Ravi Ramya · Chandrasekharan Rajendran Hans Ziegler · Sanjay Mohapatra · K. Ganesh

Capacitated Lot Sizing Problems in Process Industries

Capacitated Lot Sizing Problems in Process Industries

Ravi Ramya • Chandrasekharan Rajendran • Hans Ziegler Sanjay Mohapatra • K. Ganesh

Capacitated Lot Sizing Problems in Process Industries

Ravi Ramya Department of Management Studies Indian Institute of Technology Madras Chennai, TN, India

Hans Ziegler Chair of Production and Logistics Universitát Passau Passau, Bayern, Germany

K. Ganesh SCM Center of Competence, McKinsey Knowledge Center McKinsey & Company Chennai, TN, India Chandrasekharan Rajendran Department of Management Studies Indian Institute of Technology Madras Chennai, TN, India

Sanjay Mohapatra Xavier Institute of Management Bhubaneswar, Odisha, India

ISBN 978-3-030-01221-2 ISBN 978-3-030-01222-9 (eBook) https://doi.org/10.1007/978-3-030-01222-9

Library of Congress Control Number: 2018958714

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Dedicated to our parents and family members

Preface

Lot sizing is one of the most important decisions taken during production planning in all manufacturing and process industries. Among the various basic lot sizing models, the Capacitated Lot Sizing Problem (CLSP) is the main focus of this book. A single-machine, single-level and multiple-item CLSP is considered. It is the problem of planning the production of several items over a number of periods, satisfying all demand requirements so that the production times and setup times do not exceed the capacity limitations, and the total cost of the production plan is minimized. The main cost components are set up cost, inventory holding cost, backorder cost and lost-sales cost. The CLSP comes under the class of big-bucket lot sizing problems in the CLSP literature. It is considered as a big-bucket problem because several products/setups may be produced in a period. A period normally represents a time slot of one shift/day or one day or one week or one month (depending upon the production planner). For each lot produced in a period, a cost of setup occurs, and the time corresponding to the setup along with the production time (product of the production quantity and the number of units of a product produced per unit time considered) consumes the capacity in a period (assumed in time units). The CLSP is solved over a finite time horizon due to which excess quantity produced in a period can be stored to satisfy the demand of some future period, and the demand which cannot be met in a period due to capacity constraints can be backordered. Following the basic CLSP, studies on lot sizing consider the phenomenon where the setup state of a product is carried from one period to another in order to avoid multiple setups for the same product in consecutive periods. This phenomenon is called as setup carryover in the literature, whereas it is called production carryover in this book.

In almost all process industries, there are situations where some products have long and uninterrupted setup times, and the setup of the product and its consecutive production can be carried over across consecutive periods. Also, certain process industries require the production of a product to occur immediately after its setup, and the product to be continuously produced without any interruption. The phenomenon where the setup of a product having long setup time is carried over across periods is called setup crossover in the literature as well as in this book.

In this book, a mathematical model for the Capacitated Lot Sizing Problem with Production Carryover and Setup Crossover across periods (CLSP-PCSC), with possible backorders and with such real-life considerations in process industries, is proposed in Chap. 3. The aspect of allowing the setup to be carried over more than one period is called setup crossover in this book. The model proposed is all encompassing that it can handle continuous manufacturing (as in the case of process industries), and also situations where the setup costs and holding costs are product dependent and time independent/time dependent, with appropriate adaptations. The proposed model is also compared with an existing MILP (Mixed Integer Linear Programming) model. A heuristic is also proposed to solve the CLSP-PCSC. The performance of the mathematical model and the heuristic is presented.

In Chap. 4, another mathematical model and a comprehensive heuristic are proposed for the same problem. This model is also all encompassing in that it can handle continuous manufacturing (as in process industries), and also situations where the setup costs and holding costs are product dependent and time independent/time dependent, with appropriate adaptations. A comprehensive heuristic is proposed based on this mathematical model to solve the CLSP-PCSC. The performance of the proposed model and the heuristic is evaluated using problem instances of various sizes.

In some process and manufacturing industries, the setup time of a machine not only depends on the time to setup a product but it also depends upon the product previously setup on the machine. This aspect where the setup time of a product on the machine depends on the time to setup a given product after setting up a given preceding product is called the sequence-dependent setup. The corresponding time taken for setting up the product is called as the sequence-dependent setup time and the corresponding cost involved is called the sequence-dependent setup cost. Researchers have considered the presence of sequencedependent setup times and setup costs while addressing CLSP in industries in the presence of sequence-dependent setups. This book presents in Chap. 5 mathematical models developed for the Capacitated Lot Sizing Problem with Production Carryover and Setup Crossover across periods, assuming Sequence-Dependent Setup Times and Setup Costs (CLSP-SD-PCSC). In addition, these models allow the presence of backorders and also address real-life situations present in process industries such as the production of a product starting immediately after its uninterrupted setup and the uninterrupted production carryover across periods, along with the presence of long setup times. The consideration of these real-life situations is unique to this book and is one of its most significant contributions in every chapter.

In summary, this book addresses a class of CLSPs addressing some real-life situations present in process industries. Several variants of mathematical models and heuristics are proposed and developed to address some classes of lot sizing problems.

The authors, in particular the first author, gratefully acknowledges the support from Indian Institute of Technology Madras, University of Passau and German Academic Exchange Service (DAAD) for carrying out a major part of this work. The first author also thankfully acknowledges the comments from Prof. Rainer Leisten (University of Duisburg Essen, Germany) and Prof. Peeyush Mehta (Indian Institute of Management Calcutta) who had been her Ph.D. thesis examiners.

Chennai, India Chennai, India Passau, Germany Bhubaneswar, India Chennai, India Ravi Ramya Chandrasekharan Rajendran Hans Ziegler Sanjay Mohapatra K Ganesh

Contents

Pı	Preface					
Li	List of Tables XII					
Li	List of Figures X Abbreviations X					
A						
N	Notations					
1	Intr	oductio	n	1		
	1.1	Pream	ble to the Production Planning Problem	1		
	1.2	Basic	Characteristics and Attributes of Lot Sizing Models	2		
		1.2.1	Time Based Characteristics and Attributes	2		
		1.2.2	Product Based Characteristics and Attributes	4		
	1.3	Classi	fication of Lot Sizing Models	5		
		1.3.1	Continuous Lot Sizing Problem: Economic Lot Scheduling Problem			
			(ELSP)	5		
		1.3.2	Dynamic Lot Sizing Problem	5		
	1.4	An An	alysis of Lot Sizing Literature	10		
		1.4.1	Literature on CLSP Without Production Carryover Across Periods and			
			Without Sequence Dependent Setups	11		
		1.4.2	Literature on CLSP Without Production Carryover Across Periods and			
			with Sequence Dependent Setups	17		
		1.4.3	Literature on CLSP with Production Carryover Across Periods and			
			Without Sequence Dependent Setups	19		
		1.4.4	Literature on CLSP with Production Carryover Across Periods and			
		_	with Sequence Dependent Setups	26		
	1.5	Integra	ated Decision Making in Supply Chains	30		
	1.6	Summ	ary	31		

2	CLSP: Real Life Applications and Motivation to Study Lot Sizing Problems in Process Industries				
	2.1	Produc Manuf	ction Planning in Discrete Manufacturing Industries and Continuous	3	
		2.1.1 2.1.2	Discrete Manufacturing Industries	3 3	

	2.2	Further	r Motivation from a Real-Life Case Study	40
	2.3	Scope	of the Book in the Context of Process Industries	41
	2.4	Summ	ary	45
3	Cap Acre	acitated oss Peri	d Lot Sizing Problem with Production Carryover and Setup Crossover ods (CLSP:PCSC): Mathematical Model 1 (MM1) and a Heuristic	
	for l	Process	Industries	47
	3.1	Introdu	uction and Problem Definition	47
	3.2	Basic A	Assumptions of the Proposed Mathematical Model (MM1:	52
	33	Mather	matical Model (MM1:CLSP-PCSC) for the Canacitated Lot Sizing Prob-	52
	5.5	lem wi	ith Production Carryover and Setup Crossover Across Periods	53
		331	Parameters/Indices	53
		332	Decision Variables	54
		3.3.3	Mathematical Model 1 (MM1:CLSP-PCSC)	55
		3.3.4	Method of Tracking Setups in MM1 CLSP-PCSC	64
	3.4	Specia	Cases of CLSP-PCSC with Respect to MM1:CLSP-PCSC	64
		3.4.1	Setup Cost of a Product Calculated with Respect to the Period of Its	
			Setup Completion	64
		3.4.2	Setup Cost and Holding Cost of a Product Being Time Independent	65
	3.5	Numer	rical Illustrations and Discussion with Respect to MM1:CLSP-PCSC	65
		3.5.1	Setup Cost of a Product Calculated with Respect to the Period of Its	
			Setup Initiation	66
		3.5.2	Setup Cost of a Product Calculated with Respect to the Period of Its Setup Completion	66
		353	Setup Cost and Holding Cost of a Product Being Time Independent	67
		3.5.4	Observations from an Existing Model	67
	3.6	Propos	sed Heuristic for CLSP-PCSC with Respect to MM1:CLSP-PCSC	73
	3.7	Compi	utational Experience	80
		3.7.1	Comparing Solution Times of the Proposed Mathematical Models	80
		372	Comparison of Exact and Heuristic Approaches of MM1:CLSP-PCSC	81
	3.8	Summa	ary	102
4	D	han Da	valormente Mathematical Madel 2 (MM2) and a Communication	
4	Hou	nier De	r Canacitated Let Sizing Problem with Production Correspondence	
	Sotu	n Cross	sover A cross Pariods for Process Industries	103
	<i>A</i> 1	Introdu	uction and Problem Definition	103
	$\frac{1}{4}$	Basic	Assumptions of the Proposed Mathematical Model (MM2:	105
	т.2	CI SP-	.PCSC)	105
	4.3	Mathe	matical Model 2 (MM2:CLSP-PCSC) for the Capacitated Lot Sizing	105
		Proble	m with Production Carryover and Setup Crossover Across Periods	106
		4.3.1	Parameters/Indices	106
		4.3.2	Decision Variables	107
		4.3.3	Mathematical Model 2 (CLSP-PCSC)	108
		4.3.4	Method of Tracking Setups in MM2:CLSP-PCSC	116

Contents

6	5.4 5.5 5.6 5.7 Sum	5.3.2 Decision Variables 5.3.3 Mathematical Model 1 (MM1:CLSP-SD-PCSC) Mathematical Model 2 (MM2:CLSP-SD-PCSC)	 135 136 138 150 150 150 155 175 180 182 183
	5.4 5.5 5.6 5.7	5.3.2Decision Variables5.3.3Mathematical Model 1 (MM1:CLSP-SD-PCSC)Mathematical Model 2 (MM2:CLSP-SD-PCSC)5.4.1Parameters/Indices5.4.2Decision Variables5.4.3Mathematical Model 2 (MM2:CLSP-SD-PCSC)A Numerical Illustration and DiscussionComputational ExperienceSummary	135 136 138 150 150 150 155 175 180 182
	5.4 5.5 5.6	5.3.2Decision Variables5.3.3Mathematical Model 1 (MM1:CLSP-SD-PCSC)Mathematical Model 2 (MM2:CLSP-SD-PCSC)5.4.1Parameters/Indices5.4.2Decision Variables5.4.3Mathematical Model 2 (MM2:CLSP-SD-PCSC)A Numerical Illustration and DiscussionComputational Experience	135 136 138 150 150 150 155 175 180
	5.4 5.5	5.3.2Decision Variables5.3.3Mathematical Model 1 (MM1:CLSP-SD-PCSC)Mathematical Model 2 (MM2:CLSP-SD-PCSC)5.4.1Parameters/Indices5.4.2Decision Variables5.4.3Mathematical Model 2 (MM2:CLSP-SD-PCSC)A Numerical Illustration and Discussion	135 136 138 150 150 150 155 175
	5.4	5.3.2Decision Variables5.3.3Mathematical Model 1 (MM1:CLSP-SD-PCSC)Mathematical Model 2 (MM2:CLSP-SD-PCSC)5.4.1Parameters/Indices5.4.2Decision Variables5.4.3Mathematical Model 2 (MM2:CLSP-SD-PCSC)	135 136 138 150 150 150 155
	5.4	5.3.2Decision Variables5.3.3Mathematical Model 1 (MM1:CLSP-SD-PCSC)Mathematical Model 2 (MM2:CLSP-SD-PCSC)5.4.1Parameters/Indices5.4.2Decision Variables	135 136 138 150 150 150
	5.4	5.3.2 Decision Variables 5.3.3 Mathematical Model 1 (MM1:CLSP-SD-PCSC) Mathematical Model 2 (MM2:CLSP-SD-PCSC) 5.4.1 Parameters/Indices	135 136 138 150 150
	5.4	5.3.2 Decision Variables 5.3.3 Mathematical Model 1 (MM1:CLSP-SD-PCSC) Mathematical Model 2 (MM2:CLSP-SD-PCSC)	135 136 138 150
		5.3.2 Decision Variables	135 136 138
		5.3.2 Decision Variables	135 136
			125
	5.5	Viamentaucal Model 1 (MMITCLSP-SD-PCSC) 5.3.1 Parameters/Indices	133
	5 2	ULSP-5D-PUSU and MM2:ULSP-5D-PUSU) Mathematical Model 1 (MM1:ULSP SD_PUSC)	134
	5.2	Basic Assumptions of the Proposed Mathematical Models (MM1:	124
	5.1	Introduction and Problem Definition	131
	(CL	SP-SD-PCSC): Mathematical Models for Process Industries	131
	Acr	oss Periods Assuming Sequence-Dependent Setup Times and Setup Costs	
5	Cap	acitated Lot Sizing Problem with Production Carryover and Setup Crossover	
	7. 0	Summary	150
	4./ 4 8	Summary	120
	4.0 17	Computational Experience	123
	16	Independent	120
		4.5.3 Setup Cost and Holding Cost of a Product Being Time	100
		Setup Completion	120
		4.5.2 Setup Cost of a Product Calculated with Respect to the Period of Its	
		Setup Initiation	120
		4.5.1 Setup Cost of a Product Calculated with Respect to the Period of Its	
	4.5	Numerical Illustrations and Discussion with Respect to MM2:CLSP-PCSC	118
		4.4.2 Setup Cost and Holding Cost of a Product Being Time Independent	118
		Setup Completion	116
		4.4.1 Setup Cost of a Product Calculated with Respect to the Period of Its	110
			110

LIST OF TABLES

1.1	Literature review on CLSP without production carryover across periods and without sequence-dependent setups	15
1.2	Literature review on CLSP without production carryover across periods and with sequence-dependent setups	18
1.3	Literature review on CLSP with production carryover across periods and with- out sequence-dependent setups	24
1.4	Literature review on CLSP with production carryover across periods and with sequence-dependent setups	29
3.1	A sample problem instance	68
3.2	Solution generated by the proposed mathematical model MM1:CLSP-PCSC (corresponding terms in MM1:CLSP-PCSC are used here) for the data provided	60
3.3	In Table 3.1 with the corresponding Gantt chart provided in Fig. 3.3 Solution generated by the <i>First proposed formulation</i> by Belo-Filho et al. (2013) (corresponding terms in the <i>First proposed formulation</i> are used here) when the setup costs and holding costs considered are time independent (the	69
	corresponding Gantt chart provided in Fig. 3.7)	72
3.4 3.5	Computational time (in sec.) for various problem instances	82
3.6	MM1:CLSP-PCSC Data for ten products and twenty time periods, with two different sets of backo- rders costs. The Gantt charts corresponding to the exact and heuristic solutions considering the 1st set of backorder costs are given in Figs. 3.10 and 3.11; and the Gantt charts corresponding to the 2nd set of backorder costs are given in	82
	Figs. 3.12 and 3.13	83
3.7	Data for twelve products and twenty time periods, with two different sets of backorder costs. The Gantt charts corresponding to the exact and heuristic solutions considering the 1st set of backorder costs are given in Figs. 3.14 and	
	3.15; and the Gantt charts corresponding to the 2nd set of backorder costs are given in Figs 3.16 and 3.17	87
3.8	Data for fourteen products and twenty time periods, with two different sets of backorder costs. The Gantt charts corresponding to the exact and heuristic solutions considering the 1st set of backorder costs are given in Figs. 3.18 and 3.19: and the Gantt charts corresponding to the 2nd set of backorder costs are	07
	given in Figs. 3.20 and 3.21	92

3.9	Data for sixteen products and twenty time periods, with two different sets of backorder costs. The Gantt charts corresponding to the exact and heuristic solutions considering the 1st set of backorder costs are given in Figs. 3.22 and 3.23; and the Gantt charts corresponding to the 2nd set of backorder costs are given in Figs. 3.24 and 3.25	97
4.1	A sample problem instance	119
4.2	Solution generated by the proposed mathematical model MM2:CLSP-PCSC	
	(corresponding terms in MM2:CLSP-PCSC are used here) for the data given in	101
13	Table 3.1 with the corresponding Gantt chart provided in Fig. 4.2	121
 5	MM2:CLSP-PCSC	128
4.4	Computational time (in sec.) of the various problem instances for the	
	MM1:CLSP-PCSC and MM2:CLSP-PCSC	129
4.5	Number of active binary variables in a given time horizon	130
5.1	Product related data	176
5.2	Solution generated by the proposed mathematical model MM1:CLSP-SD-PCSC (corresponding terms in MM1:CLSP-SD-PCSC are used here) for the data provided in Table 5.1 with the corresponding Gantt chart provided in	
	Fig. 5.1	177
5.3	Solution generated by the proposed mathematical model MM2:CLSP-SD-PCSC (corresponding terms in MM2:CLSP-SD-PCSC are used here) for the	
	data provided in Table 5.1 with the corresponding Gantt chart provided	170
54	$\begin{array}{c} \text{In Fig. 5.2} \\ \text{Computational time (in sec.) for various problem instances} \end{array}$	1/9
5.1	comparational time (in sec.) for various problem instances	101

LIST OF FIGURES

1.1	Classification of lot sizing models	9
1.2	Illustration of production carryover, setup splitting and setup crossover phe- nomena	11
1.3	Overall classification of the review of literature	12
2.1	Die casting process: A schematic diagram	34
2.2	Cement manufacturing process	37
2.3	Glass container manufacturing process: A schematic diagram	39
2.4	Sugar manufacturing process	39
2.5 2.6	Injection moulding machine: A schematic diagram	41
3.1	Three ways of a machine being set up in a period for production when $max_i\{ST_i\} < C_t, \forall t$	48
3.2	Three ways of a machine being set up in a period for production in process	
3.3	industries Gantt chart obtained by the proposed mathematical model MM1:CLSP-PCSC (for the data given in Table 3.1 and the solution provided in Table 3.2) when the setup costs and holding costs are time dependent and the setup cost of a product is calculated with respect to the period of its setup initiation; $Z = 200$	50
3.4	mu	70
	-	

3.5	Gantt chart obtained by the proposed model MM1:CLSP-PCSC (for the data given in Table 3.1) when the setup costs and holding costs are time dependent and the setup cost of a product is calculated with respect to the period of its	
	setup completion: $Z = 190$ mu	71
36	Gantt chart for the solution obtained by the proposed model MM1 CL SP-PCSC	/1
5.0	(for the data given in Sect. 3.5 and Table 3.1) when the setup cost and holding	
	(for the data given in Sect. 5.5 and fable 5.1) when the setup cost and holding cost of a product are time independent: $7 - 220$ mu	71
27	Cost of a product are time independent, $Z = 220$ ind $\dots \dots \dots \dots \dots$	/1
5.7	La Eilhe et al. (2012) (with the managed medification with respect to one con-	
	io-Fillo et al. (2015) (will the proposed modification with respect to one con-	
	straint) when the setup costs and notating costs are time independent (for the	70
20	data given in Table 5.1 and solution given in Table 5.5); $Z = 200 \text{ mu} \dots$	12
3.8	Figure illustrating the CLSP-PCSC neuristic	//
3.9	Figure illustrating an example (also discussed in the text) where binary vari-	
	ables are set up to period τ ((a) and inequalities are set up to period τ (b)), in	
• • •	the heuristic proposed based on MM1:CLSP-PCSC	11
3.10	Gantt chart for the solution obtained by the proposed model MM1:CLSP-PCSC	
	considering ten products and twenty time periods, when the setup costs and	
	holding costs are product dependent and time dependent, with the setup cost	
	for a product calculated with respect to the period of its setup initiation (for	
	the data given in Table 3.6) considering the 1st set of backorder costs; $Z =$	
	311010.99 mu	85
3.11	Gantt chart for the solution obtained by the proposed heuristic considering ten	
	products and twenty time periods, when the setup costs and holding costs are	
	product dependent and time dependent, with the setup cost for a product cal-	
	culated with respect to the period of its setup initiation (for the data given in	
	Table 3.6) considering the 1stset of backorder costs; $Z = 340777.50 \text{ mu}$.	85
3.12	Gantt chart for the solution obtained by the proposed model MM1:CLSP-PCSC	
	considering ten products and twenty time periods, when the setup costs and	
	holding costs are product dependent and time dependent, with the setup cost	
	for a product calculated with respect to the period of its setup initiation (for	
	the data given in Table 3.6) considering the 2nd set of backorder costs; $Z =$	
	4110.00 mu	86
3.13	Gantt chart for the solution obtained by the proposed heuristic considering ten	
	products and twenty time periods, when the setup costs and holding costs are	
	product dependent and time dependent, with the setup cost for a product cal-	
	culated with respect to the period of its setup initiation (for the data given in	
	Table 3.6) considering the 2nd set of backorder costs; $Z = 4170.12 \text{ mu}$	86
3.14	Gantt chart for the solution obtained by the proposed model MM1:CLSP-PCSC	
	considering twelve products and twenty time periods, when the setup costs and	
	holding costs are product dependent and time dependent, with the setup cost	
	for a product calculated with respect to the period of its setup initiation (for	
	the data given in Table 3.7) considering the 1st set of backorder costs; $Z =$	
	1062095.99 mu	90

- 3.15 Gantt chart for the solution obtained by the proposed heuristic considering twelve products and twenty time periods, when the setup costs and holding costs are product dependent and time dependent, with the setup cost for a product calculated with respect to the period of its setup initiation (for the data given in Table 3.7) considering the 1st set of backorder costs; Z = 1081985.99 mu
- 3.16 Gantt chart for the solution obtained by the proposed model MM1:CLSP-PCSC considering twelve products and twenty time periods, when the setup costs and holding costs are product dependent and time dependent, with the setup cost for a product calculated with respect to the period of its setup initiation (for the data given in Table 3.7) considering the 2nd set of backorder costs; Z = 12490.12 mu
- 3.17 Gantt chart for the solution obtained by the proposed heuristic considering twelve products and twenty time periods, when the setup costs and holding costs are product dependent and time dependent, with the setup cost for a product calculated with respect to the period of its setup initiation (for the data given in Table 3.7) considering the 2nd set of backorder costs; Z = 12625.10 mu.
- 3.18 Gantt chart for the solution obtained by the proposed model MM1:CLSP-PCSC considering fourteen products and twenty time periods, when the setup costs and holding costs are product dependent and time dependent, with the setup cost for a product calculated with respect to the period of its setup initiation (for the data given in Table 3.8) considering the 1st set of backorder costs; Z = 632345.00 mu
- 3.19 Gantt chart for the solution obtained by the proposed heuristic considering fourteen products and twenty time periods, when the setup costs and holding costs are product dependent and time dependent, with the setup cost for a product calculated with respect to the period of its setup initiation (for the data given in Table 3.8) considering the 1st set of backorder costs; Z = 681275.00 mu . .
- 3.20 Gantt chart for the solution obtained by the proposed model MM1:CLSP-PCSC considering fourteen products and twenty time periods, when the setup costs and holding costs are product dependent and time dependent, with the setup cost for a product calculated with respect to the period of its setup initiation (for the data given in Table 3.8) considering the 2nd set of backorder costs; Z = 8075.00 mu
- 3.21 Gantt chart for the solution obtained by the proposed heuristic considering fourteen products and twenty time periods, when the setup costs and holding costs are product dependent and time dependent, with the setup cost for a product calculated with respect to the period of its setup initiation (for the data given in Table 3.8) considering the 2nd set of backorder costs; Z = 8075.00 mu

90

91

91

95

95

96

96

3.23	Gantt chart for the solution obtained by the proposed heuristic considering six- teen products and twenty time periods, when the setup costs and holding costs are product dependent and time dependent, with the setup cost for a product calculated with respect to the period of its setup initiation (for the data given in Table 3.9) considering the 1st set of backorder costs; Z = 2060665.00 mu	100
3.24	Gantt chart for the solution obtained by the proposed model MM1:CLSP-PCSC considering sixteen products and twenty time periods, when the setup costs and holding costs are product dependent and time dependent, with the setup cost for a product calculated with respect to the period of its setup initiation (for the data given in Table 3.9) considering the 2nd set of backorder costs; $Z = 14985.00$ mu	101
3.25	Gantt chart for the solution obtained by the proposed heuristic considering six- teen products and twenty time periods, when the setup costs and holding costs are product dependent and time dependent, with the setup cost for a product calculated with respect to the period of its setup initiation (for the data given in Table 3.9) considering the 2nd set of backorder costs; $Z = 21265.00$ mu	101
4.1	Three ways of a machine being set up in a period for production in process industries	104
4.2	Gantt chart for the solution obtained by the proposed model MM2:CLSP-PCSC (for the data given in Table 4.1 and the solution provided in Table 4.2) when the setup cost and holding cost of a product are time dependent, and the setup	101
4.3	cost is calculated with respect to the period of its setup initiation; $Z = 200$ mu Gantt chart for the solution obtained by the proposed model MM2:CLSP-PCSC when the setup cost and holding cost of a product are time dependent (for the data given in Table 4.1), and the setup cost is calculated with respect to the period of its setup initiation. Here the setup cost for product 4 is increased from 60 mu to 120 mu in period 9, and from 20 mu to 120 mu in period 10; Z	122
4.4	= 270 mu	122
4.5	completion; $Z = 190 \text{ mu}$ Gantt chart for the solution obtained by the proposed model MM2:CLSP-PCSC (for the data given in Sect. 4.5 and Table 4.1) when the setup costs and holding costs are time independent; $Z = 220 \text{ mu}$	122 123
5.1	Gantt chart for the solution obtained by the proposed model MM1:CLSP-SD-PCSC (for the data given in Table 5.1 and the solution pro- vided in Table 5.2) when sequence-dependent setup costs and setup times are	
5.2	present; $Z = 2202 \text{ mu}$ Gantt chart for the solution obtained by the proposed model MM2:CLSP-SD-PCSC (for the data given in Table 5.1 and the solution pro- vided in Table 5.3) when sequence-dependent setup costs and setup times are	178
	present; $Z = 2202 \text{ mu}$	180

ABBREVIATIONS

APS	Advanced Planning Systems
B&B	Branch & Bound
BoM	Bill of Materials
CCO	Compressing Carry Over model
CLSD	Capacitated Lot Sizing Problem with Sequence-Dependent Setups
CLSP	Capacitated Lot Sizing Problem
CLSPL	Capacitated Lot Sizing Problem with Linked lot sizes
CLSP-PCSC	Capacitated Lot Sizing Problem with Production
	Carryover and Setup Crossover
CLSP-SD-PCSC	Capacitated Lot Sizing Problem with Sequence-Dependent Setups
	along with Production Carryover and Setup Crossover
CNC	Computer Numeric Control
CO	Carry Over model
CSLP	Continuous Setup Lot sizing Problem
DLSP	Discrete Lot sizing and Scheduling Problem
ELSP	Economic Lot Scheduling Problem
EOQ	Economic Order Quantity
EDI	Electronic Data Interchange
ERP	Enterprise Resource Planning
FL	Facility Location
FMS	Flexible Manufacturing System
GA	Genetic Algorithm
GRASP	Greedy Randomized Adaptive Search Procedure
LP	Linear Programming
LUC	Least Unit Cost
MES	Manufacturing Execution Systems
MILP	Mixed Integer Linear Programming
MIP	Mixed Integer Programming
MLCLSP	Multi-Level Capacitated Lot Sizing Problem
MM1:CLSP-PCSC	Mathematical Model 1 for the Capacitated Lot Sizing Problem with
	Production Carryover and Setup Crossover
MM2:CLSP-PCSC	Mathematical Model 2 for the Capacitated Lot Sizing Problem with
	Production Carryover and Setup Crossover
MM1:CLSP-SD-PCSC	Mathematical Model 1 for the Capacitated Lot Sizing Problem with
	Sequence-Dependent Setups along with Production
	Carryover and Setup Crossover

MM2:CLSP-SD-PCSC	Mathematical Model 2 for the Capacitated Lot Sizing Problem with
	Sequence-Dependent Setups along with Production
	Carryover and Setup Crossover
MRP	Material Requirements Planning
NCO	Non-Carry Over model
NP	Non-Polynomial
PLSP	Proportional Lot sizing and Scheduling Problem
POQ	Periodic Order Quantity
PPB	Part Period Balancing
SA	Simulated Annealing algorithm
SMC	Simple Multi-Commodity
SR	Shortest Route
SSR	Strengthened Shortest Route

Notations

- *N* Number of products
- T Number of time periods
- t Time period
- *i* Product
- SC_i Setup cost for product i
- $SC_{i,t}$ Setup cost for product *i*, when its setup is initiated in period *t*; this cost is incurred only once as a fixed cost computed with respect to the period of its setup initiation
- $SC_{i,t}^1$ Rate of cost of setup (cost corresponding to one time unit of setup) of product *i* in period *t*. It is given by $SC_{i,t}^1 = \frac{SC'_{i,t}}{ST_i}$
- $SC_{\phi,i}$ Sequence-dependent setup cost incurred in the machine for the first product *i* setup in period 1
- $SC_{i',i}$ Sequence-dependent setup cost incurred when the machine is set up from product i' to product i
- h_i Holding cost per period per unit of product i
- $h_{i,t}$ Holding cost per period per unit of product *i* in period *t*
- b_i Backorder cost per period per unit of product i
- ST_i Setup time for product i
- $ST_{\phi,i}$ Sequence-dependent setup time for the first product *i* setup in the machine in period 1
- $ST_{i',i}$ Sequence-dependent setup time when the machine is set up from product i' to product i
- $ST'_{i,t}$ A variable that is assigned with the value of setup time of product *i* which is set up in period *t*
- a_i Number of time units required for producing one unit of product i
- C_t Capacity of the machine in period t (in time units)
- $d_{i,t}$ Demand for product *i* in period *t*
- M A large value
- \mathcal{E} Smallest unit of time (a small positive real number)
- \mathcal{E}_d Unit of smallest quantity of production (a small positive real number)

$B_{i,t}$ Backorder quantity of product <i>i</i> at the end of pe	eriod t

Definition of Variables Specific to Mathematical Model (MM1:CLSP-PCSC) in Chap. 3

Variable	Description
$\delta^1_{i,t}$	An indicator (binary) variable that takes value 1 if a complete setup is done for product i in period t with the production starting in period t ; 0 otherwise
$\Delta^1_{i,t,t'}$	An indicator (binary) variable that takes value 1: it corresponds to the pro- duction carryover from period t to period t' ($t \le t' \le T$), due to the setup of product i started and finished in period t, with no intermittent setup of any other product; 0 otherwise
$\delta_{i,t}^2$	An indicator (binary) variable that takes value 1 if a setup of product i is started and completed exactly at the end of period t , followed by its production starting in period $t + 1$; 0 otherwise
$\Delta^2_{i,t,t'}$	An indicator (binary) variable that takes value 1: it corresponds to the pro- duction carryover from period t' to period $t' + 1$ ($t + 1 \le t' \le T$), due to the end-of-period setup of product i in period t , with no intermittent setup of any other product; 0 otherwise
$\delta^3_{i,t,t'}$	An indicator (binary) variable that takes value 1 if the setup of product i is commenced in period t and is completed during some period t' but not exactly at the end of period t' ($t + 1 \le t' \le T$); 0 otherwise

Variable	Description
$\Delta^3_{i,t,t',t''}$	An indicator (binary) variable that takes value 1: it corresponds to the pro- duction in period t'' ($t' \le t'' \le T$), due to the setup of product <i>i</i> initiated in period <i>t</i> and completed in period <i>t'</i> but not exactly at the end of period <i>t'</i> ($t + 1 \le t' \le T$) and with no setup of any product during the intermittent periods from period <i>t'</i> to period <i>t''</i> . Note: This variable corresponds to (i.e. indicates) the production carryover through periods <i>t'</i> and <i>t''</i> , after the com- pletion of setup in period <i>t'</i> (but not exactly at the end of period <i>t'</i>), with the initiation of setup in period <i>t</i> ; 0 otherwise
$\delta^4_{i,t,t'}$	An indicator (binary) variable that takes value 1 if the setup of product <i>i</i> is commenced in period <i>t</i> and is completed exactly at the end of period t' ($t+1 \le t' \le T-1$); 0 otherwise
$\Delta^4_{i,t,t',t''}$	An indicator (binary) variable that takes value 1: it corresponds to the produc- tion in period t'' ($t' + 1 \le t'' \le T$), due to the setup of product <i>i</i> initiated in period <i>t</i> and completed exactly at the end of period t' ($t+1 \le t' \le T-1$) and with no setup of any product during the intermittent periods from period t' to period t'' . Note: This variable corresponds to (i.e. indicates) the production carryover through periods t' and t'' , after the completion of setup exactly at the end of period t' , with the initiation of setup in period t ; 0 otherwise
$s^1_{i,t}$	Setup time of product <i>i</i> in period <i>t</i> that takes the value of ST_i , and associated with δ_{it}^1
$s_{i,t}^2$	Setup time of product <i>i</i> in period <i>t</i> that takes the value of ST_i , and associated with $\delta_{i,t}^2$
$s^3_{i,t,t',t''}$	Setup time of product <i>i</i> in period t'' ($t \le t'' \le t'$), when its setup has started in period <i>t</i> and completed in period <i>t'</i> , but not completed exactly at the end of period <i>t'</i> , and associated with $\delta_{i,t,t'}^3$; Note: $\sum_{t''=t}^{t'} s_{i,t,t',t''}^3 = ST_i$
$s_{i,t,t',t''}$	in period t and completed exactly at the end of period t', and associated with $\delta_{i,t,t'}^4$; Note: $\sum_{t''=t}^{t'} s_{i,t,t',t''}^4 = ST_i$

Variable	Description
$X^1_{i,t,t'}$	Production quantity of product i in period t' (due to its setup started and ended
	in period t), with $1 \le t \le T$ and $t \le t' \le T$, and associated with $\Delta_{i,t,t'}^1$
$X_{i,t,t'}^2$	Production quantity of product i in period t' (due to its setup started in period
0,0,0	t and completed exactly at the end of period t), with $1 \le t \le T - 1$ and
	$t+1 \leq t' \leq T$, and associated with $\Delta_{i,t,t'}^2$
$X^{3}_{i,t,t',t''}$	Production quantity of product <i>i</i> in period t'' (due to its setup started in period
0,0,0 ,0	t and ended in period t' but not completed at the end of period t'), with $1 \leq t$
	$t \leq T - 1$, $t + 1 \leq t' \leq T$ and $t + 1 \leq t'' \leq T$, and $t'' \geq t'$, and associated
	with $\Delta^3_{i,t,t',t''}$
$X^{4}_{itt't''}$	Production quantity of product <i>i</i> in period t'' (due to its setup started in period
0,0,0 ,0	t and completed at the end of period t'), with $1 \le t \le T-2, t+1 \le t' \le T-1$
	and $t+2 \leq t'' \leq T$, and $t'' > t'$, and associated with $\Delta^4_{i,t,t',t''}$

Definition of Variables Specific to Mathematical Model (MM2:CLSP-PCSC) in Chap. 4

Variable	Description
$\delta^1_{i,t}$	An indicator (binary) variable that takes value 1 if a complete setup is done for product i in period t with the production starting in period t ; 0 otherwise
$\Delta^1_{i,t,t'}$	An indicator (binary) variable that takes value 1: it corresponds to a possible production carryover from period t to period t' ($t \le t' \le T$), due to the setup of product i started and finished in period t, with no intermittent setup of any other product; 0 otherwise
$\delta_{i,t}^2$	An indicator (binary) variable that takes value 1 if the setup of product i is started and completed exactly at the end of period t followed by its production starting in period $t + 1$; 0 otherwise
$\Delta^2_{i,t,t'}$	An indicator (binary) variable that takes value 1: it corresponds to a possible production carryover from period t' to period $t' + 1$ ($t + 1 \le t' \le T$), due to the end-of-period setup of product i in period t , with no intermittent setup of any other product; 0 otherwise

Variable	Description
$\delta^3_{i,t}$	An indicator (binary) variable that takes value 1 if the setup of product i is commenced in period t and is carried over across periods, and is completed in some period t' ($t' = t + 1, t + 2,, T$); 0 otherwise
$\Omega^3_{i,t,t'}$	An indicator (binary) variable that takes value 1 if the setup of product i is initiated in period t and is present in period t' ($t \le t' \le T$), with the setup of product i ending in a period later than period t , but not exactly at the end of that period; 0 otherwise
$\Omega^4_{i,t,t'}$	An indicator (binary) variable that takes value 1 if the setup of product i is initiated in period t and is present in period t' ($t \le t' \le T - 1$), with the setup of product i ending in a period later than period t and setup getting completed exactly at the end of that period; 0 otherwise
$\Delta^3_{i,t,t'}$	An indicator (binary) variable that takes value 1: it corresponds to a possible production carryover from period t' to period $t' + 1$ ($t + 1 \le t' \le T$), with the setup of product i (having started in period t) ending in a period later than period t , but not exactly at the end of that period, and with no intermittent setup of any product during the production of product i ; 0 otherwise
$\Delta^4_{i,t,t'}$	An indicator (binary) variable that takes value 1: it corresponds to a possible production carryover from period t' to period $t' + 1$ ($t + 2 \le t' \le T$), with the setup of product i (having started in period t) ending in a period later than period t and setup getting completed exactly at the end of that period, and with no intermittent setup of any product during the production of product i ; 0 otherwise
$s_{i,t}^1$	Setup time of product <i>i</i> in period <i>t</i> that takes the value of ST_i , and associated with $\delta_{i,t}^1$
$s_{i,t}^2$	Setup time of product <i>i</i> in period <i>t</i> that takes the value of ST_i , and associated with δ_{i}^2 .
$s^3_{i,t,t'}$	Setup time of product <i>i</i> in period <i>t'</i> due to its setup started in period <i>t</i> , and associated with $\Omega^3_{i,t,t'}$