of colorful dots.

While backing away from it, one’s eyes merge all of the dots into an

image of a group of Parisians relaxing on an island on the Seine. To

create this masterpiece, Seurat set himself the task of producing the best

possible depiction of what he saw on the riverbank, subject to two highly

restrictive, self-imposed constraints: he had to keep his colors separate,
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and he could only apply paint to the canvas with tiny, precise, dot-like

brush strokes. Seurat’s self-imposed constraints gave rise to a spectacular

piece of artwork, the most widely reproduced example of what we now

call Pointillism.

In the mosaicking arena, self-imposed constraints abound. Every time

a mosaicist states, “I will build a mosaic out of ,” another self-

imposed constraint is born (or at least conceived). In 400 BCE, the

ancient Greeks were building mosaics out of differently colored pebbles,

and around 200 BCE, they started building them out of specially man-

ufactured tiles (tesserae) made out of ceramic, stone, or glass. Today’s

mosaicists still use these traditional materials, but they also use whatever

else they have on hand: dice, dominos, LEGO bricks, Rubik’s Cubes, toy

cars, spools of thread, baseball cards, photographs, and even individual

frames of films like Star Wars and It’s a Wonderful Life.

Some mosaicists like to go beyond the inherent materials constraints.

The domino mosaics of Ken Knowlton, Donald Knuth, and myself are

not only made out of dominos, they are made out of complete sets of

dominos. Knowlton’s Joseph Scala (Domino Player) (from 1981) was

made out of 24 complete sets of double-nine dominos, so it contains

24 dominos of each type: exactly 24 blank dominos, exactly 24 zero-one

dominos, and so on. My domino portrait of President Obama, the 44th

president of the United States, uses 44 complete sets. Knowlton’s portrait

of Helen Keller is composed of the 64 characters of the Braille writing

system, and each of these characters appears 16 times. Chris Jordan’s

Denali/Denial mosaic arranges 24,000 (digitally altered) logos from the

GMC Yukon Denali sports utility vehicle (six weeks of sales in 2004)

into an image of Denali (also known as Mount McKinley). And a Robert

Silvers photomosaic, commissioned by Newsweek for its 1997 pictures-

of-the-year issue, portrays the late Princess Diana as a mosaic formed

from thousands of photographs of flowers. All of these artists use com-

puter software—usually computer programs that they have developed

themselves—to design their mosaics.

In theory, you can design a photomosaic without software. You can

take the senior portrait photos from your high-school yearbook, cut them

out, and then arrange them in a rectangular grid so that from a distance,

they will collectively resemble a photo of your favorite teacher. This

is possible—some of the photos will be brighter and others will be

darker. But you will need a good eye to assess the brightness of each
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photo, and even then, you will have a tough time determining the best

position for each photo. Likewise, you can make a domino mosaic with-

out software—by printing the target image on a large piece of paper and

then placing dominos on top of the print, saving the brightest domi-

nos (the nine-nines) for the brightest sections and the darkest dominos

(the zero-zeros or blanks) for the darkest sections. Here, though it is

clear which dominos are brighter than others, it still will be difficult to

determine where to place each domino.

With mathematical optimization it is quite easy to design photomo-

saics, and it isn’t all that difficult to design domino mosaics. With mathe-

matical optimization, the artist/mathematician (or mathematician/artist)

can explore all manner of constraints systems. This book is an account

of my explorations of this world.
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Truchet Tiles

Father Sébastien Truchet (1657–1729) entered the Carmelite order at

age 17 and impressed his superiors with a genius for all things mechani-

cal. Sent to Paris to further his education, the brilliant Truchet drew the

attention of Louis XIV’s men after Charles II of England had given the

French king two watches and neither the Sun King nor his royal watch-

maker could open them. The then-19-year-old Truchet was consulted,

and he quickly discovered how to work the mechanism and repair the

damage caused by the previous attempts at unlocking it.

For this success, Louis XIV awarded Truchet a sizable pension, which

enabled him to throw himself completely into the study of “first the

geometry necessary for the theory of mechanics and even anatomy and

chemistry, neglecting nothing of what might be useful with respect to

machines.” And by the time of his death, Truchet was known both

as France’s foremost expert in hydraulics engineering and as a prodi-

gious inventor. At the request of Louis XIV, he had worked on the

aqueduct system of Versailles and had been involved in the construc-

tion of, or repair of, most of the French canals. One of his inventions

was a machine that could transport whole trees without damaging

them. Another, a team effort, was the infinitely scalable Romain du

Roi typeface.

But today Truchet is not remembered for these great accomplish-

ments. Instead he is known for a set of tiles, displayed in figure 2.1,

cbba d

Figure 2.1: Truchet tiles.
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that caught his eye while he was in the city of Orleans inspecting

canals.

At first glance it is surprising that these simple square tiles, each

divided by a diagonal into a white half and a black half, not only captured

the attention of Truchet’s brilliant mind, but then held it long enough to

inspire him to write an article, “Mémoire sur les combinaisons,” and

submit it for publication in the most prestigious academic journal of

his time, Memoires de l’Académie Royale de Sciences, in 1704. But

Truchet’s article makes it clear that his fascination was less with the

tiles themselves than with how they can be combined to form larger

patterns. He devoted the bulk of the article to beautifully engraved plates

that display “the fecundity of these combinations, the origin of which is

nevertheless so very simple.”

Figure 2.2 reproduces four of Truchet’s patterns, along with the labels

he gave them. Pattern 𝐴 uses only tiles of type 𝑎, so we can say that pat-

tern 𝐴 is generated by tile 𝑎, and we can express this by writing 𝐴= (𝑎).
Pattern 𝐶 is a checkerboard formed from tiles of types 𝑎 and 𝑐. Its odd

numbered rows begin

𝑎 𝑐 𝑎 𝑐 …,

and its even numbered rows begin

𝑐 𝑎 𝑐 𝑎 ….

If we focus our attention on 2-by-2 blocks of tiles, starting at the top-left

corner, we see that pattern 𝐶 is generated by the 2-by-2 block
(
𝑎 𝑐

𝑐 𝑎

)
.

We can express this by writing 𝐶 =
(
𝑎 𝑐

𝑐 𝑎

)
. Like 𝐶 , pattern 𝐷 has a

2-by-2 generator, but unlike 𝐶 it uses all four types of tiles. We can

write pattern 𝐷 as 𝐷=
(
𝑏 𝑎

𝑐 𝑑

)
. Pattern 𝐸 has a 4-by-4 generator.

Truchet’s article displays 26 additional patterns, ordered by increasing

complexity, and a 1722 book written by his Carmelite colleague Father

Dominique Doüat shows many more. Doüat’s pattern 72, reproduced in

figure 2.3, is much busier than Truchet’s patterns 𝐴, 𝐶 , 𝐷, and 𝐸. Part

of the reason is that it has a much larger generator, a 12-by-12 block of

tiles.

Doüat was absolutely enthralled by Truchet’s tiles. He titled his book

Methode pour fair une infinité de desseins différens, avec des carreaux
mi-partis de deux couleurs par une ligne diagonal (Method for making


