AutoUni – Schriftenreihe

Philipp Wellkamp

Prognosegüte von Crashberechnungen

Experimentelle und numerische Untersuchungen an Karosseriestrukturen

AutoUni – Schriftenreihe

Band 133

Reihe herausgegeben von/Edited by

Volkswagen Aktiengesellschaft AutoUni Die Volkswagen AutoUni bietet Wissenschaftlern und Promovierenden des Volkswagen Konzerns die Möglichkeit, ihre Forschungsergebnisse in Form von Monographien und Dissertationen im Rahmen der "AutoUni Schriftenreihe" kostenfrei zu veröffentlichen. Die AutoUni ist eine international tätige wissenschaftliche Einrichtung des Konzerns, die durch Forschung und Lehre aktuelles mobilitätsbezogenes Wissen auf Hochschulniveau erzeugt und vermittelt.

Die neun Institute der AutoUni decken das Fachwissen der unterschiedlichen Geschäftsbereiche ab, welches für den Erfolg des Volkswagen Konzerns unabdingbar ist. Im Fokus steht dabei die Schaffung und Verankerung von neuem Wissen und die Förderung des Wissensaustausches. Zusätzlich zu der fachlichen Weiterbildung und Vertiefung von Kompetenzen der Konzernangehörigen fördert und unterstützt die AutoUni als Partner die Doktorandinnen und Doktoranden von Volkswagen auf ihrem Weg zu einer erfolgreichen Promotion durch vielfältige Angebote – die Veröffentlichung der Dissertationen ist eines davon. Über die Veröffentlichung in der AutoUni Schriftenreihe werden die Resultate nicht nur für alle Konzernangehörigen, sondern auch für die Öffentlichkeit zugänglich.

The Volkswagen AutoUni offers scientists and PhD students of the Volkswagen Group the opportunity to publish their scientific results as monographs or doctor's theses within the "AutoUni Schriftenreihe" free of cost. The AutoUni is an international scientific educational institution of the Volkswagen Group Academy, which produces and disseminates current mobility-related knowledge through its research and tailor-made further education courses. The AutoUni's nine institutes cover the expertise of the different business units, which is indispensable for the success of the Volkswagen Group. The focus lies on the creation, anchorage and transfer of knew knowledge.

In addition to the professional expert training and the development of specialized skills and knowledge of the Volkswagen Group members, the AutoUni supports and accompanies the PhD students on their way to successful graduation through a variety of offerings. The publication of the doctor's theses is one of such offers. The publication within the AutoUni Schriftenreihe makes the results accessible to all Volkswagen Group members as well as to the public.

Reihe herausgegeben von/Edited by

Volkswagen Aktiengesellschaft AutoUni Brieffach 1231 D-38436 Wolfsburg http://www.autouni.de

Weitere Bände in der Reihe http://www.springer.com/series/15136

Philipp Wellkamp

Prognosegüte von Crashberechnungen

Experimentelle und numerische Untersuchungen an Karosseriestrukturen

Philipp Wellkamp AutoUni Wolfsburg, Deutschland

Zugl.: Dissertation, Helmut-Schmidt-Universität/Universität der Bundeswehr Hamburg, 2018

Die Ergebnisse, Meinungen und Schlüsse der im Rahmen der AutoUni – Schriftenreihe veröffentlichten Doktorarbeiten sind allein die der Doktorandinnen und Doktoranden.

AutoUni – Schriftenreihe ISBN 978-3-658-24150-6 ISBN 978-3-658-24151-3 (eBook) https://doi.org/10.1007/978-3-658-24151-3

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutionsadressen neutral.

Springer ist ein Imprint der eingetragenen Gesellschaft Springer Fachmedien Wiesbaden GmbH und ist ein Teil von Springer Nature

Die Anschrift der Gesellschaft ist: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany

Danksagung

Die vorliegende Arbeit entstand während meiner Tätigkeit in der Abteilung Berechnung Methoden der Volkswagen AG in Wolfsburg. An dieser Stelle möchte ich meinen besonderen Dank nachstehenden Personen entgegenbringen, ohne deren Mithilfe die Anfertigung dieser Arbeit niemals zustande gekommen wäre.

Mein ganz besonderer Dank gebührt meinem Doktorvater Prof. Dr. Martin Meywerk von der Helmut-Schmidt-Universität Hamburg für die wissenschaftliche Betreuung, die eingeräumten Freiräume und die konstruktive Kritik. Mein Dank gilt auch Herrn Prof. Dr. Matthias Kröger von der Technischen Universität Bergakademie Freiberg für die Übernahme des Koreferates.

Ganz außerordentlicher Dank gilt den betreuenden Personen der Fachabteilung Berechnung Methoden für ihre kritischen Betrachtungen, hilfreichen Anregungen und Durchsicht meiner Arbeit. Ferner danke ich meinen Vorgesetzten für die Bereitstellung der notwendigen Ressourcen, die zum Gelingen dieser Arbeit beigetragen haben. Des Weiteren möchte ich mich bei allen weiteren Mitarbeitern der Fachabteilung bedanken, die mir stets mit ihrem Wissen aus dem jeweiligen Fachgebiet zur Hilfe standen.

Philipp Wellkamp

Inhaltsverzeichnis

	Dar Abl Tab For Abs	iksagung	/ ↓ / X
1	Ein	leitung	1
	1.1	Zielsetzung und Gliederung der Arbeit	2
	1.2	Zur passiven Sicherheit von Kraftfahrzeugen	4
2	Sta	nd der Technik und theoretische Grundlagen	7
	2.1	Simulationsabgleich von Stahlstrukturen	7
	2.2	Verifikation, Validierung und Ungewissheitsbetrachtungen	0
	2.3	Kontinuumsmechanische Grundlagen	4
		2.3.1 Kinematische Größen	4
		2.3.2 Kinetische Größen 1'	7
		2.3.3 Bilanzgleichungen	8
	2.4	Grundlagen der nichtlinearen Finite-Elemente-Berechnung 20	0
		2.4.1 Elasto-Plastizität	1
		2.4.2 Kontaktalgorithmen	3
		2.4.3 Explizite Zeitintegration	5
		2.4.4 Elementtypen	7
	2.5	Die untersuchten Werkstoffe	8
		2.5.1 Werkstoffverhalten	8
		2.5.2 Deformationsprinzipien	9
		2.5.3 Effekte aus dem Umformverfahren	1
	2.6	Grundlagen zu den Abgleichmethoden 32	2
		2.6.1 Auswertung von synchronen Bildsequenzen	2
		2.6.2 Abgleichkriterien und Abstandsmaße	3
3	Qu	asi-statische Untersuchungen an Crashboxen	7
	3.1	Untersuchungsgegenstand Crashbox	7
	3.2	Quasi-statische Druckversuche an Crashboxen	1
		3.2.1 Methodik	1
		3.2.2 Versuchsaufbau	2
		3.2.3 Versuchsergebnisse	2
	3.3	Simulationsabgleich der Crashbox für quasi-statische Lastfälle	5
		3.3.1 Simulationsergebnisse mit nominalen Eingangsgrößen 44	5
		3.3.2 Reduzierung epistemischer Ungewissheit	6

4	Dyı	namische Untersuchungen an Crashboxen
	4.1	Dynamische Impaktversuche an Crashboxen 59
		4.1.1 Versuchsaufbau
		4.1.2 Versuchsergebnisse
	4.2	Transfer auf dynamische Lastfälle
		4.2.1 Lasteinfallswinkel 0 Grad
		4.2.2 Lasteinleitungswinkel 10 Grad
	4.3	Analyse des Deformationsvorgangs
	4.4	Ergebniszusammenfassung der Crashbox-Untersuchungen
5	Unt	tersuchungen an Längsträgersystemen
	5.1	Untersuchungsgegenstand Längsträgersystem
	5.2	Versuche
		5.2.1 Versuchsaufbau und -varianten
		5.2.2 Versuchsergebnisse
		5.2.3 Analyse des Deformationsvorgangs
		5.2.4 Messung der Trajektorien und Rollwagenkinematik
	5.3	Abgleichuntersuchungen
		5.3.1 Voruntersuchungen
		5.3.2 Berücksichtigung von Wissen aus Vermessungen
		5.3.3 Variation von Modellparametern
	5.4	Berechnung der Rückfederung
	5.5	Transfer des Simulationsmodells auf die Versuchsvarianten
		5.5.1 Versuchsvariante 2
		5.5.2 Versuchsvariante 3
	5.6	Ergebniszusammenfassung des Kapitels
6	Unt	tersuchungen an Karosserien 107
U	61	Beschreibung des Struktursystems
	6.2	Dynamische Versuche an Karosserien
	0.2	6.2.1 Versucheaufhau und Simulationsmodell
		6.2.1 Versuchsandbau und Simulauonsmodeli
		6.2.2 Versuchsergebinsse
	63	Abgleichuntersuchungen 114
	0.5	6.2.1 Transfor das validiartan Submodella
		0.5.1 ITalisiei des Validientell Subiliodells
	61	0.5.2 Parametrische Studien
	0.4	Prognosegute von Karosseriederechnungen der Crasmastianen
		6.4.1 Vergieich von nominalem und modifiziertem Simulationsmodeli
		0.4.2 Transfer des Karosseriemodells auf den schnelleren Lastfall
		0.4.5 Prognosegute von Karosserieberechnungen 121
7	Zus	sammenfassung und Ausblick
L	itera	itur

Abbildungsverzeichnis

1.1	FE-Modell eines Gesamtfahrzeugs (rot: Karosseriestruktur)	1
1.2	und aus dem Jahr 2014 (rechts: PAMCPASH-Beisnielmodell)	2
13	Mathodik zum systematischen Versuchsabgleich von Crashbergehnungen	2
1.5	Frontal und Saitancrashtacts (aus: Hübler [2001])	5
1.4	Anteil Energieaufnahme des Vorderwagens	6
2.1	Vergleich der Kraftverläufe und Deformationsmodi zwischen Simulation und	
	Versuch (aus: Eichmueller und Meywerk [2012b])	7
2.2	Vereinfachte Form des Validierungsprozesses (aus: Sargent [2009], ins Deutsche übersetzt)	11
23	Ausgangs- und Momentankonfiguration eines materiellen Körpers mit	11
2.5	kinematischen Zusammenhängen	15
24	Von-Mises-Fließfläche im Hauntsnannungsraum	21
2.5	Von-Mises-Fließfäche und Verschiebung der Fließflächen bei kinematischer und	21
2.0	isotroner Verfestigung	22
2.6	Spannungs-Dehnungs-Diagramme für elasto-plastisches Materialverhalten	22
2.7	Kontakte in der FEM	24
2.8	Penalty-Steifigkeit	24
2.9	Schematische Darstellung von typischen Deformationsmodi am Beispiel eines	
	Vierkantrohrs. (a) Faltmodus. (b) Übergangsmodus. (c) Biegemodus	29
2.10	Schematische Darstellung von dynamischen, stabilen Deformationsmodi für	
	dünnwandige Vierkantrohre. (a) Symmetrischer Deformationsmodus, (b)	
	extensionaler Deformationsmodus und (c) gemischter Deformationsmodus	30
2.11	Zusammenhang zwischen Kraftverlauf und Deformationsverhalten	31
2.12	Unterschiede in den Umformeffekten durch Berechnung mit der	
	Umformsimulation und mit dem Einschrittverfahren am Beispiel einer B-Säule .	32
2.13	CORA-Bewertungsstruktur (aus Thunert [2012], nachbearbeitet)	34
2.14	Korridormethode (aus Thunert [2012], nachbearbeitet)	34
3.1	Oben: Einzelteile der Crashbox; unten: Verschiedene Ansichten der Crashbox	38
3.2	Effekte aus dem Umformverfahren bei der Crashbox	39
3.3	Simulationsmodell	41
3.4	Ablaufplan zum sytematischen Abgleich von Experiment und Simulation	43
3.5	Links: Schematischer Aufbau der Universalprüfmaschine; rechts: Versuchsstand	
	der Universalprüfmaschine	44
3.6	Kraft-Weg-Verläufe der quasi-statischen Versuche. Links: 0-Grad-Versuche;	
	rechts: 10-Grad-Versuche	44
3.7	Ubereinstimmung des nominalen Ausgangsmodells mit dem Versuch. Links:	
• -	Kraftverläufe und rechts: Schnittdarstellungen der Enddeformationen	46
3.8	Gemessene Trajektorien	47

3.9	Spannungs-Dehnungs-Diagramme: Zugversuche (links); Wahre	
	Spannungs-Dehnungskurve aus Versuch und Materialkarte (rechts)	49
3.10	Stempeltrajektorie	50
3.11	Materialeigenschaften	50
3.12	Geometrievermessung	50
3.13	Blechdickenvermessung	50
3.14	mit allen Vermessungsdaten	50
3.15	10 Grad Lasteinleitung	50
3.16	Geometrieabweichung von Zeichnung zu Messung als Schnittdarstellungen	51
3.17	Geometrieabweichung von Zeichnung zu Messung als Konturdarstellung	51
3.18	Position des Querträgerstücks	52
3.19	Unterschiede in den Spannungsverläufen aufgrund geometrischer Abweichungen.	
	Links: Modell mit Geometriedaten aus Vermessung (Modell Geo), rechts:	
	Ausgangsmodell (Modell CAD)	53
3.20	Exemplarische Darstellung der Blechdickenvermessung des Außenblechs	54
3.21	Vergleich der Enddeformationen für den 0-Grad-Lastfall. Links: Bestes Modell	
	mit Informationen aus Bauteilvermessungen, mitte: photogrammetrische	
	Vermessung des Versuchskörpers und rechts: Nominales Modell	57
3.22	Vergleich der Enddeformationen für den 10-Grad-Lastfall; Links: Bestes Modell	
	mit Informationen aus Bauteilvermessungen, mitte: photogrammetrische	
	Vermessung des Versuchskörpers und rechts: Nominales Modell	57
4 1	I 'de Colore d'als Devellers de Warder Corresponder D'Idde	
4.1	Links: Schematische Darstellung des Versuchsaufbaus; rechts: Bild des	50
4.2	Versuchsaulbaus	39
4.2	Krant-Zent-venaule dei dynamischen versuche. Links. 0-Grad-versuche, rechts.	60
12	Vroftwarläufa das dynamischan Lastfalls hai 0 Grad Lastainlaitung	62
4.5	Schpittderstellungen der Creshbaven in der Enddeformetion hei dem	02
4.4	O Grad Varsuch Links: Ausgangsmodell und Varsuch: rechts: Modell mit	
	Vermessungsdaten und Versuch	62
45	Kraftverläufe des dynamischen Lastfalls hei 10 Grad Lasteinleitung	64
т.5 4.6	Schnittdarstellungen der Crashboven in der Enddeformation bei dem	04
4.0	10-Grad-Versuch Links: Ausgangsmodell und Versuch: rechts: Modell mit	
	Vermessungsdaten und Versuch	64
47	Analyse des dynamischen Deformationsvorgangs	66
4.8	Deformationsvorgang gemäß Simulation und Versuch	67
4.0		07
5.1	Verschiedene Ansichten des Längsträgersystems	70
5.2	Effekte aus dem Umformverfahren des Längsträgerprofils und des Deckblechs	71
5.3	FE-Modell des Rollwagens	72
5.4	Links: Simulationsmodell; rechts: Versuchsaufbau	73
5.5	Schematische Darstellung der Schottplattenpositionen. Links: Variante 1	
	Schottplattenpositionen ausgerichtet; Mitte: Variante 2 Schottplattenverschiebung	
	der Crashboxen in YZ-Richtung +8 mm; rechts: Variante 3	
	Schottplattenverschiebung der Crashboxen in YZ-Richtung –8 mm	75
5.6	Versuchsvariante 1: Kraftverläufe des linken und rechten Längsträgers	76
5.7	Versuchsvariante 2: Kraftverläufe des linken und rechten Längsträgers	76
5.8	Versuchsvariante 3: Kraftverläufe des linken und rechten Längsträgers	76
5.9	Mittlere Kraftverläufe der drei Versuchsvarianten	77

5.10	Abweichungen zwischen den gemittelten Versuchskurven		
5.11	11 Korrespondenz zwischen Deformation und Kraftverlauf		
5.12	2 Gemessene translatorische Traiektorien der Versuchsvariante 1		
5.13	Gemessene rotatorische Traiektorien der Versuchsvariante 1		
5.14	Abgleich der Rollwagenkinematik zwischen Versuch und Simulation		
5 15	Fabrzeugkoordinatensystem 81		
5 16	Materialversagen im Längsträger 82		
5.17	Kraft-Weg-Diagramm unjavialer Zugversuch (links) und Kraft-Weg-Diagramm		
5.17	hiavialer Druckversuch (rechts)		
5 1 9	Lakaliciarung von Materialversagen mit Thinning Versagen (linke) und		
5.10	LORAIISICI ulig voli iviateriaiveisagen ilit <i>Thunung</i> -veisagen (liliks) uliu		
5 10	HSR-versagen (lecins)		
5.19	Kraitverlaule von Simulationen mit HSR- und Trunning-versägen		
5.20	Materialversagen mit adaptiver Neuvernetzung		
5.21	Vergleich der Rissabbildung. Links: Vermessene Geometrie nach Versuch; rechts:		
	Enddeformation der Simulation		
5.22	Unterschied in der Faltenbildung aufgrund verschiedener Vernetzungen. Links:		
	2-mm-Schalenmodell; rechts: 6-mm-Schalenmodell		
5.25	Korrelationsgrad in Abhängigkeit der Diskretisierung		
5.23	Kraftverläufe mit unterschiedlichen Diskretisierungen der Geometrie 89		
5.24	Enddeformationen der Längsträger mit unterschiedlichen Diskretisierungen der		
	Geometrie		
5.26	Kontaktdicke und Kontaktkraft		
5.27	Selbstkontaktkräfte bei der 1-mm- und 2-mm-Schalen-Vernetzung 90		
5.28	Elementeleminierung in Abhängigkeit der Diskretisierung		
5.29	Berücksichtigung der gemessenen Rollwagen-Trajektorie		
5.30	Geometrieabweichung zwischen Zeichnung und Messung der Längsträger als		
	Schnittdarstellung		
5.31	Geometrieabweichung zwischen Zeichnung und Messung der Längsträger als		
	Konturdarstellung		
5.32	2 D-Konturdarstellung Übereinstimmungsgüte mit Versuch LT02 in Abhängigkeit		
	der Blechdickenskalierungen Links: Crashboxbleche und rechts: Längsträgerbleche 96		
5.33	Faltenbildung der Crashbox rechts und Kraftverläufe mit unterschiedlichen		
0.00	Skalierungsfaktoren für das Außenblech 97		
5 34	Punktewolke: Restlänge in Abhängigkeit der Außenblechdicke 97		
5 35	Rückfederung des Längsträgersystems nach der Demontage Links:		
5.55	Simulationsmodell: rechts: Geometrievermessung		
5 36	Geometrieshweichung zwischen Simulation und Versuch im deformierten		
5.50	Zustand Linka Baida Madalla positioniarti rachta Konturdaratallung dar		
	Zustanu. Links. Belue Modelle positioniert, rechts. Konturdarstehung der		
5 27	Knotenabstande		
3.37	Geometrieadweichungen zwischen Simulation und Versuch im deformierten		
	Zustand aus der ersten Versuchsreihe. Links: Ausgangsmodell; rechts:		
	Simulationsmodell mit Modifikationen		
5.38	Geometrieabweichungen zwischen Simulation und Versuch im deformierten		
	Zustand aus der zweiten Versuchsreihe. Links: Ausgangsmodell; rechts:		
	Simulationsmodell mit Modifikationen 102		
5.39	Geometrieabweichungen zwischen Simulation und Versuch im deformierten		
	Zustand aus der dritten Versuchsreihe. Links: Ausgangsmodell; rechts:		
	Simulationsmodell mit Modifikationen		

5.40	Kraftverläufe des besten Simulationsmodells, des Ausgangsmodells und des	
	Versuchs aus Versuchsvariante 1	104
5.41	Kraftverläufe des besten Simulationsmodells, des Ausgangsmodells und des	
	Versuchs aus Versuchsvariante 2	104
5.42	Kraftverläufe des besten Simulationsmodells, des Ausgangsmodells und des	
	Versuchs aus Versuchsvariante 3	104
5.43	Ansicht Crashbox rechts unten. Unterschiedliche Faltenbildung in Versuch und	
	Simulation	105
6.1	V	100
0.1		108
0.2	Ansicht Unterseite der Karosserie. Links: Lästpräd; rechts: Bereich der plästischen	100
6.0	Verformung wahrend des Versuchs	108
6.3	Versuchsaufbau der Karosserieversuche	110
6.4	Kraftverläufe der Versuchsvariante 1 mit $v = 7 m/s$	112
6.5	Kraftverläufe der Versuchsvariante 2 mit $v = 8,6 \text{ m/s} \dots \dots \dots \dots \dots$	112
6.6	Vermessene Geometrien der Frontstruktur im Zustand der Enddeformation. Links:	
	Versuch RK05 (schnellerer Versuch); rechts: Versuch RK02 (langsamerer Versuch)	112
6.7	Gemessene translatorische Trajektorien der Versuchsvariante 1	113
6.8	Gemessene rotatorische Trajektorien der Versuchsvariante 1	113
6.9	Abgleich der Rollwagenbewegungen zwischen Versuch und Simulation	114
6.10	Kraftverläufe der Simulationen mit den validierten Submodellen für den Lastfall	
	v = 7 m/s und Deformationsmodi der rechten Längsträger (Links: Modell nominal	
	Geo, mitte: Vermessung des Versuchskörpers und rechts: Modell nominal CAD) .	116
6.11	Kraftverläufe der Simulationen mit den validierten Submodellen für den Lastfall	
	v = 8,6 m/s und Deformationsmodi der rechten Längsträger (Links: Modell	
	nominal Geo, mitte: Vermessung des Versuchskörpers und rechts: Modell nominal	
	CAD)	116
6.12	Kraftverläufe von zwei Berechnungen mit unterschiedlichen	
	Parameterkonfigurationen der Längsträgerbleche im Vergleich zur Versuchskurve	117
6.13	Übereinstimmungsgüte als Funktion der Blechdickenskalierung des Längsträgers	118
6.14	Übereinstimmungsgüte als Funktion der Blechdickenskalierung der Crashbox	118
6.15	Übereinstimmungsgüte als Funktion der Blechdickenskalierung der Crashbox mit	
	unterschiedlichen Skalierungsfaktoren für die Längsträgerbleche	118
6.16	Langsamerer Lastfall v = 7 m/s. Oben: Vergleich der Kraftverläufe, mitte:	
	Deformationsmodi und unten: Geometrieabweichungen nach dem Versuch	122
6.17	Schnellerer Lastfall v = 8,6 m/s. Oben: Vergleich der Kraftverläufe, mitte:	
	Deformationsmodi und unten: Geometrieabweichungen nach dem Versuch	123

Tabellenverzeichnis

3.1	Werkstoffe der Crashbox	39
3.2	Ergebnisse der quasi-statischen 0-Grad-Versuche	45
3.3	Ergebnisse der quasi-statischen 10-Grad-Versuche	45
3.4	Charakteristische Größen der Kraftverläufe bis zum ersten Kraftabfall	48
3.5	Ergebnistabelle Zugversuche	49
3.6	Blechdickenmessungen	55
4.1	Ergebnisse der dynamischen 0-Grad-Versuche	61
4.2	Ergebnisse der dynamischen 10-Grad-Versuche	61
4.3	Kurvenübereinstimmung und Differenzen der Restlängen im Vergleich zu dem	
	Versuch	63
5.1	Werkstoffe des Längsträgersystems	70
5.2	Versuchsergebnisse Längsträgersystem	74
5.3	Einfluss verschiedener Vernetzungen auf die Rechenzeit, die Restlänge und	
	Übereinstimmung der Kraftverläufe mit den Versuchen	88
5.4	Kombinationen der Geometrieberücksichtigung mit entsprechenden	
	Übereinstimmungsgraden	94
5.5	Optimierungsparameter	98
5.6	Parameterkonfiguration der besten Simulation aus der Optimierung	99
5.7	Übereinstimmungsgüte der Kraftverläufe sowie der geometrischen Abstandsmaße	
	des modifizierten Modells und des nominalen Modells mit den Versuchen	103
6.1	Ergebnisse aus den Karosserieversuchen	110
6.2	Geometrische Abstandsmaße und Übereinstimmungsgüte der Kraftverläufe des	
	nominalen und modifizierten Simulationsmodells für die untersuchten Lastfälle	120

Häufige verwendete Formelzeichen und Abkürzungen

Abkürzungen

CAD	Computer-Aided-Design
CAE	Computer-Aided-Engineering
CB	Crashbox
CFC	Channel Frequency Class
DOE	Design of Experiments
FE	Finite Elemente
FEM	Finite-Elemente-Methode
HSR	Hill-Stören-Rice
LT	Längsträger
RK	Rohkarosserie
Sim.	Simulation
V&V	Validierung & Verifikation
UQ	Uncertainty Quantification

Lateinische Notation

Oberfläche eines Körpers in der Ausgangskonfiguration
Oberfläche eines Körpers in der Momentankonfiguration
Verzerrungstensor
Gleichmaßdehnung
Bruchdehnung
Probendicke
Berechnungsparameter innerer Korridor
Beschleunigung
Beschleunigungsvektor
Komponente des Beschleunigungsvektors
Probenbreite
Berechnungsparameter äußerer Korridor
Breite
Bewertung der Kurvenform
Bewertung des Kurvenniveaus
Bewertung der Phasenverschiebung
Wellenausbreitungseschwindigkeit
Bewertung aus dem Korridorverfahren
Bewertung aus dem Kreuzkorrelationsverfahren
Korridorbewertung je Zeitschritt
Grenzwert HSR-Versagen
Fläche eines Elements des Körpers in der Ausgangskonfiguration

$d\vec{A}$	Flächenvektor in der Ausgangskonfiguration
da	Fläche eines Elements des Körpers in der Momentankonfiguration
$d\vec{a}$	Flächenvektor in der Momentankonfigration
$\mathrm{d}S$	äußere Oberflächenkräfte in der Ausgangskonfiguration
ds	äußere Oberflächenkräfte in der Momentankonfiguration
dF	äußere Körperkräfte
$\mathrm{d}ec{X}$	materieller Tangentenvektor
$d\vec{x}$	räumlicher Tangentenvektor
$\vec{e}_k, \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$	Basisvektoren im kartesischen Koordinatensystem
E	Elastizitätsmodul
E_{kin}	kinetische Energie
f	physikalische Größe in der Kontinuumsmechanik
F	Kraft
F	Deformationsgradient
F_a	äußere Kraft
$\vec{F_a}$	resultierende äußere Kraft
F_B	Biegekraft
F_c	Federkraft
F_i	innere Kraft
F_{max}	maximale Kraft
F_{mittel}	mittlere Kraft
F_N	Normalkraft
F_S	Scherkraft
F_x	Kraft in X-Richtung
g	Penetration
g_G	Gewichtungsfaktor Kurvenniveau
g_V	Gewichtungsfaktor Kurvenform
g_P	Gewichtungsfaktor Phasenverschiebung
I_n	innere Kräfte
k	Federsteifigkeit
k_n	Kontaktsteifigkeit
k_G	Berechnungsparameter Kurvenniveau
k_V	Berechnungsparameter Kurvenform
K_{xy}	Kreukorrelationstaktor
	Drehimpuls
l_e	charakteristische Elementkantenlänge
l _{Restl}	Restlänge
M	Masse eines materiellen Volumens
M_a	Drehmoment
m	Masse
	Verschiebungsfaktor
N	Normalenvektor in der Ausgangskonfiguration
\vec{n}	Normalenvektor in der Momentankonfiguration
P	materielles Teilchen in der Ausgangskonfiguration
$P' \rightarrow$	materielles Teilchen in der Momentankonfiguration
p	Impuls
Q	Warmemenge
K	Streuband