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Preface

Water and air, the two essential fluids on which all life
depends, have become global garbage cans

Jacques-Yves Cousteau

Earth’s surface and ground waters are severely affected by the discharge of contam-
inants. Organic pollutants originate from industrial effluents, domestic sewage,
water treatment plants, urban turn-off, agriculture, aquaculture, pulp and paper
making, food processing, tannery, and various industries. Massive point-source
pollution such as industrial pollution during fabrication, storage, processing, and
transportation is of particular concern because the amount of discharged pollutants is
usually high, thus inducing immediately severe health impact on ecosystems.
Whereas, diffuse pollution such as low pesticide and drug levels in waters induce
diseases in the long run. As a countermeasure, there is a need for efficient methods
and techniques to remove organic pollutants from wastewater. This book reviews the
occurrence, analysis, toxicity, and remediation technologies of water organic pol-
lutants. Chapters discuss the treatment of pollutants such as hydrocarbons,
microplastics and plastics, phthalates, polycyclic aromatic hydrocarbons, pharma-
ceutical drugs and metabolites, oil spill, petroleum hydrocarbons, personal care
products, tannery waste, and dyes and pigments.
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Chapter 1 by Godoy et al. includes a summary of techniques for sampling,
extraction, purification, and identification of microplastics, a review of publications
on the abundance of microplastics in different aquatic ecosystems around the world,
and a brief synthesis of researches about sorption of chemicals on microplastics.
Chapter 2 by Tahir et al. provides highlights on the nature of plastics, types, sources,
consumption, effects, and pollution caused by excessive use of plastics. Techniques
used for the identification of plastics present in water and the different remediation
techniques such as primary, mechanical, chemical treatment, and recycling are
elaborated. Finally, the chapter focuses on the health impact and utilization of
degradable plastics. Chapter 3 by Muneer et al. discusses water pollution caused
by plastics. Three strategies to tackle water pollution caused by nanoplastics,
microplastics, and macroplastics are discussed: scientific methods, community
involvement, and government policies. Chapter 4 by Jain et al. narrates how plastics
and e-wastes contaminate our water system and their hazardous effect on living
beings. All aspects of plastic and e-waste, such as types of plastics and e-waste,
effects on marine and freshwater life, solution for prevention, and prospects are
discussed.

Chapter 5 by Rachna et al. reviews concentrations, impact, and remediation of
polycyclic aromatic hydrocarbons (PAH) in rivers and sediments, with focus on
functionalized nanomaterials to degrade PAHs. Chapter 6 by Ghosh and
Chakraborty presents aerobic granulation as a rapid, eco-friendly, and cost-effective
technology for treatment of recalcitrant, hydrocarbon-rich wastewater. The chapter
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gives mechanisms, factors, characteristics, and techniques of aerobic granulation and
applications to the oil remediation. Chapter 7 by Denaro et al. reviews the use and
synergy of bacteria and algae to degrade petroleum hydrocarbons. Chapter 8 by
Samanta and Mitra presents the types of petroleum hydrocarbons polluting waters
and their abatement by physical, chemical, and biological methods. Chapter 9 by
Mustapha examines aspects of pharmaceuticals such as active metabolites, influxes,
distribution, analysis, fate, and transport routes. Chapter 10 by Saggioro reviews
advanced oxidation processes (AOP) such as heterogeneous processes using TiO2;
homogeneous processes using ozone, ultraviolet, hydrogen peroxide, and the Fenton
reagents; and coupling AOP and other treatment processes for the removal of
personal care products, for example, triclosan and triclocarban, and pharmaceuticals
compounds: carbamazepine, diclofenac, and ibuprofen. Chapter 11 by Othman et al.
reports advanced technologies for the treatment of oily industrial wastewater, such as
flotation, coagulation, biological treatment, membrane filtration, and electrochemi-
cal treatment.

Chapter 12 by Fatehi et al. details the source of oil contaminants and two types of
oil removal technologies: remediation by physical, thermal, and chemical methods
and bioremediation. Chapter 13 by Dheenadayalan and Thiruvengadathan reviews
sources, health effects, and remediation of organic pollutants in waters. Remediation
includes physical, chemical, and biological methods. Chapter 14 by Karim et al.
proposes the application of soil as a heterogeneous Fenton catalyst for the abatement
of organic pollutants. Performance of clay, laterite, and volcanic soils to decompose
hydrogen peroxide in water medium is explained. Chapter 15 by Sun et al. discusses
properties, toxicity, contamination levels, analysis, and treatment of waters contam-
inated by phthalates.

Chapter 16 by Patel et al. discusses adverse effects, treatment technologies, and
management processes of tannery waste. Chapter 17 by Ashraf et al. compares
methods for the treatments of dyes and pigments, such as physical, chemical, and
biological techniques. Chapter 18 by Akram presents the methodologies used for the
treatment of textile waste, with focus on nanomaterials such as silica and iron-based
magnetic materials such as sorbents and photocatalysts. Synthetic and biomaterials-
based composites are also discussed as next-generation materials for wastewater
treatment.

Aligarh, India Inamuddin
Aligarh, India Mohd Imran Ahamed
Aix-en-Provence, France Eric Lichtfouse

Preface vii



Contents

1 Microplastic Pollution in Water . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
V. Godoy, M. A. Martín-Lara, A. I. Almendros, L. Quesada,
and M. Calero

2 Identification and Remediation of Plastics as Water
Contaminant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Zaman Tahir, Muhammad Shahid Nazir, Masoom Fatima,
Sadaf ul Hassan, Zulfiqar Ali, and Mohd Azmuddin Abdullah

3 Remediation of Water Pollution by Plastics . . . . . . . . . . . . . . . . . . . 89
Faizan Muneer, Muhammad Hussnain Azam, Muhammad Zubair,
Tahir Farooq, Muhammad Ibrahim, Ijaz Rasul, Muhammad Afzal,
Amna Ahmad, and Habibullah Nadeem

4 Plastics and e-Waste, a Threat to Water Systems . . . . . . . . . . . . . . 119
Bhawana Jain, Ajaya K. Singh, and Md. Abu Bin Hasan Susan

5 Degradation of Polycyclic Aromatic Hydrocarbons
by Functionalized Nanomaterials . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Rachna, Manviri Rani, and Uma Shanker

6 Aerobic Granulation in Hydrocarbon-Rich Wastewater
Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Sayanti Ghosh and Saswati Chakraborty

7 Biodegradation of Hydrocarbons in Marine Environment . . . . . . . . 195
R. Denaro, F. Di Pippo, F. Crisafi, and S. Rossetti

8 Treatment of Petroleum Hydrocarbon Pollutants in Water . . . . . . . 229
Monalisha Samanta and Debarati Mitra

9 Fate of Pharmaceutical Drugs and Metabolites
in the Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Aliru Olajide Mustapha

ix



10 Pharmaceutical and Personal Care Products in the Aquatic
Environment and Wastewater Treatment by Advanced
Oxidation Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Enrico Mendes Saggioro

11 Oily Wastewater Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
Mohd Hafiz Dzarfan Othman, Zhong Sheng Tai, Jamilu Usman,
Nurul Jannah Ismail, Mukhlis A. Rahman, and Juhana Jaafar

12 Remediation of Pollution by Oil Spills . . . . . . . . . . . . . . . . . . . . . . . 387
Marzie Fatehi, Maryam Mansoori Kermani, and Ali Mohebbi

13 Remediation of Organic Pollutants in Water . . . . . . . . . . . . . . . . . . 501
Gangadharan Dheenadayalan and Rajagopalan Thiruvengadathan

14 Soil as Heterogeneous Fenton Catalyst for the Abatement
of Organic Pollutants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
Ansaf V. Karim, P. V. Nidheesh, and M. Suresh Kumar

15 Analytical Methods for Phthalates in Water Samples . . . . . . . . . . . 539
Chengjun Sun, Rui Sun, Xin Wu, Shuo Yin, Yongxin Li,
and Danni Yang

16 Environmental Impact and Treatment of Tannery Waste . . . . . . . . 577
Naveen Patel, Shraddha Shahane, Deepak Chauhan, Dhananjai Rai,
Md. Zafar Ali Khan, Biswanath Bhunia, and Vinod Kumar Chaudhary

17 Methods for the Treatment of Wastewaters Containing Dyes
and Pigments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
Raja Shahid Ashraf, Zeeshan Abid, Munazza Shahid, Zia Ur Rehman,
Gulzar Muhammad, Muhammad Altaf, and Muhammad Arshad Raza

18 Nanomaterials for Textile Waste Treatment . . . . . . . . . . . . . . . . . . 663
Bilal Akram, Habib-ur-Rehman, and Javeed Akhtar

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685

x Contents



About the Editors

Dr. Inamuddin is an assistant professor at the Department of Applied Chemistry,
Aligarh Muslim University, Aligarh, India. He has extensive research experience in
multidisciplinary fields of analytical chemistry, materials chemistry, electrochemis-
try, renewable energy and environmental science. He has published about 177
research articles in various international scientific journals, 18 book chapters, and
115 edited books with multiple well-known publishers. His current research interests
include ion exchange materials, a sensor for heavy metal ions, biofuel cells,
supercapacitors and bending actuators.

Dr. Mohd Imran Ahamed received his Ph.D. degree on the topic “Synthesis and
characterization of inorganic-organic composite heavy metals selective cation-
exchangers and their analytical applications” from Aligarh Muslim University,
Aligarh, India, in 2019. He has published several research and review articles in
the journals of international recognition. He has completed his B.Sc. (Hons) in
chemistry from Aligarh Muslim University, Aligarh, India, and M.Sc. (organic
chemistry) from Dr. Bhimrao Ambedkar University, Agra, India. His research
works include ion-exchange chromatography, wastewater treatment and analysis,
bending actuator, and electrospinning.

Dr. Eric Lichtfouse is a biogeochemist at Aix Marseille University who has
invented carbon-13 dating, a molecular-level method to study the dynamics of
organic compounds in temporal pools of complex environmental media. He is
Chief Editor of the journal Environmental Chemistry Letters and the book series
Sustainable Agriculture Reviews and Environmental Chemistry for a Sustainable
World. He is the author of the book Scientific Writing for Impact Factor Journals,
which includes an innovative writing tool: the Micro-Article.

xi



Contributors

Mohd Azmuddin Abdullah Institute of Marine Biotechnology, Universiti
Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia

Zeeshan Abid Department of Chemistry, Government College University Lahore,
Lahore, Pakistan

Md. Abu Bin Hasan Susan Department of Chemistry, Dhaka University, Dhaka,
Bangladesh

Muhammad Afzal Department of Bioinformatics and Biotechnology, Government
College University Faisalabad, Faisalabad, Pakistan

Amna Ahmad Department of Bioinformatics and Biotechnology, Government
College University Faisalabad, Faisalabad, Pakistan

Javeed Akhtar Materials Laboratory, Department of Chemistry, Mirpur University
of Science and Technology (MUST), Mirpur, AJK, Pakistan

Bilal Akram Department of Chemistry, Tsinghua University, Beijing, China

Zulfiqar Ali Department of Chemical Engineering, COMSATS University
Islamabad, Islamabad, Pakistan

A. I. Almendros Chemical Engineering Department, Faculty of Sciences, Granada,
Spain

Muhammad Altaf Department of Chemistry, Government College University
Lahore, Lahore, Pakistan

Raja Shahid Ashraf Department of Chemistry, Government College University
Lahore, Lahore, Pakistan

Muhammad Hussnain Azam Department of Bioinformatics and Biotechnology,
Government College University Faisalabad, Faisalabad, Pakistan

xiii



Biswanath Bhunia Department ofBio Engineering, National Institute of Technology
Agartala, Agartala, Tripura, India

M. Calero Chemical Engineering Department, Faculty of Sciences, Granada, Spain

Saswati Chakraborty Centre for the Environment, Indian Institute of Technology
Guwahati, Guwahati, Assam, India
Department of Civil Engineering, Indian Institute of Technology Guwahati,
Guwahati, Assam, India

Vinod Kumar Chaudhary Department of Environmental Sciences, Dr Ram
Manohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India

Deepak Chauhan Department of Civil Engineering, BIET, Jhansi, Uttar Pradesh,
India

F. Crisafi Institute for Biological Resources and Marine Biotechnology, National
Research Council of Italy (IRBIM - CNR), Messina, Italy

R. Denaro Water Research Institute, National Research Council of Italy (IRSA -
CNR), Rome, Italy

Gangadharan Dheenadayalan Department of Sciences, Amrita School of
Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India

F. Di Pippo Water Research Institute, National Research Council of Italy (IRSA -
CNR), Rome, Italy

Tahir Farooq Department of Applied Chemistry, Government College University
Faisalabad, Faisalabad, Pakistan

Marzie Fatehi Department of Chemical Engineering, Faculty of Engineering,
Shahid Bahonar University of Kerman, Kerman, Iran

Masoom Fatima Department of Chemistry, COMSATS University Islamabad,
Islamabad, Pakistan

Sayanti Ghosh Centre for the Environment, Indian Institute of Technology
Guwahati, Guwahati, Assam, India

V. Godoy Chemical Engineering Department, Faculty of Sciences, Granada, Spain

Habib-ur-Rehman Materials Laboratory, Department of Chemistry, Mirpur
University of Science and Technology (MUST), Mirpur, AJK, Pakistan

Muhammad Ibrahim Department of Applied Chemistry, Government College
University Faisalabad, Faisalabad, Pakistan

Nurul Jannah Ismail Advanced Membrane Technology Research Centre
(AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering,
Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia

xiv Contributors



Juhana Jaafar Advanced Membrane Technology Research Centre (AMTEC),
School of Chemical and Energy Engineering, Faculty of Engineering, Universiti
Teknologi Malaysia, Johor Bahru, Johor, Malaysia

Bhawana Jain Department of Chemistry, Government V. Y. T. PG. Autonomous,
College, Durg, Chhattisgarh, India

Ansaf V. Karim Environmental Science and Engineering Department, Indian
Institute of Technology, Mumbai, Maharashtra, India

Md. Zafar Ali Khan Department of Civil Engineering, Government Polytechnic
College, Gonda, Uttar Pradesh, India

M. Suresh Kumar CSIR-National Environmental Engineering Research Institute,
Nagpur, Maharashtra, India

Yongxin Li West China School of Public Health and West China Fourth Hospital,
Sichuan University, Chengdu, China
Provincial Key Lab for Food Safety Monitoring and Risk Assessment of Sichuan,
Chengdu, China

Maryam Mansoori Kermani Department of Chemical Engineering, Faculty of
Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

M. A. Martín-Lara Chemical Engineering Department, Faculty of Sciences,
Granada, Spain

Debarati Mitra Department of Chemical Technology, University of Calcutta,
Kolkata, India

Ali Mohebbi Department of Chemical Engineering, Faculty of Engineering,
Shahid Bahonar University of Kerman, Kerman, Iran

Gulzar Muhammad Department of Chemistry, Government College University
Lahore, Lahore, Pakistan

Faizan Muneer Department of Bioinformatics and Biotechnology, Government
College University Faisalabad, Faisalabad, Pakistan

Aliru Olajide Mustapha Department of Chemical, Geological and Physical
Sciences, Faculty of Pure and Applied Sciences, Kwara State University Malete,
Ilorin, Kwara State, Nigeria

Habibullah Nadeem Department of Bioinformatics and Biotechnology,
Government College University Faisalabad, Faisalabad, Pakistan

Muhammad Shahid Nazir Department of Chemistry, COMSATS University
Islamabad, Islamabad, Pakistan

P. V. Nidheesh CSIR-National Environmental Engineering Research Institute,
Nagpur, Maharashtra, India

Contributors xv



Mohd Hafiz Dzarfan Othman Advanced Membrane Technology Research Centre
(AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering,
Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia

Naveen Patel Department of Civil Engineering, NIT, Agartala, Tripura, India

L. Quesada Chemical Engineering Department, Faculty of Sciences, Granada,
Spain

Rachna Department of Chemistry, Dr B R Ambedkar National Institute of
Technology, Jalandhar, Punjab, India

Mukhlis A. Rahman Advanced Membrane Technology Research Centre
(AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering,
Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia

Dhananjai Rai Department of Civil Engineering, BIET, Jhansi, Uttar Pradesh,
India

Manviri Rani Department of Chemistry, Malaviya National Institute of
Technology, Jaipur, Rajasthan, India

Ijaz Rasul Department of Bioinformatics and Biotechnology, Government College
University Faisalabad, Faisalabad, Pakistan

Muhammad Arshad Raza Department of Chemistry, Government College
University Lahore, Lahore, Pakistan

Zia Ur Rehman Department of Chemistry, Government College University
Lahore, Lahore, Pakistan

S. Rossetti Water Research Institute, National Research Council of Italy (IRSA -
CNR), Rome, Italy

Enrico Mendes Saggioro Department of Sanitation and Environmental Health,
National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil

Monalisha Samanta Department of Chemical Technology, University of Calcutta,
Kolkata, India

Shraddha Shahane Department of Civil Engineering, NIT, Agartala, Tripura,
India

Munazza Shahid Department of Chemistry (SSC), University of Management and
Technology, Lahore, Pakistan

Uma Shanker Department of Chemistry, Dr B R Ambedkar National Institute of
Technology, Jalandhar, Punjab, India

Ajaya K. Singh Department of Chemistry, Government V. Y. T. PG. Autonomous,
College, Durg, Chhattisgarh, India

xvi Contributors



Chengjun Sun West China School of Public Health and West China Fourth
Hospital, Sichuan University, Chengdu, China
Provincial Key Lab for Food Safety Monitoring and Risk Assessment of Sichuan,
Chengdu, China

Rui Sun West China School of Public Health and West China Fourth Hospital,
Sichuan University, Chengdu, China

Zaman Tahir Department of Chemical Engineering, COMSATS University
Islamabad, Islamabad, Pakistan

Zhong Sheng Tai Advanced Membrane Technology Research Centre (AMTEC),
School of Chemical and Energy Engineering, Faculty of Engineering, Universiti
Teknologi Malaysia, Johor Bahru, Johor, Malaysia

Rajagopalan Thiruvengadathan Department of Electronics and Communication
Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham,
Coimbatore, India

Sadaf ul Hassan Department of Chemistry, COMSATS University Islamabad,
Islamabad, Pakistan

Jamilu Usman Advanced Membrane Technology Research Centre (AMTEC),
School of Chemical and Energy Engineering, Faculty of Engineering, Universiti
Teknologi Malaysia, Johor Bahru, Johor, Malaysia
Department of Chemistry, Faculty of Science, Sokoto State University, Sokoto,
Sokoto State, Nigeria

Xin Wu Jiangxi Institute for Food Control, Nanchang, China

Danni Yang West China School of Public Health and West China Fourth Hospital,
Sichuan University, Chengdu, China

Shuo Yin West China School of Public Health and West China Fourth Hospital,
Sichuan University, Chengdu, China

Muhammad Zubair Department of Bioinformatics and Biotechnology,
Government College University Faisalabad, Faisalabad, Pakistan

Contributors xvii



Chapter 1
Microplastic Pollution in Water

V. Godoy, M. A. Martín-Lara , A. I. Almendros, L. Quesada,
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Abstract Microplastics are ubiquitous in almost all environments, including fresh-
water, seawater, and coastal environments. Recently, researches about microplastics
have increased due to their serious ecological and health impacts. In this chapter,
firstly, the sources of microplastics are summarized. Then, the most important
techniques for sampling, extraction, purification, and identification of microplastics
are discussed. Next, abundance of microplastics in different aquatic ecosystems
around the world is synthesized. According to reviewed publications, the rivers
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and coasts of East Asia, the Mediterranean Sea, the Portuguese coasts, the rivers of
England, and parts of the eastern United States were the most polluted areas. The
vast majority of microplastics were composed of polyethylene (PE), polypropylene
(PP), or polystyrene (PS), and the forms that predominated were fibers, fragments,
and pellets. Finally, a brief revision of publications based on sorption of chemicals
on microplastics and their effect on freshwater organisms is also reported.

Keywords Microplastics · Marine debris · Freshwater · Emerging contaminants ·
Sorption · Polymer identification · Risk assessment

1.1 Introduction

In the last years, contamination produced by microplastics has become a concern
problem due to the environmental damage they cause and their harmful effects on
organisms. These particles can be primary, which are manufactured by humans with
some proposal, or secondary, which result from the physical and chemical degrada-
tion of macroplastics in the environment (Cole et al. 2011). Primary microplastics
can be found in some personal care products, drilling fluids for extracting oil or
natural gas, sandblasting for cleaning, some boat paints, or the loss of pellets from a
plastic manufacturing industry (Duis and Coors 2016; Sundt et al. 2014). On the
other hand, secondary microplastics can be produced by the tire wear, the washing of
synthetic clothes, or the physical-chemical degradation of larger macroplastics
(De Falco et al. 2018; Karlsson et al. 2018; Sommer et al. 2018).

Microplastics are found in almost every marine and freshwater environment on
the Earth and also on beaches, sediments, bottled water, or food (Hamid et al. 2018;
Novotna et al. 2019; Vandenberg et al. 2007). Figure 1.1 shows sampling of
sediment on a Spanish beach in order to determine the presence of microplastics.
The amount of microplastics in aqueous media is still increasing due to the growth in
worldwide plastic production, which was 348 Mt in 2017 (Plastics Europe 2018).
Research on these particles and their concentration in the marine and
freshwaterenvironments has not ceased to grow. There are citations of the presence
of microplastics in all types of environments, including those considered to be the
most virgin or distant from the sources of production of these particles, such as the
depths of the oceans or Arctic ice (Obbard et al. 2014; Woodall et al. 2014). Not only
their widespread distribution is important, but they are accessible to consumption by
an extensive diversity of organisms.

One of the most important environmental problems caused by microplastics is
ingestion by aquatic organisms when confused with plankton (Egbeocha et al. 2018;
Fossi et al. 2012; Taylor et al. 2016). The presence of microplastics in the digestive
tract of marine species has been demonstrated in numerous studies. There are a lot of
species that are affected by this problem, such as molluscs, cetaceans, bivalves,
pinnipeds, and zooplankton (Botterell et al. 2019; De Sá et al. 2018; Gallo et al.
2018; Lusher 2015; Nelms et al. 2019). These studies showed that almost all
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commonly used polymers can be ingested by organisms, especially polyethylene and
polystyrene.

Microplastics also have the capacity to adsorb contaminating substances that are
present in the watercourses, i.e., pharmaceuticals, heavy metals, or pesticides (Bakir
et al. 2014; Brennecke et al. 2016; Li et al. 2018). This implies a high risk for marine
fauna and for human health, although the effects are still poorly defined. Some
studies have reported negative effects of these pollutants on feeding behavior,
reproduction, and growth of marine organisms (Anderson et al. 2016; Botterell
et al. 2019; Bouwmeester et al. 2015; De Sá et al. 2018; Schirinzi et al. 2017; Wright
and Kelly 2017; Wright et al. 2013).

The main problems when studying and analyzing microplastics are their small
size, which makes it difficult to choose the right technique to identify them. This
means the absence of a standard method for extracting microplastics from samples
and their quantification. The analysis of microplastics goes through different phases,
in which a different technique must be applied. Collection is the first phase, which
can take place in water or in sediments. Sediment can be dry or wet when
microplastics are going to be removed, whereas in water samples it is common to
use nets, pumps, or sieves (Prata et al. 2019). Microplastics must then be extracted
from water and sediment samples with the objective of being quantified and char-
acterized. This separation usually is based on density, as each polymer has a different
value. Density methods usually used NaCl, NaI, or CaCl2 solutions in water, in order
to increase the density (Masura et al. 2015; Quinn et al. 2017; Sánchez-Nieva et al.
2017).

Finally, when microplastics have been extracted, numerous techniques can be
employed for their identification. Most studies usually make a first visual

Fig. 1.1 Sampling of microplastics on a Spanish beach
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classification, followed by the application of more complex techniques such as
Fourier transform infrared spectroscopy (Fig. 1.2), micro Raman, scanning electron
microscopy, the application of pigments such as Nile red, or gas chromatography-
mass spectrometry (Eriksen et al. 2014; Godoy et al. 2019; Maes et al. 2017; Rocha-
Santos and Duarte 2017). The objectives are to identify the composition of the
microplastics, the presence of additives, and the morphology and determine the size.
The use of one or other technique depends to a great extent on the size of the
microplastic, the type of extraction previously done, the nature of the original
sample, or simply on the techniques available in each laboratory.

In the present chapter, research has dedicated to the distribution of microplastics
in marine and freshwaterenvironments around the world, providing data on concen-
trations and characterization of these particles. Prior to this research, the main
sources of current microplastic emissions have also been described, as well as the
most frequent techniques used in the characterization of these microparticles.

Fig. 1.2 Analysis of microplastics in Fourier transform infrared spectroscopy equipment, in order
to find out their chemical composition
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1.2 Sources of Microplastics

To study microplastic sources, it can be distinguished between two kinds of
microplastics, primary and secondary. According to Cole et al. (2011),
primarymicroplastics are defined as microscopic particles manufactured by humans
with some proposal. Most primary microplastics in the environment are dumped
from products routinely used in households, such as facial or body cleansers,
airblasting media, or drug vectors used in medicine (Li et al. 2016). On the other
hand, secondary microplastics are generated by the disintegration or fragmentation
of macroplastics into particles of smaller size (Ryan et al. 2009). Figure 1.3 shows
the difference between the appearance of primary and secondary microplastics.

Primary microplastics, such as polyethylene beads (with sizes between 10 and
106 μm) pictured (Fig. 1.3a), are typically uniform in shape and composition.
Secondary microplastics are typically much more diverse in size, shape, color, and
composition than primary microplastics, as can be seen in a sample trawled from a
Spanish beach (Fig. 1.3b).

Syberg et al. (2015) reported a complete summary of sources of primary and
secondary microplastic. In personal care products, primary microplastics are usually
composed of thermoplastic polymers such as polyethylene, polypropylene, styrene
copolymers, or polymethyl methacrylate. They are added to provide the personal
care products some interesting characteristics such as ability to form a film, abrasion,
shine, and viscosity (Napper et al. 2015; UNEP 2015). On the other hand, drilling
fluids often contain reinforced Teflon particles, and in recent decades, they have
become more commercially available. The main sources of emissions to the envi-
ronment are sludge wastes, which are not always collected and treated in the
appropriate way to eliminate these microparticles (Sundt et al. 2014).

Microplastics are also present in pressure sandblasting for cleaning, in the form of
acrylic polymers, melamine, or polyester to remove rust and paint on machines,
engines, and boat hulls. The problem arises when these products are not used in

Fig. 1.3 (a) Primary microplastics from a cosmetic product; (b) secondary microplastics from a
beach (Source: Original production)
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closed systems with subsequent fluid recovery, making it very easy for them to end
up in the environment through wastewater (Duis and Coors 2016). Microplastics can
also be part of paints used for ships, increasing the emission of microparticles into
the environment as the paint degrades and chip (Sundt et al. 2014). Pellets of virgin
polymers can also be a source of primary microplastics. These pellets can be lost
unintentionally during transport. Also, a loss of these pellets can be performed in the
polymer processing facilities (Van Cauwenberghe et al. 2013). In fact, large ports
and local plastic industries near the coast are the main sources of pellet contamina-
tion of the ocean and seawaters.

The main sources of secondary microplastics are tire wear and the washing of
synthetic textile apparel. Tire wear accounts for approximately 5–10% of the world’s
total amount of microplastics ending up in the oceans (Kole et al. 2017). On the other
hand, the washing of synthetic garments results in the release from two sources.
Detergents may contain microplastics, and if there are no adequate filters for
wastewater or water vapor, release to the environment occurs. In addition, a standard
garment with some polymer can release up to 100 fibers per wash into the environ-
ment, and some garments have been shown to release up to 1900 fibers per wash
(Browne et al. 2011).

Another source of secondary microplastics is the generation through the frag-
mentation of larger plastics. This happens when larger plastic waste is deposited on
beaches or floating in water, exposed to solar radiation and weathering agents.
Gradually, these wastes lose their mechanical and structural properties; their surfaces
break down and decompose into smaller pieces until they reach the size of a
microplastic (Auta et al. 2017).

It is hard to identify specifically how all these microplastics reach the water, but
plastic debris can easily enter the different watercourses and oceans in different ways
that include dumping or littering, effluents of water treatment plants, ineffective
waste management, and even stormwater drainage systems. In Fig. 1.4, a schematic
diagram shows the key sources and drive pathways.

1.3 Overview of Methods Used for the Sampling,
Extraction, Purification, and Identification
of Microplastics in the Environment

1.3.1 Sampling

Water Samples

Nets of different mesh sizes are the preferred technique used for sampling
microplastics in waters. Particularly, bongo nets, plankton nets, and near-bottom
trawls are extensively used for water column sampling, while manta trawls and
neuston nets are used for surface water sampling (Wang and Wang 2018). Other
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tools used in water sampling are vessels or plankton traps (Crawford and Quinn
2017; Silva et al. 2018).

Some of the main factors that influence the sampling with nets and, therefore, the
results of each study are the mesh size used and the network area that acts as a filter.
According to the data collected in the literature, the nets usually have a length of
3–4.5 m, and most of the meshes are 300 μm size. It implies that not all microplastics
are collected in commonly used sampling techniques. In addition, other techniques
are occasionally used to evaluate microplastics in water. Particularly, the use of a
cascade of filters is a very promising technique developed by -4H-JENA engineering
GmbH, yet under development.

Sediment Samples

In the case of sediments, sampling is relatively easy. However, currently there is no
official procedure for the sampling in terms of sampling depth, amount of collected
sample, or location. Therefore, the comparison between data produced by different
authors is restricted. At present, sediments of beaches are more often studied.
Sampling work is performed on the whole beach. With respect to the location of
the sample on the beach, the applied sampling strategies include random sampling in
several sites, following perpendicular (vertically from the water edge) and parallel
(horizontally to the water) lines. Transects are a common approach when conducting
a beach sampling using quadrats of various sizes (Hanvey et al. 2017).

With regard to sampling depth, taking samples in the first 5 centimeters is the
most common technique, although sampling at a greater depth has also been found in
published works (Claessens et al. 2011). Authors as Hanvey et al. (2017) think that

Fig. 1.4 Diagram of the main sources of microplastic emissions and their distribution flow through
the marine environment; (1) microplastics from beaches; (2) and (3) microplastics from river
estuaries and from maritime human activities, respectively, and their possible ingestion by organ-
isms; (4) microplastics emitted to the air (Source: Original production)
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this procedure underestimates the levels of plastics, as sampling is only centering on
the surface layer. Another point of interest is the quantity of sample, because some
works collected less than 500 g of sediments, whereas others can reach about
10 kilograms (Hidalgo-Ruz et al. 2012).

As a general rule, the sampling is performed with the following instruments: (1) a
sampling tool of a nonplastic material (usually a small spoon or shovel), (2) a frame
that specifies the sampling area, and (3) a container also of a nonplastic material in
which the collected sample is stored are required.

Biological Samples

The schemes for the biological sampling are diverse and strongly determined by the
organism that will be analyzed. Normally, zooplankton, fish species, or crustaceans
are getting by nets or traps. Also, smaller invertebrate organisms can be collected
directly by hand. Generally, the interest is in the digestive system, tract, or excretions
of the organism. Then, a dissection to release the intestinal content or the entire
digestive system is performed (Lusher et al. 2013).

1.3.2 Extraction and Purification of Microplastics

Density Separation

The flotation technique is the most used for the extraction of microplastics from
sediment samples. The objective is to take advantage of the difference in density
between the most common plastic polymers, which range from 0.28 to 1.47 g�cm�3,
and the sedimentary matrix, which has a density of approximately 2.55 g�cm�3.
Particularly, a concentrated salt solution is prepared and put into contact with the
sediment sample. The solid-liquid mixture is agitated during a certain time and then
is left to decant. The plastic particles remain in suspension while grains of sand
decant. Afterward, the microplastics are recovered from the supernatant by filtration.

Despite being a cheap and environmentally friendly procedure, not all common
polymers are extracted using a concentrated salt solution. For example, high-density
polymers as polyvinyl chloride or polyethylene terephthalate (PET), among others,
end up settling with the sediment because the salt solution has a low density of
approximately 1.2 g�cm�3. Therefore, high-density solutions are used to overcome
this drawback, for example, sodium iodine solution (1.8 g�cm�3), zinc chloride
solution (1.5–1.7 g�cm�3), or sodium polytungstate solution (1.4 g�cm�3) (Nuelle
et al. 2014; Imhof et al. 2012; Liebezeit and Dubaish 2012; Corcoran et al. 2009).

The flotation technique is adequate to extract high-size microplastics reaching
recoveries of 80–100% (Fries et al. 2013); however, microplastics with a particle
size lower than 500 μm are more difficult to extract. In this sense, consecutive
extraction stages are suggested to get better recoveries.
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Matrix Removal and Purification of Microplastic Samples

For a correct identification of the microplastics, it is necessary to eliminate all the
organic and inorganic compounds adhered to the surface thereof. In addition,
particularly matrix removal, it is necessary to remove microplastic from biological
samples. The softest method to clean samples is washing with fresh water
(McDermid and McMullen 2004). Other purification techniques have also been
used in the literature, for example, ultrasonic cleaning, treatments with hydrogen
peroxide, and treatments with mineral acids (Andrady 2011; Cooper and Corcoran
2010; Liebezeit and Dubaish 2012).

Other authors have used mainly 37% of hydrochloric acid (HCl), various con-
centrations of sodium hydroxide (NaOH), and 30% of hydrogen peroxide (H2O2) or
a specific mixture of them, for the tissue digestion of biotic samples (Claessens et al.
2013; Davidson and Dudas 2016; Dehaut et al. 2016; Löder and Gunnar 2015;
Lusher 2015; Zhao et al. 2017). However, special care must be taken in the use of
these techniques because some plastics can react especially to strong acid or alkaline
solutions (Liebezeit and Dubaish 2012; Claessens et al. 2013). It notably restricts the
applicability of these reagents. In this sense, the most promising technique is the use
of enzymatic digestion which has shown good preliminary results (Cole et al. 2014;
Catarino et al. 2017).

1.3.3 Quantification and Identification of Microplastics

Manual Counting by Visual Identification

The use of microscopes is widely extended to identify microplastics (Hanvey et al.
2017). The main drawbacks of this technique are the limitation in the identification
of particles below a certain size and an excessive slowness. Another major drawback
is that the quality of the data produced depends to a large extent on the microscope
used, the characteristics of the person performing the study, and the sample matrix
(i.e., sediment or intestinal content). Finally, mistakes by counting nonplastic parti-
cles as plastic can be made. According to all the limitations mentioned, the error rate
of the visual classification increases with decreasing particle size and can fluctuate
from 20% to 70% (Eriksen et al. 2013; Hidalgo-Ruz et al. 2012). This is the reason
why it is important to analyze then the particles by other methods for a correct
identification of plastics (Dekiff et al. 2014; Hidalgo-Ruz et al. 2012).

Norén (2007) suggests the following criteria for the visual identification of larger
microplastics: (1) in the plastic particle, no structure of biological origin should be
distinguished, (2) the plastic fibers must have a folded three-dimensional shape and a
similar thickness to assure that there is no biological origin, (3) the particles should
be of homogeneous color, and (4) those transparent or whitish particles should be
inspected with the support of fluorescence at high magnification to exclude an
organic origin.
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Fourier Transform Infrared Spectroscopy

Fourier transform infrared spectroscopy is applicable to a wide variety of chemical
applications, such as the case of polymers and organic compounds. It is the most
used technique to identify polymer in sediment samples. It uses the infrared spec-
trum of emission or absorption generated using infrared radiation to excite the
sample, which allows to identify the type of plastic accurately (Frias et al. 2010;
Harrison et al. 2012; Ng and Obbard 2006; Reddy et al. 2006; Thompson et al. 2004;
Vianello et al. 2013). When the infrared radiation reaches a sample, part of the
radiation is absorbed by the sample, and another part passes through it. The resulting
information is a characteristic spectrum associated to the chemical structures
presented in the sample. In microplastic identification application, one important
advantage of Fourier transform infrared spectroscopy is it allows the analysis of
polymers without destroying the sample.

Pyrolysis-Gas Chromatography in Combination with Mass Spectrometry

Another technique that allows evaluating the chemical composition of plastic parti-
cles is pyrolysis-gas chromatography in combination with mass spectrometry. Cur-
rently, this technique is widely applied to synthetic and natural polymers. In this
technique the polymers are converted to products of lower molecular weight by the
action of heat. The composition and relative abundance of the products obtained in
the pyrolysis are characteristic for a given polymer. The correct determination of this
information allows the identification of materials that cannot be determined in any
other way. Then, this technique is based on the analysis of thermal degradation
products generated during the thermal processing of the sample (Fries et al. 2013;
Nuelle et al. 2014).

The main disadvantages of this technique are that particles must be placed
manually in the pyrolysis tube and lower particles cannot be manipulated manually.
In addition, the method lets the analysis of only one sample per test, and, therefore,
large quantities of sample are not suitable for processing. Finally, compared with
spectroscopic methods, the major disadvantage is that it is destructive.

Raman Spectroscopy

Raman spectroscopy, together with the Fourier transform infrared spectroscopy, is
another important and commonly used spectroscopy technique that provides chem-
ical information of microplastics (Araujo et al. 2018; Cole et al. 2013; Imhof et al.
2012, 2013; Murray and Cowie 2011; Van Cauwenberghe et al. 2013). The analysis
is based on the examination of light dispersed by sample when a monochromatic
laser source (between 500 and 800 nm) impacts on it. The result is a characteristic
Raman spectrum that allows the identification of each type of polymer. It is a
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nondestructive technique allowing the recovery of the sample for further analysis
(Shim et al. 2017). In microplastic identification, one of the great advantages of this
technique is that it can be coupled with microscopy which lets the identification of
smaller microplastics (Strungaru et al. 2019).

Scanning Electron Microscopy and Energy-Dispersive X-Ray
Spectroscopy

Scanning electron microscopy generates an image of the surface of the microplastic
based on interaction of an electron beam with the sample (Rocha-Santos and Duarte
2015). The scanning electron microscopy technique provides full information about
the shape, size, and topography of the plastic particles. According to the provided
images, the source of the microplastics, i.e., decomposed fragments of larger plastics
or primary microplastics, can be predicted (Zbyszewski and Corcoran 2011). Also,
scanning electron microscopy can be combined with energy-dispersive X-ray spec-
troscopy to determine elemental composition and identify inorganic additives in
microplastics fragments. For example, scanning electron microscopy-energy-disper-
sive X-ray method was used by Fries et al. (2013) to analyze the existence of
aluminum, barium, carbon, oxygen, titanium, sulfur, and zinc on microplastic
particles.

1.4 Microplastics in Freshwater Environments

Microplastic pollution has gained considerable attention in freshwater systems,
despite the fact that a large number of works are still devoted to the study of the
marine environment. Freshwaterenvironments are a recognizable way to carry
microplastics from land-based sources to the aquatic environment. Studies about
microplastics in freshwaterenvironments are increasing in attention due to the great
quantities of plastic found in lakes, rivers, and even drinking water and because of its
harmful effects on the environment and human health.

1.4.1 Global Microplastic Concentration and Distribution
in Different Freshwater Ecosystems

Microplastics vary geographically, depending on environmental factors, especially
hydrodynamic conditions and anthropogenic factors (Besseling et al. 2017; Imhof
et al. 2017; Kim et al. 2015; Sarafraz et al. 2016). In this section, the most important
concentrations of microplastics present in the literature over the last decade have
been collected and selected. These data are presented on maps of different locations,
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in Asia, Africa, Europe, and North America, in order to determine their geographical
distribution. This information is presented in Figs. 1.5, 1.6, 1.7, and 1.8.

The samples found in rivers and lakes mainly from freshwater sources contain a
large amount of microplastics, which is then reflected in the amount of microplastics
found in the seas and oceans, as rivers are one of the main transport routes. Based on
the sediment typology, it can be observed how in Europe, in Sweden (Lysekil), 8360
items per kg were found (Magnusson and Noren 2014), while in North America, in
Canada (St. Lawrence River), 13,832 items per m2 were found (Castañeda et al.
2014). On the other hand, with focus on the microplastics found in water samples,
the highest concentrations are found in North America. In the United States (Los
Angeles River), 12,932 items per m3 were obtained (Moore et al. 2011), while in
Chicago River 6.69E6 items per m2 were obtained (McCormick et al. 2014).

Figure 1.5 represents the microplastic abundance and distribution in Asia. This
continent contains the largest contamination by microplastics. The biggest concen-
trations of these particles are present along river and lakes. Studies have reported
high concentrations of microplastics in Wei River, where 360–1320 items per kg of
sediment were found (Ding et al. 2019), or Beijing River, where 178–544 items per
kg of sediment were counted (Wang et al. 2017a). Other studies have reported high

Fig. 1.5 Abundance of microplastics in sediment and water samples from different freshwater
systems, i.e., rivers or lakes, across Asia. The abundances present in sediments are expressed in
items per m2 or items per kg, while the abundances in water are expressed in items per m3 (Sources
of data: Di and Wang (2018), Free et al. (2014), Peng et al. (2018), Sruthy and Ramassamy (2017),
Su et al. (2016), Wang et al. (2017a, b), Zhang et al. (2016), Ding et al. (2019). Source of figure:
Original production)
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concentrations of microparticles in lakes, i.e., in the Nan Lake, where more than
5745 items per m3 were found (Wang et al. 2017a). Lake Hovsgol and those lakes
within the Siling Lake basin (northern Tibet) were studied showing significant
concentrations of microplastics, 0.02 items per m2 and 8–563 items per m2 (Zhang
et al. 2016), respectively, although these locations have little human activity. This
may be due to inappropriate waste management in low-density populations.

Figure 1.6 represents a map of Europe with the main accumulations of
microplastics. The most contaminated areas were Lysekil (Sweden), where quanti-
ties of 8360 items per kg in sediments and 8.25 items per m3 in water were estimated
(Magnusson and Noren). In Meuse River (Netherlands), 1400 items per kg (sedi-
ments) were estimated (Leslie et al. 2017), whereas in Itchen River (UK), 1155 items
per m3 (water) were estimated (Gallagher et al. 2016).

North America is represented in Fig. 1.7, with the main areas where microplastics
accumulate. The most contaminated areas are Canada and the United States. Chicago
River (USA) contained about 6.69E106 items per m2 (McCormick et al. 2014), while
St. Lawrence River (Canada) contained 13,832 items per m2 (Castañeda et al. 2014).
There are also other rivers, such as Los Angeles River, that have high concentrations

Fig. 1.6 Abundance of microplastics in sediment and water samples from different freshwater
systems, i.e., rivers or lakes, across Europe. The abundances present in sediments are expressed in
items per m2 or items per kg, while the abundances in water are expressed in items per m3 (Sources
of data: Fischer et al. (2016), Gallagher et al. (2016), Horton et al. (2017a, b), Imhof et al. (2013),
Lechner et al. (2014), Leslie et al. (2017), Magnusson and Noren (2014), Mani et al. (2015),
Schmidt et al. (2018), Vaughan et al. (2017). Source of figure: Original production)
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of microplastics around 12,932 items per m3. On the other hand, lakes have lower
amounts of microplastics than rivers, which may be mainly due to the currents.

Figure 1.8 represents the microplastic abundance and distribution in Africa; there
is a great lack of data and studies on microplastics in fresh water. Nel et al. (2018)

Fig. 1.7 Abundance of microplastics in sediment and water samples from different freshwater
systems, i.e., rivers or lakes, across North America. The abundances present in sediments are
expressed in items per m2, items per km2, or items per kg, while the abundances in water are
expressed in items per m3 (Sources of data: Anderson et al. (2017), Ballent et al. (2016), Castañeda
et al. (2014), Corcoran et al. (2015), Eriksen et al. (2013), McCormick et al. (2014), Moore et al.
(2011). Source of figure: Original production)
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carried out a study along the Bloukrans River of South Africa and found microplastic
densities in beach sediments between 6.3 � 4.3 items per kg in summer season and
160.1 � 139.5 items per kg of sediment in winter season. Higher concentrations
were obtained in winter, associated with the flow of the river, and this in turn
associated with the transport of microplastics.

Microplastics are not only found in rivers and lakes, but there are also studies
where significant amounts of microplastics have been detected in potable water.
Novotna et al. (2019) collected results of some important studies that found signif-
icant amounts of plastic in both the public supply and the bottled water. The public
source that contains more microplastics is treated water in Czech Republic with
628 microplastics by liter (Pivokonsky et al. 2018). On the other hand, the bottled

Fig. 1.8 Abundance of microplastics in sediment and water samples from different freshwater
systems, i.e., rivers or lakes, across Africa. The abundances present in sediments are expressed in
items per kg (Source of data: Nel et al. (2018). Source of figure: Original production)
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water where more microplastics were found in account 6298 microplastics by liter
(Oßmann et al. 2018). Also, Schymanski et al. (2018) found 117 microplastics by
liter in returnable plastic bottles, and Mason et al. (2018) estimated a concentration
of 932 and 1411 microplastics by liter in plastic bottles of brand Nestle Pure Life and
Gerolsteiner, respectively.

1.4.2 Type, Size, and Morphology of Microplastics
in Freshwater

With respect to microplastic sizes, they can be distributed into six different groups:
category 1 (0.5 mm), category 2 (0.5–1 mm), category 3 (1–2 mm), category
4 (2–3 mm), category 5 (3–4 mm), and category 6 (4–5 mm). Figure 1.9 shows
the size distribution of the samples both on the water surface and in sediments of the
samples collected at Wei River, China.

The most abundant microplastics were of category 1 in all samples including
water and sediment samples. Category 2 and category 3 were the second and third
most important, while samples belonging to group 4, 5, and 6 were insignificant.
Similar results have been obtained in other freshwater locations such as in Qinghai
Lake (China), Lake Garda (Italy), Three Gorges (China), Laurentian Great Lakes
(USA), and Taihu Lake (China) (Di and Wang 2018; Eriksen et al. 2013; Imhof et al.
2016; Su et al. 2016; Xiong et al. 2018). The most abundant fraction was the size
lower than 0.5 mm in all the mentioned locations, especially in water surface. Some
of them realized that the predominant fraction in sediments was 0.5–1 mm. In sum,
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Fig. 1.9 Size distribution of the samples both on the water surface and in sediments of the samples
collected in Wei River, China. The data are expressed as a percentage of microplastics within each
size group (Source: Modified after Ding et al. (2019))
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the most abundant microplastic particles in freshwater had a size less than 1 mm,
while it is insignificant with the presence of microplastics greater than 2 mm.

The most studied shapes were fragments, fibers, film, foam, or pellet, but beads,
lines, spherules, sheets, flakes, paint, foil, and nurdle can also be found. For example,
the results of a study carried out by Ding et al. (2019), which analyzed the
morphology of different samples obtained in Wei River in China, are shown in
Fig. 1.10.

The difference between the samples obtained in surface water and sediments can
be due to the reaction that samples produce in the outdoors with the organic
products. Fibers and films were the most dominant, whereas pellets and foams
were the less abundant types of microplastics in Wei River. Fiber was the dominant
species in surface water and sediment samples, where it represented approximately
half of the samples studied. The origin of these microplastics was attributed to the
decomposition of agricultural plastics and wastewatereffluents containing fibers
from clothes (Claessens et al. 2011). Similar results were obtained in other freshwa-
ter locations such as in Tibetan Plateau lakes (China) or in Three Gorges (China),
where fiber was dominant, accounted for 28.6–90.5% in water surface and
33.9–100% in sediments (Di and Wang 2018; Zhang et al. 2016).

With respect to microplastic colors, the most common were blue, green, red,
transparent, and white (Di and Wang 2018). With regard to the composition of
microplastics, the different polymers found in freshwater are due to two main
factors: the demand for plastics and the density of the polymers. The annual demand
of plastics in Europe is presented in Fig. 1.11, where it can be seen that the most
consumed plastics are polyethylene and polypropylene.
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Fig. 1.10 Morphology distribution of the samples both on the water surface and in sediments of the
samples collected in Wei River, China. The data are expressed as a percentage of microplastics
within each morphology (Source: Modified after Ding et al. (2019))
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Polyethylene and polypropylene have densities below 1 g per cm3; polystyrene
has a density close to that of 1 g per cm3; polyvinyl chloride and polyethylene
terephthalate have densities of 1.3–1.7 g per cm3. The higher the density, the easier
the sedimentation occurs, which is the main reason why less polyvinyl chloride and
polyethylene terephthalate are found (Koelmans et al. 2019). Table 1.1 shows the
different polymers found in some freshwater studies. The most commonly found
polymers are polyethylene, polypropylene, and polystyrene.

1.5 Microplastics in Marine Environments

Microplastics are found in almost every marine environment on the Earth. Both
research on these particles and concentrations in the marine environment have not
ceased to grow. There are citations of the presence of microplastics in all types of
environments, including those considered to be the most virgin or distant from the
sources of production of these particles, such as the depths of the oceans or Arctic ice
(Obbard et al. 2014; Woodall et al. 2014). Microplastics are present in the marine
and coastal environments and accessible to ingestion by a wide variety of organisms.

Although the harmful effects of microplastics into the food chain are not yet well
known, it has been demonstrated that one of the main problems is the capacity of
these particles to absorb hydrophobic compounds on their surface, accumulating
them and entering the living organisms that consume them including humans
(Brennecke et al. 2016; Llorca et al. 2018; Li et al. 2018; Wu et al. 2019). An
important environmental effect derives from the fact that microplastics not only
adsorb pollutants from water but they also release additives or persistent organic
compounds into the environment (Bakir et al. 2014; Moore 2008). These compounds
have been described by the US Environmental Protection Agency as a risk to human
health, as they enter and accumulate in the food chain.

Fig. 1.11 Distribution of
demand for different types
of plastics in Europe in 2017
(Source: Modified after
Plastics Europe (2017))
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Table 1.1 Summary of polymers found in different freshwater locations

Country Location Composition References

China Shanghai PP, PE, rayon, cotton+viscose, phenoxy resin, poly
(vinyl stearate)

Peng et al.
(2018)

China Three
Gorges
Reservoir

PE, PP, PS Di and Wang
(2018)

China Beijing
River

PE, PP, copolymer, paint particle Wang et al.
(2017a)

China Taihu Lake CP, PET, PE, PA, PP Su et al. (2016)

China Hanjiang
River

PA, PE, PET, PP, PS Wang et al.
(2017b)

China Yangtze
River

PA, PE, PET, PP, PS Wang et al.
(2017b)

China Sha Lake PA, PE, PET, PP, PS Wang et al.
(2017b)

China Nantaizi
Lake

PA, PE, PET, PP, PS Wang et al.
(2017b)

China Nan Lake PA, PE, PET, PP, PS Wang et al.
(2017b)

China Siling, Tibet PE, PET, PP, PS, PVC Zhang et al.
(2016)

India Vembanad
Lake

HDPE, LDPE, PS, PP Sruthy and
Ramasamy
(2017)

UK River
Thames
basin

PP, PES, PET, PS, PE Horton et al.
(2017a, b)

UK Itchen River PE, PP, CP Gallagher et al.
(2016)

UK Hamble
River

PE, PP, CP Gallagher et al.
(2016)

Italy Lake
Bolsena

PE, PP, PET, PVC Fischer et al.
(2016)

Italy Lake Chiusi PE, PP, PET, PVC Fischer et al.
(2016)

Italy Lake Garda PA, PE, PP, PS, PVC Imhof et al.
(2013)

Sweden Lysekil PE, PP Magnusson
and Noren
(2014)

Germany Rhine PA, PE, PP, PS, PVC Mani et al.
(2015)

Canada Ontario
Lake

PE, PS, PUR, PP, PVC, PET, PMMA, polyvinyl
acetate, PMMA-PS, ABS, nylon, phenoxy or epoxy
resin, polymethylsiloxane

Ballent et al.
(2016)

Canada St. Law-
rence River

PE, PP, nitrocellulose Castañeda et al.
(2014)

ABS acrylonitrile butadiene styrene, CP cyclopentadienyl complex, HDPE high-density polyethyl-
ene, LDPE low-density polyethylene, PA polyamide, PE polyethylene, PET polyethylene tere-
phthalate, PMMA polymethyl methacrylate, PP polypropylene, PS polystyrene, PSS poly
(styrenesulfonate), PUR polyurethane, PVC polyvinyl chloride



1.5.1 Global Microplastic Concentration and Distribution
in Different Marine Ecosystems

The first study that reported the presence of microplastics in seawater was conducted
by Carpenter and Smith (1972). They estimated average microplastic concentrations
of 3500 items and 290 g per km2 in the western Sargasso Sea. With this discovery,
the scientists tried to alert society about the problem of that contamination, but their
warning was ignored. At present, microplastics are much more abundant and
distributed all over the seas, oceans, and beaches, as revealed by numerous studies
over the last decade (Auta et al. 2017; Cole et al. 2011; Guo and Wang 2019; Hamid
et al. 2018; Hidalgo-Ruz et al. 2012; Kane and Clare 2019).

Microplastics have low density in general, which means that they can easily float
on the water surface or in the water column (Piperagkas et al. 2018). Microplastics
with density higher than that of seawater tend to sink down in sediments, where they
accumulate, while those with low density float on the sea surfaces (Alomar et al.
2016; Suaria and Aliani 2014). Density can change when microplastics are degraded
by the action of external agents or when biofouling caused by organisms occurs. In
addition, Eriksen et al. (2014) verified that the movement of microplastics is also
controlled by marine currents and oceanic gyres. According to that study, ocean
margins are zones of plastic migration, while subtropical gyres are areas of accu-
mulation. Therefore, the distribution of microplastics in marine environments is
controlled by a wide range of causes.

In this section, the most important concentrations of microplastics present in the
literature over the last decade have been collected and selected. These data are
presented on maps of the continents of the world, in order to determine the geo-
graphical distribution of microplastics. Figure 1.12 represents the microplastic
abundance and distribution in Europe. This continent contains the largest contami-
nation by microplastics, along with East Asia. The biggest concentrations of these
particles are present along the coast of Algarve (Portugal), in the lagoon of Venice,
and in the Rhine estuary (Frias et al. 2016; Vianello et al. 2013; Mani et al. 2015).
This can be due to the fact that microplastic particles tend to accumulate in areas
characterized by lower water movement, such as an estuary or a lagoon.

Other studies have reported high concentrations of microparticles in beaches, for
example, in Canary Islands, where more than 1600 items per m2 in the beach of
Lambra were found (Herrera et al. 2018). The authors reached the conclusion that
debris accumulation depended mainly of coastline orientations and meteorological
conditions. In addition, the subtropical oceanic gyre affects the way in which the
currents vary from the coast to the open ocean during the year (Navarro-Pérez and
Barton 2001). The same occur to some remote areas where high amounts of
microplastics are recorded, i.e., Scapa Flow (UK), which accounted between
730 and 2300 items per kg of sediment, or Vik (Iceland), with 792 items per kg
(Blumenröder et al. 2017; Lots et al. 2017). This is mainly caused by the oceanic
currents. Other factors that can affect the pollution distribution are the salinity,
temperature, shape of the coast line, or coastal activities (Cincinelli et al. 2019).
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The first study that reported the abundance of floating plastic debris in the
Mediterranean Sea was conducted by Morris (1980), who determined a concentra-
tion of about 1300 items per km2 near Malta. A similar study was conducted later by
Turner and Holmes (2011), who reported a concentration of 1000 items per m2 in the
Maltese beaches. The average plastic concentration in Mediterranean surface waters
is 243,853 items per km2 (Cózar et al. 2015). This concentration is much lower in the
water column, where a limited number of studies have reported low concentrations
of microplastics (Cincinelli et al. 2019; Fossi et al. 2012; Xiong et al. 2018).

Figure 1.13 represents a map of Asia with the main accumulations of microplastic
debris. The most contaminated areas are, as in Europe, the estuaries of the rivers
Yangtze, Nakdong, and Pearl, where quantities of 4137 items per m3 in water,
27,606 items per m2 in sediments, and 5959 items per m2 in sediments were
estimated, respectively (Fok and Cheung 2015; Lee et al. 2013; Zhao et al. 2014).
Compared to European marine ecosystems, Asia is much more contaminated with
microplastics. China is the third major producer of plastic waste in the world
(Plastics Europe 2018). Therefore, it is not surprising that their coastlines are so

Fig. 1.12 Abundance of microplastics in sediment and water samples from different marine
systems, i.e., beaches, estuaries, or marine water, across Europe. The abundances present in
sediments are expressed in items per m2 or items per kg, while the abundances in water are
expressed in items per m3 (Sources of data: Blumenröder et al. (2017), Fastelli et al. (2016), Frias
et al. (2016), Herrera et al. (2018), Lots et al. (2017), Mani et al. (2015), Martins and Sobral (2011),
Tunçer et al. (2018), Turner and Holmes (2011), Vianello et al. (2013). (Source of figure: Original
production)
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polluted by microplastics. Despite this, Kang et al. (2015) have shown that the
release of microplastic is higher in raining season than in waterless season.

Beaches in India are not so polluted by microplastics. It was found between 2 and
178 items per m2, in contrast to the results obtained for the Maldives Islands, where
more than 600 items per m2 were reported (Imhof et al. 2017; Karthik et al. 2018).
The origin of the contamination in this isolated island could be generated in the
nearby islands in Maldives, where tourism is more frequent. Debris can also enter
this island from many coastal areas of the Indian Ocean. Eriksen et al. (2014)
estimated the amount of microplastics in surface waters along the Indian Ocean
between 7000 and 8000 items per km2.

On the other hand, average concentrations in open seas have also been measured.
Isobe et al. (2015) investigated the concentrations of microplastics in the East Asian
Seas around Japan and obtained a total particle concentration of about 1.72 million

Fig. 1.13 Abundance of microplastics in sediment and water samples from different marine
systems, i.e., beaches, estuaries, or marine water, across Asia. The abundances present in sediments
are expressed in items per m2 or items per kg, while the abundances in water are expressed in items
per m3 (Sources of data: Chen et al. (2018), Fok and Cheung (2015), Heo et al. (2013), Imhof et al.
(2017), Lee et al. (2013), Naji et al. (2017), Zhao et al. (2014), Zhu et al. (2018). Source of figure:
Original production)

22 V. Godoy et al.



items per km2. Another study conducted in the northwestern Pacific (Pan et al. 2019)
recorded about 10,000 items per km2, a very lower concentration than that obtained
in Japanese seas. Compared to Mediterranean data, seas in Asia are much more
contaminated.

North and South America are represented in Fig. 1.14, with the main areas where
microplastics accumulate. The most contaminated area is the coast along North and
South Carolina, where microplastics can account for more than 400 items per kg of
sediment (Yu et al. 2018). Authors considered that nearby urbanization core and the
presence of large rivers that discharge water into that area are factors that influence
the amount of microplastics found. North and South America are bordered by oceans
Pacific and Atlantic on the west and the east, respectively. These oceans exhibit
strong currents, wave and hurricane action, tides, and in general a high dynamic
action, which determine microplastic distribution.

Another contaminated area is the Gulf of Mexico, which accounts for more than
110 items per m2 in sediment (Wessel et al. 2016). Authors determined that the
microplastic composition and abundance were related to the exposition to marine
currents. Therefore, the areas more exposed to marine currents have bigger and

Fig. 1.14 Abundance of microplastics in sediment and water samples from different marine
systems, i.e., beaches, estuaries, or marine water, across North and South America. The abundances
present in sediments are expressed in items per m2 or items per kg, while the abundances in water
are expressed in items per m3 (Sources of data: Desforges et al. (2014), Gomes de Carvalho and
Baptista (2016), Hidalgo-Ruz and Theil (2013), Kanhai et al. (2018), Retama et al. (2016), Yu et al.
(2018). Source of figure: Original production)
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denser microplastics than that found in locations less influenced by marine activity.
On the other side of the Gulf of Mexico is Huatulco Bay, whose beaches exhibit a
moderate to high microplastic concentration (Retama et al. 2016). Authors reported
that microplastics in these beaches are mostly resulting from intensive tourist
activities. With respect to the western coast of North America, Desforges et al.
(2014) carried out a quantification of microplastics in the Pacific Ocean and coastal
British Columbia. The authors found that the highest concentrations were located in
Vancouver Island and nearby locations, whereas Pacific offshore waters exhibited
less number of particles per m3 of water.

Hidalgo-Ruz and Thiel (2013) found an extensive contamination of microplastics
along the coast of Chile, in South America. This area presents an average contam-
ination of 30 items per m2, although in some beaches 200 items per m2 can be
reached. The sources of origin are, as in most beaches and coastal areas, the
proximity of urban cores and economic activities such as aquaculture. Easter Island
has an abundance of microplastics higher than the rest of the Chilean coast. This is
due to the transport of particles by ocean currents, a phenomenon that generates an
accumulation zone in the center-east of the South Pacific (Abreu and Pedrotti 2019).
On the eastern coast of South America, Gomes de Carvalho and Baptista (2016) and
Olivatto et al. (2019) determined the contamination caused by microplastics in
beaches and surface water, respectively, of Guanabara Bay (Brazil). During the
summer, microplastic concentrations at the beaches ranged from 12 to 1300 items
per m2, whereas this concentration decreased in winter. This is caused by the great
inputs of water entering the estuary during the rainy season in summer.

In Africa (Fig. 1.15), there is a great lack of data and studies on microplastics in
coasts and marine environments, with the exception of South Africa. This country
has a wide plastic manufacturing industry, but recycling is limited and insufficient
(Verster et al. 2017). Therefore, it has a huge proportion of waste managed improp-
erly entering the environment. Nel and Froneman (2015) carried out a study along
the southeastern coastline of South Africa and found that microplastic densities in
beach sediments were between 688 and 3308 items per m2, whereas in the water
column ranged from 257 to 1215 items per m3. Kanhai et al. (2017) estimated the
average amount of microplastics in water of the offshore of Namibia and the west
coast of Morocco, but contamination was very scarce in comparison to other areas of
the world (between 6 and 8 items per m3).

1.5.2 Type, Size, and Morphology of Microplastics in Marine
Ecosystems

The main composition of microplastics present in marine environments is based on
polyethylene, polypropylene, and polystyrene, as they represent the majority of the
plastic waste generated in the world (Plastics Europe 2018). Thus, it is expected that
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these are the most plastic waste generated and, consequently, the main composition
of microplastics. However, the vast majority of microplastic fibers are composed by
polyamide or polyester, since they come from the synthetic clothing that people use
(Cesa et al. 2017). For example, chlorinated polyethylene, polyamide, and polypro-
pylene predominate (76%) in Arctic sediments (Bergmann et al. 2017). Polyester
and acrylic fibers are the most abundant polymers in sediments from the North
Atlantic, Mediterranean, and southern Indian Ocean (Woodall et al. 2014). Polyeth-
ylene and polypropylene are the predominant polymers in the northern Pacific Ocean
(Pan et al. 2019).

Fig. 1.15 Abundance of microplastics in sediment and water samples from different marine
systems, i.e., beaches, estuaries, or marine water, across Asia. The abundances present in sediments
are expressed in items per m2, while the abundances in water are expressed in items per m3 (Sources
of data: Kanhai et al. (2017), Nel and Froneman (2015). Source of figure: Original production)
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These compositional variations reflects not only the wide variety of land and
marine sources that can originate microplastics but also the differences in the
transport processes caused by the marine currents (Peng et al. 2018), as it is detailed
in Sect. 1.4.1. Also important is that PE and PP are polymers with a low relative
density, which float in water, unlike polyethylene terephthalate or polyvinyl chlo-
ride. This is the main reason why these floating polymers are identified in greater
proportion than the others, with higher density. Below are diagrams of the most
frequent composition and morphology of microplastics for each continent
(Figs. 1.16, 1.17, and 1.18). The data of each diagram are based on information
obtained from 10 studies carried out in each continent.

Figure 1.16 represents the most abundant morphologies and composition of
microplastics analyzed in seawater and sediments from Europe. Fibers and frag-
ments are the most abundant morphologies, while polyethylene stands out as the
main component of these microplastics. Rayon is a semisynthetic fiber used in textile
elements and is the most abundant microplastic on the beaches of the Algarve
(Portugal) (Frias et al. 2016). On the other hand, granulated pellets come from
plastic manufacturing industries. Polyethylene and polypropylene fragments usually
come from industrial areas or from the degradation of larger plastic containers
(GESAMP 2019). Harbors and vessels have also been identified as sources of fibrous
plastic particles (Gewert et al. 2017).

In terms of particle sizes, the smallest detected were 0.06 mm, and the largest
were up to 5 mm. Most particles were in the range of 0.1–1 mm, although there are
studies that managed larger sizes of 2–5 mm (Martins and Sobral 2011; Turner and
Holmes 2011). Increased temperature as a result of prolonged exposure to solar
radiation could justify faster disintegration of terrestrial microplastics. Microplastics

Fig. 1.16 Main shapes and compositions of microplastics from marine ecosystems in Europe. (a)
Percentage of studies that found fibers, fragments, and pellets as the main shapes among
microplastics; (b) percentage of studies that found polyethylene (PE), polyether sulfone (PES),
polystyrene (PS), and rayon as predominant composition in microplastics (Source: Original
production)
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floating in water do not experience the same temperature increase for the same sun
exposure due to the thermoregulatory effect of water. Therefore, size differences
between studies can be found (Cooper and Corcoran 2010).

Figure 1.17 shows the main shapes and compositions of microplastics found in
waters and coasts along the Asia continent. In contrast to Europe, in Asia fragments
are the predominant forms, while polyethylene was once again the most abundant,
followed by the polystyrene. At the estuaries of China’s main rivers, it is not

Fig. 1.18 Main shapes and compositions of microplastics from marine ecosystems in North and
South America. (a) Percentage of studies that found fibers and fragments as the main shapes among
microplastics; (b) percentage of studies that found polyethylene (PE), polyethylene terephthalate
(PET), and polypropylene (PP) as predominant composition in microplastics (Source: Original
production)

Fig. 1.17 Main shapes and compositions of microplastics from marine ecosystems in Asia. (a)
Percentage of studies that found fibers, fragments, and pellets as the main shapes among
microplastics; (b) percentage of studies that found polyethylene (PE), polystyrene (PS), and
polyethylene terephthalate (PET) as predominant composition in microplastics (Source: Original
production)
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surprising that the main composition of microplastics is polystyrene, because
expanded polystyrene is widely used in cork boxes for the transport of food in
southern China and Hong Kong (Fok and Cheung 2015). When this waste is not
managed properly, these boxes can be transported to the oceans, seas, and beaches
by means of rivers and stormwater drainage systems. The fragments are usually
microplastics resulting from the physical-chemical degradation of larger plastics
exposed to the action of heat, wind, and waves (Andrady 2015). On the other
hand, polyethylene terephthalate is also a fiber very common in textile industry, as
polyamide (nylon).

All particle sizes were in the range of 0.1–5 mm. In some areas the smallest
microplastics (between 0.5 and 1 mm) were more abundant, as is the case in the
northwest Pacific (Pan et al. 2019). In other locations, such as beaches in southern
India, larger microplastics between 1.2 and 4.5 mm were more abundant (Karthik
et al. 2018). On the other hand, equal abundance of fragments and fibers was found
in studies carried out in both North and South America, and the preferred compo-
sition is polyethylene, followed by polyethylene terephthalate and polypropylene in
equal proportions (Fig. 1.18).

In some areas of North America, the presence of rayon fibers was also detected
(Yu et al. 2018), as was the case on the beaches of the Algarve (Portugal). As
mentioned above, polyethylene terephthalate is a synthetic fiber widely used in the
textile industry. The release of textile fibers into the environment is frequent and
abundant, due to the large number of household and industrial washes carried out
every day. A standard wash of 5 kg of synthetic clothing can release 6,000,000 fibers
into the environment, although it depends on the type of washing machine and
detergents used, making it a very difficult source to quantify (De Falco et al. 2018).

Other authors suggested that microplastics in North American waters may also
come from fishing, recreational boating, and wastewater effluent (Desforges et al.
2014). On the other hand, in Guanabara Bay, microplastics are mainly fragments,
which come from the degradation and breakage of larger plastics on the coast
(Gomes de Carvalho and Baptista 2016). Most of the small plastic debris found on
beaches from Guanabara Bay possibly come from fishing, rivers, harbor activities,
and other local sources. The predominant particle size in these studies is lower than
1 mm, although larger microplastics can be found, especially fragments, with sizes
exceeding 2–3 mm (Wessel et al. 2016).

In Africa, the few available studies show a dominance of fibers over other
morphologies. The predominant composition in the area of Morocco and Namibia
is EPS and PA, probably coming from the detachment of synthetic textile garments
(Kanhai et al. 2017).

In sum, the most frequent polymer found in the studies reviewed was polyethyl-
ene, which corresponded approximately to 60% of those studies. Polystyrene was
the second representative in Europe and Asia, with 14.3% and 28.6%, respectively.
It is important to take into account that polypropylene was the second polymer found
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in almost every reviewed study on every continent. Other components such as rayon
or polyether sulfone (PES) were also representative in certain sites such as Portu-
guese coast, sediments in South Carolina, or coast from Turkey, Greece, Iceland, or
France (Lots et al. 2017). These results agreed with the fact that PE, PP, and PS are
three polymers very common and account for approximately 90% of the 348 million
tons of plastics produced annually (Edo et al. 2019).

1.6 Interactions Among Microplastics and Other Pollutants
Presented in Aquatic Environments

Microplastics can adsorb and concentrate a significant number of environmental
toxins, which can be transferred to organisms (Mato et al. 2011; Leon et al. 2018).
Particles do not only adsorb, but they can also desorb emitting into the environment
toxic compounds such as additives or plasticizers, which negatively affect the
organisms exposed (Cole et al. 2011; Neves et al. 2015).

There are some environmental factors that affect the balance between chemicals
and microplastics as well as accumulation and transport of these pollutants (Murphy
et al. 2016). These factors are exposure to sunlight, pH, residence time, and
temperature, among others. Between pollutants that microplastics can accumulate,
metals are the most studied (Hodson et al. 2017; Brennecke et al. 2016). They are
frequently added as catalysts, pigments, and stabilizers during plastic manufacturing
(Fahrenfeld et al. 2019; Nakashima et al. 2012). They can also adsorb organic
pollutants, especially pharmaceuticals (Li et al. 2018; Llorca et al. 2018). This
accumulation of contaminants mainly occurs in freshwater systems, where the
concentrations of these chemicals are expected to be higher due to proximity to
the sources that produce and discharge them (Horton et al. 2017a, b).

As mentioned above, concentrations of metals in freshwater are generally higher
than in coastal areas. These concentrations depend mainly on location, sampling
time, and anthropogenic activities (Guo and Wang 2019). Some authors studied
the concentration of heavy metals in freshwater from the Beijing River, China
(Wang et al. 2017a, b). The average results of this work are shown in Table 1.2.

Table 1.2 Mean concentra-
tions of metals in the
microplastics and surface sed-
iments from Beijing River
littoral zone

μg per g (mg element per g sample)

Microplastics Sediments

Nickel 1.326 � 0.543 0.039 � 0.012

Cadmium 8.271 � 5.442 1.146 � 0.811

Lead 78.975 � 28.609 41.47 � 13.007

Copper 258.9 � 153.654 36.738 � 23.139

Zinc 8242.525 � 4020.627 183.863 � 86.186

Titanium 22841.05 � 8329.956 20718.913 � 5836.971

Source: Wang et al. (2017a, b)
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The concentrations of cadmium and zinc on microplastic surface get hold of
22841.05 � 8329.96 μg per g and 8242.52 � 4020.63 μg per g, respectively.

Organic contaminants such as antibiotics are widespread in aquatic environments.
The affinity of these contaminants for microplastics is conditioned in many cases by
their polarity and hydrophobicity. The sorption capacities of nonpolar organic
contaminants are higher on nonpolar than polar polymers (Hüffer and Hofmann
2016). Some authors synthesized concentrations on freshwater in order to study the
adsorption of organic contaminants in microplastics. Some of the published results
are shown in Table 1.3.

The sorption capacity of organic compounds on microplastics is high, although
the sorption capacities of different antibiotics on a specific type of plastic differed
greatly. Sorption of antibiotics studied on microplastics decreased in the following
order: ciprofloxacin > amoxicillin > trimethoprim > tetracycline (Li et al. 2018).

Sorption affinities vary depending on the polymer type and the nature of the
pollutants. Thus, different types of polymers have different adsorption behaviors for
the same pollutant. This could be attributed to the differences in the polarity and the
functional groups of each polymer (Guo et al. 2012).

1.6.1 Effects of Microplastics on Freshwater Organisms

There is reasonably extensive evidence related to the harm caused by plastic waste in
aquatic ecosystems. This can have a range of negative impacts on infrastructure and
fishing. In addition, this could affect a wide range of freshwater organisms as a
consequence of entanglement and ingestion. According to Scherer et al. (2017),
there are some freshwater species that ingested microplastics with demonstrated
effects on them, such as L. varigatus, C. riparius, G. pulex, Gammarus fossarum,
P. acuta, or D. magna. Some studies on fish have shown that microplastics and
associated toxins are bioaccumulated and cause problems such as intestinal damage
and changes in metabolic profiles or are even lethal. Some of these effects on
freshwater organisms are presented in Table 1.4.
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Abstract Plastics are major assets for mankind due to their widespread applications
in all spheres of life. The major drawbacks are their after-use handling, as it may take
hundreds and thousands of years for its biodegradation. While major advancement
has been made in the development of nontoxic and eco-friendly plastics, the
accumulation of plastics in the environment has been a major concern in landfills,
natural ecosystem, and oceans. The deleterious effects of plasticizers, additives, and
dioxins from plastic pollutions on human health include endocrine disruption,
reproductive disorders, and breast cancer. A well-managed plastic production,
consumption, and disposal system must be put in place, to address this global
problem. The development and application of biocompatible plastics and incentives
on plastic reuse and recycle, within circular economy framework, must be
implemented and enforced. This chapter will provide information about plastic; its
types, nature and chemistry, consumption, and pollution impact; and the solutions
and remedies. Different techniques to process various types of plastic wastes are
discussed. Primary recycling of plastic wastes is a low-impact process. Mechanical
recycling is widely used due to its effectiveness, where the waste is firstly converted
into appropriate shapes and sizes through different processes. Chemical recycling
involves the breakdown of polymers by heating in the absence of oxygen. Plastics
are also degraded by means of ultraviolet light because these are not naturally
degraded even by biotic means. The 3R scheme, which represents reduction, reus-
ability, and recycling of plastic wastes, and the alternative measures through incen-
tives to promote eco-friendly plastic products and a safer environment will be
elaborated.

Keywords Plastics · Pollutions · Contaminants · Environmental impacts · Water
pollution · Plastic degradation · Biodegradability · Additives · Remediation · Eco-
friendly products

Abbreviations

ATR Attenuated total reflectance
BBP Butyl benzyl phthalate
BFR Brominated flame retardants
BPA Bisphenol A
BTBPE 1, 2-Bis(2,4,6-tribromophenoxy)ethane
CNS Central nervous system
DBP Dibutyl phthalate
DEHP Diethylhexyl phthalate
DEP Diethyl phthalate
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DMP Dimethyl phthalate
END Endocrine disruption
EPS Extended polystyrene
FTIR Fourier transform infrared spectroscopy
GC/MS Gas chromatograph/mass spectrometer
HBB Hexabromobiphenyl
HDPE High-density polyethylene plastic
LDPE Low-density polyethylene plastic
MSW Municipal solid waste
NaCl Sodium chloride
NPE Nonylphenol ethoxylates
PAE Phthalic acid esters
PBDE Polybrominated diphenyl ethers
PET Polyethylene terephthalate
PSW Plastic solid waste
PVC Polyvinyl chloride
TBBPA Tetrabromobisphenol A
WPO Wet peroxide oxidation

2.1 Introduction

Before the discovery of plastics, elephant ivory (teeth and tusks) obtained from the
remains of elephants have found applications in the manufacturing of billiard balls,
combs, and many products. To meet the market demand for elephant ivory, the kill-
ing of the elephants has become widespread such as in the African continent that the
elephant population has dramatically decreased. The ivory products consequently
become prohibitively expensive. Thus, the alternative material was invented by J. W.
Hyatt and his brother from cotton cellulose and named as “Celluloid” (National
Museum of American History, Estate of Catherine Walden Myer). The word “Plas-
tic” was coined from the Greek word “Plastikos” which means “moulded or
shaped by heat” for the celluloid-like product easily moulded into different shapes.
A big disadvantage in the preparation of the cellulose-based products is the exother-
mic reaction of the mixture which produces high energy and releases heat making it
potentially highly flammable and risky.

An American chemist, L. Baekeland, considered as “the Father of the Plastic
industry,” has successfully synthesized bakelite, prepared using phenol from coal tar
and formaldehyde and reacted together. Bakelite has a good property for insulation.
The invention of bakelite opens up a new avenue for the development of plastics, its
derivatives, and composite materials for specialized applications in most areas in the
fields of material sciences. Plastics are durable and sometimes inert, which can
withstand very harsh conditions of temperature and weathering. These properties
of plastics make it a burden to the environment later, after use.
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Plastics have become vital parts of human life and provide many advantages and
ease the activities and the interactions with the surroundings and ecosystem
(Hahladakis et al. 2018). These are due to the diverse properties of plastics which
are easily incorporated into a wide range of applications, from domestic to major
components in industries, as shown in Fig. 2.1. The production of plastic has
increased from 2 to 382 metric tons between 1950 and 2015, with the total of
7800 metric tons in 65 years. Globally, 50% of the plastic manufacturers are located
in the Asian region, while only 18–19% are in Europe and North America (Lam et al.
2018). The thermoplastics, which include polypropylene, polyvinyl chloride, and
high-density polyethylene, have found diverse applications worldwide; but the ther-
mosetting plastics, such as polystyrene and polyethylene terephthalate,
receive higher demand. The plastic polymers are extensively used to make foams,
synthetic fibers, adhesives, and coatings for different applications, resulting in
increasing global plastic demand annually (Brems et al. 2012). However, plastics
are resistance to decomposition and degradation, and can exist for a long time. As a
consequence, plastic wastes are filling up the landfills and the municipal solid
wastes, and may cause accidental fires and pollution. Made up of many different
chemicals and additives, plastics can be the main source of cadmium and lead
poisoning. The heterogeneity of the plastic composition may limit the recycling
process as it may be costly to produce pure plastics or single polymer composites.
Despite these limitations, the application of plastics in everyday human activities is
set to continue. Plastics are less bulky and light and more suitable for use in
transportation and automobiles as the load and fuel consumption are much

Fig. 2.1 The main market sectors of plastic. 39.9% of plastic is used in packaging; 19.7% in
building and construction; 10% in automotive; 6.2% in electrical and electronics; 4.2% in house-
hold, leisure, and sports; 3.3% in agriculture; and 16.7% in various other sectors. (Reprinted with
permission of [The history of plastics: from the Capitol to the Tarpeian Rock, Chalmin, Attribution
3.0 Unported (CC By 3.0)] from Chalmin 2019)
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reduced (Clark et al. 1999). This chapter describes the different types of plastics, the
sources and wastes generated, the impacts on human health, environment and marine
life, and the different techniques used for the detection and removal of the plastic
wastes and toxins.

2.1.1 The Plastic Consumption per Person

Figure 2.2 shows the total plastic production per person without taking into account
the waste management and recycling. The figure represents the daily basis of plastic
wastes generated by a person, measured in kilogram unit per individual. It can be
seen that the plastic consumption per individual basis is ten times higher in countries
including Guyana, Ireland, Kuwait, the Netherlands, and the United States (US) than
other countries like India, Tanzania, and Bangladesh.

Fig. 2.2 The plastic waste production per person worldwide. The overall plastic waste gener-
ated per person before the waste management protocols, or recycling, but not indicating the effects
of water pollution. (Reprinted with permission of [Plastic Pollution, Hannah Ritchie, Attribution 4.0
International (CC By 4.0)] from Hannah Ritchie 2018)

2 Identification and Remediation of Plastics as Water Contaminant 49



2.1.2 The Top 20 River Sources into the Oceans

The total production of plastics globally has been on the rise since the 1950s, with
311 million tons production in 2014, and predicted to be nearly 1800 million tons in
2050. Figure 2.3 illustrates the plastic production worldwide in million tons. China,
North America, European Union, and Asia are the biggest cause of plastic pollution.
Developed countries like the United States, Europe, Japan, Australia, and
New Zealand are the top manufacturing and high consumption countries, but with

Fig. 2.3 The plastic
production worldwide in
million tons. China, North
America, European Union,
and Asia are the biggest
cause of plastic pollution.
(Reprinted with permission
of [Marine litter plastics and
microplastics and their toxic
chemicals components: the
need for urgent preventive
measures, Gallo et al.,
Creative Common
Attribution (CC by 4.0)]
from Gallo et al. 2018)
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excellent waste disposal sytems in place. Many low- to middle-income countries in
South Asia and sub-Saharan Africa are facing 80–90% of the plastic pollution with
underdeveloped waste management system, resulting in high incidence of river and
ocean pollution, and increasing water contamination. The top 20 polluted rivers
contribute above 2/3 of the total river wastes and most of these are present in Asia.
River Yangtze is at the top for causing pollution, with 333,000 tons of plastic in
2015, contributing up to 4% of the annual marine pollution, as shown in Fig. 2.4.
There are different ways that contribute towards the entry of plastics into the aquatic
ecosystem such as from the pollution on the beaches, plastic debris floating on the
ocean surface, and deposition at the seabeds. One important source is the river that
carries plastic effluents from the mainland to the offshore areas.

2.1.3 Classification of Plastics

Polymers are long-chained molecules, having unique structures and consisting of
repeated subunits called monomers (“mer” means part). The single monomer struc-
ture is specifically used to identify chemically or specify any homopolymer. The

Fig. 2.4 Plastic input in the ocean of top 20 polluted rivers across the world. The river with its
location and estimated annual input of plastics (in tons) to the oceans are shown. (Reprinted with
permission of [Plastic Pollution, Hannah Ritchie, Creative Common Attribution (CC by 4.0)] from
Hannah Ritchie 2018)
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structure of single monomer (-CH2-CH2-)n describes polyethylene.When the number
of repeated units “n” are in hundreds, its consistency becomes like a soft wax or a
sticky fluid. When the repeated units are in thousands, it becomes the valuable solid
plastic (Andrady 2017). In plastic polymer, the long hydrocarbon chains mainly
consist of carbon and hydrogen atoms to form the basic structure. Carbon provides
the main backbone of the polymer as it naturally has the ability to attach four other
groups. Polymers such as polyethylene, polypropylene, polystyrene, and polymethyl
pentane all have the carbon backbone, but there are some polymers that contain other
than the carbon backbone including nylon which contains nitrogen atom, and
polycarbonates and polyesters which mainly consist of oxygen atom. A few inor-
ganic polymers contain silicon or phosphorus backbone (Vanapalli et al. 2019).
The molecular arrangements of polymers can be in the form of amorphous or
crystalline structure. The amorphous plastic does not have specific arrangements
of atoms in the structure, and are randomly arranged. The amorphous polymer can be
formed by controlling the polymerization process and quenching the molten poly-
mer. They are generally transparent and have many applications in food wrappings,
windows, contact lenses, and headlight lenses. The crystalline polymer has distinct
pattern of atoms and molecules, and through quenching, the polymer structure is
crystallized, and the degree of crystallinity controlled. Crystallinity provides
strength, chemical resistance, stability, and stiffness. With increase in crystallinity,
less light has the ability to pass through and this controls the degree of opaqueness.
The work on polymers has increasingly shifted towards exploiting the unique
properties for specific applications whilst making them more environmentally-
friendly and less polluting to the environment.

Based on the applications, plastics can be classified into different classes:

Thermosetting Plastics

Thermoset plastics conserve their shapes when cooled and cannot be moulded back
into their previous state. They are hard and long-lasting. The examples are poly-
urethanes and epoxy resins.

Thermoplastics

Thermoplastics are flexible as compared to thermosets and can be moulded back to
its parent form. They are mostly used in packaging. The examples include polyeth-
ylene and polyvinyl chloride.

Plastic Composite

Polyethylene terephthalate or “stomach” plastics are used in the manufacturing
of plastic bottles for juice, soft drinks, and liquids. These plastics can be made
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phthalate free, soft and lightweight-carrying, transparent containers for packaging
purposes. It is harmless but, after a long time and at high temperature, may produce
carcinogens.

Plastic containers based on polyvinyl chloride are the flexible type of plastics.
Phthalates used for its flexibility are harmful chemicals, in addition to bisphenol A,
lead, and dioxin. High-density polyethylene plastic has high density and high tensile
strength, suitable in the manufacturing of refrigerators and large containers and bags.

Low-density polyethylene plastic is heat resistant and highly brittle, has low
tensile strength, may be transparent or opaque, and is used for packaging frozen
foods. Polypropylene is a strong, semitransparent, and heat-resistant polymer, usu-
ally used for packaging of yogurt, and medicine. Polystyrene is a petroleum-based
plastic polymer made from styrene monomer, and is also widely used for food
packaging and insulation.

Long exposure to high temperature may produce neurotoxic, hematological,
cytogenetic, and carcinogenic by-products.

The plastic material may be composed of different synthetic materials that are
malleable when heated, and hardened upon cooling. These include various types of
resins, polymer, derivatives, and proteins used instead of the traditional materials
such as metals, wood, and glass. Because of this flexible characteristic, the use of
plastics is ubiquitous. This has largely contributed to the plastic waste disposal
problems seen today that have polluted the marine ecosystem, ocean and seabeds.

2.1.4 Types of Industrial Plastic Wastes

The different types of plastic wastes generated by the plastic industries include
macroplastics, microplastics, nanoplastics, platic toxins, and the additives.

Macroplastics

Plastic particles with diameter ranging from 1 to 5 mm are defined as macroplastics.
These plastics when ingested by marine animals get stuck in their guts and can
be lethal. This type of plastic waste has contaminated the freshwater systems,
shorelines, and oceans (Li et al. 2016).

Microplastics

These plastic particles are less than 1 mm. Because of smaller sizes, microplastics
can penetrate the body of aquatic life or easily ingested and run through the digestive
track, circulatory, or excretory system, and eventually interfere with the proper
functioning of the body system. Once settled inside the body and not excreted out,
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these particles start trickling down the food chain and entering the human body
(Li et al. 2016).

Microplastics, though do not seem to be fatal to the livings organism, could still
cause acute chronic toxicity. The toxic effects of microplastics can be a result of
several mechanisms. Primarily, the toxicity can be caused by the polymeric materials
used in the specific plastic goods. For example, polystyrene, commonly utilized as
protective packaging, can easily circulate in the blood and induce chronic reproduc-
tive disorders in the suspension-feeding animals in the marine water. Microplastics
can cause allergy and itchiness due to their tiny sizes with possibly the pointed ends
as these materials penetrate into the body tissues. The intake may cause
malnourishment and reproductive disruption (Sun et al. 2019). Microplastics are
obtained from two different sources: primary and secondary sources. Primary
microplastics are synthesized by industrial processes directly, while secondary
microplastics are produced from primary microplastics by degradation under the
extreme environment of moisture and heat (Li et al. 2016).

Primary Microplastics

This type of microplastic is manufactured on an industrial scale as microbeads of
various sizes and shapes. They are mainly used in toiletries and commonly as
“exfoliates” in sandblasting media, or as the “plastics pellets” or the raw materials
for the manufacturing of these products. These pellets enter and pollute the ecosys-
tem via industrial leakage, transportation, or during utilization. As illustrated in
Fig. 2.5, there are different types of chemical structures present in the plastic wastes.
Plastic resins are utilized mostly in the packaging, with short life span and found
extensively as a part of litters or municipal solid wastes. The major types of
thermoplastics that are commonly present in the microplastics are polyethylene,

Fig. 2.5 Different types of structures present in the industrial plastic wastes. Carbon provides the
backbone to nearly all plastic polymers (Modified from Vanapalli et al. 2019).
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