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Preface

Scope

The aim of the book is to develop and verify appropriate methods and procedures
for selecting the vibro-isolation properties of vibration reduction systems which is
enabled to evaluate the visco-elastic characteristics of passive systems and support
the control system design of semi-active and active systems. The generalised
methods and procedures should allow to select the system vibro-isolation properties
for different classes of the oscillatory systems in terms of the chosen optimisation
criteria (usually conflicted criteria). The elaborated methods and procedures enable
to protect the working machine operators from the adverse effects of vibration
exposure.

Content

At first, spectral classes of the excitation signals are determined that are repre-
sentative for different vibrating systems. This is a basis of shaping the vibro-
isolation properties of vibration reduction systems. Then, the generalised mathe-
matical models of vibration isolation systems are developed. These models enable
to shape non-linear characteristics of the visco-elastic elements included in vibra-
tion isolator. Such a mathematical description of the vibration reduction systems
determines the ability to use the developed models in a wide range of applications.
Successively, the reliable and efficient optimisation criteria are determined and
these criteria are frequency weighted in order to indicate the resonances of human
body parts and organs.

Secondly, a method of shaping the vibro-isolation properties of passive vibration
reduction systems is elaborated and such a method allows to determine non-linear
characteristics of the basic elements applied in the system. This is achieved using
the optimisation procedures that are able to find compromise solutions

v



(Pareto-optimal) with respect to conflicted vibro-isolation criteria. The effectiveness
of proposed method is verified experimentally using the exemplary, passive sus-
pension system that is excited using the signals of various spectral classes.

Finally, a method of shaping the vibro-isolation properties of semi-active and
active systems is elaborated and such a method facilitates the control design of
technically advanced vibration reduction systems. Using the proposed optimisation
procedures, it is possible to adjust the vibro-isolation properties by changing the
controller settings. The designed control system using the proposed method is
investigated experimentally by means of the exemplary, semi-active and active
suspension systems that are loaded of different masses.
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Chapter 1
Introduction

1.1 State of the Art

There are two basic sources of mechanical vibrations that can disturb a proper func-
tioning of themachines. The first one relates to the systems that during their operation
generate vibrations (Fig. 1.1a), e.g. engine vibrations in the working machine. The
second class concerns the systems that vibrate due to external reactions (Fig. 1.1b),
e.g. cab vibrations of the machine which is moving over uneven ground [1, 2]. Many
sources of the vibrations can cause periodic or random reactions of the machine
elements. In such situation, resonant states can be obtained and they may cause
movement disturbances of individual machine elements. The resonant vibrations
have an adverse effect on machine functioning, and this can lead to their failure. In
addition, the vibrations have a negative influence on the health condition of working
machine operators [3].

In most cases, the vibrations are harmful processes, having a detrimental impact
on the human operator of a machine. The danger arising from the exposure of a
human body to vibrations increases in the case of high-intensity vibrations with a
prolonged duration period. Figure 1.2 gives the root mean square (RMS) acceleration
values of the vibrations to which the operators of the most popular heavy machinery
are exposed during their work [4]. The data presented are only to visualise the ranges
of accelerations of the vibrations that induce operators’ movements.

Earth-moving machines and most other forms of engineering vehicle expose their
operators to whole-body vibration. According to the ISO-2631 standard [5], the
criterion employed to evaluate the intensity of vibration transmitted to a human is
based on the length of time (in hours) over which an exposure to vibration results
in no health risks (NH), potential health risks (PR) or likely health risks (HR). For
better presentation, the curves defining these three levels of the vibration exposure
are shown in Fig. 1.3.

There are several methods to minimise vibrations which have a negative influ-
ence on working machines operators during their work. The first group of methods

© Springer Nature Switzerland AG 2019
T. Krzyzynski et al.,Modelling and Control Design of Vibration Reduction
Systems, https://doi.org/10.1007/978-3-030-03047-6_1
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2 1 Introduction
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Fig. 1.1 Operating equipment generating a disturbance force Fsi (a) and sensitive equipment sup-
ported by a vibrating structure qsi (b)
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Fig. 1.2 Root mean square (RMS) acceleration of vibration obtained from more than 20 measure-
ments carried out for each of the machine types [4]

comprises the passive techniques, and these techniques can be introduced in the
following way [6]:

• prevention of vibration,
• structural modifications,
• parametric modifications,
• damping of vibration.
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In the recent literature, [3, 7, 8] only simplified, linear models of the vibration
reduction systems are discussed. However, it should be noted that many vibration
isolators demonstrate non-linear stiffness (e.g. pneumatic spring) and damping char-
acteristics (e.g. hydraulic shock-absorber). The stiffness of suspension system is
non-linear in the relative displacement domain, and its characteristic has a dissimilar
shape for different loading masses (Fig. 1.4a). The damping of suspension system is
also non-linear in the relative velocity domain, and its characteristic can be changed
by themachine operator using the control lever (Fig. 1.4b). These considerations lead
to the conclusion that linear mathematical description of many modelled vibration
isolators is possible only with some approximation around a system operating point.
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Fig. 1.4 Exemplary stiffness characteristic of the pneumatic spring: measurement ( ), approx-
imation ( ) and damping characteristics of the hydraulic shock-absorber: measurement ( ),
approximation ( ) [9]



4 1 Introduction

There are no effective methods for shaping the vibro-isolation properties of the
vibration reduction systems having non-linear visco-elastic characteristics which
should be chosen for specific spectral classes of the excitation signals. A vibration
isolator should be designed in such a way that efficiently reduces the vibrations
in whole frequency range of the excitation signal (most often random excitation).
Unfortunately, the optimisation of vibration isolators is very rarely used during a
design process because the ongoing works have difficulties connected with the com-
putational problems [10]. The low efficiency of the optimisation procedure is related
to a significant number of the decision variables and problems concerning the local
extrema. Problems connected with finding the global minimum of objective function
occur very often in the case of design optimisation of many mechatronic systems
[11]. Moreover, the choice of reliable and efficient optimisation criteria causes many
difficulties for the designers. Some problems concerning the optimisation of pneu-
matic vibration isolators for various optimisation criteria are shown in the paper [12].
There is a lack of effective procedures of formulating and solving the optimisation
problems for vibration reduction systems that are described by non-linear equations
of motion. In addition, it is not known how to formulate a global objective function
and which of the optimisation methods is effective for a given problem [13].

The second group of vibration reduction methods comprises the active techniques
where the structural and parametric modifications are applied with the use of exter-
nal power supply [14]. The actuator used in the system may generate a force that
compensates the vibration coming from the exciting forces (active systems) or may
change the system parameters (semi-active systems). The models of such vibration
reduction systems are shown in Fig. 1.5.

The active vibration reduction systems generate the additional forces or controlled
displacements which are operating directly on the isolated body so that to compen-
sate the exciting forces or kinematic excitations (Fig. 1.5c). Unfortunately, the main
drawback of such systems is the fact that they require a high amount of the power
supply, and therefore, the active vibration isolators are hardly ever used in practice.
Semi-active systems consist of passive elements (springs and dampers), although
their force characteristics can be changed very fast (Fig. 1.5a–b). Such systems do
not require strong power supply. Thus, semi-active vibration isolators are very often
used in practice [15, 16].

The main problem of the semi-active or active vibration isolators concerns the
selection of control strategy. Classical methods of vibration control significantly
improve the vibro-isolation properties of the linear systems while the system param-
eters are exactly known. Unfortunately, the systems discussed in the literature are
based on the simplified linear models that result in significant discrepancies com-
pared with the real vibration isolators. In reality, the system parameters vary in a
wide range and this leads to the lower effectiveness of active vibration isolator.
Therefore, the parameter variations have to be taken into account especially using
simplified models describing the vibration reduction systems. In the paper [17], the
robust control system of active car suspension is presented that takes into account
the uncertainties of visco-elastic elements used in the system. Successively in the
paper [18], the robust control strategy is applied to vibration control of a rotor that
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Fig. 1.5 Models of the vibration reduction systems: semi-active system with spring control (a),
semi-active system with damper control (b), active system (c)

is suspended using the magnetic bearings with non-linear characteristics. In many
papers [19–21], the modern vibration isolators are proposed and these systems are
still being developed in terms of the effective control strategy.

In the recent literature, there is no systematic knowledge concerning the proce-
dures to be followed in the design process of semi-active or active vibration reduc-
tion systems. The control system synthesis, especially if this synthesis is based on
non-linear models, is difficult, when the semi-active or active system has to restrict
conflicted vibro-isolation criteria. It is also not clearly defined, which of the con-
trollers [22–25] can be applied in modern vibration isolator and how their controller
settings should be calculated. Summarising, there is no effective method to define
the control system structure and optimise the controller settings that can be utilised
for the designed semi-active or active vibration reduction system.

1.2 Research Methodology

The fundamentalmethodof evaluating the effectiveness of vibration reduction system
is to perform an experiment in the laboratory. The tested system should be excited
by the signals that are representative of the different types of working machines
[26–28]. The vibro-isolation criteria of the tested system can be calculated on the
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Fig. 1.6 Concept model of the vibro-isolation process

basis of measured signals. However, in many cases the technological restrictions
and the high cost of the experiment make the test difficult to perform. The duration
of the test is also an important aspect, especially when the test must be performed
repeatedly for different design parameters of the system. Taking into account the
complexity of the research process, the authors of this book recommend to carry
out a simulation experiment based on a mathematical model of vibration isolation
system that is shown in Fig. 1.6.

In order to analyse the dynamics of such system (Fig. 1.6), at first a theoretical
model of the excitation signal with specific spectral characteristics should be elab-
orated. Subsequently, in order to determine the values of vibro-isolation criteria,
which are very often defined as the integral values [14, 15], models of the vibration
reduction system and the isolated body have to be created. For the purpose of this
book, the dynamic behaviour of the vibration reduction systems is modelled in the
MATLAB-Simulink� software package. The equations of motion are programmed
using the interactive graphical environment, which allows to simulate and test a
variety of the time-varying system.

The research presented in the papers [3, 6, 7] clearly shows that the passive
vibration isolation methods in many cases prove to be ineffective. Although they
provide energy dissipation at the sufficiently high frequencies, the low-frequency
vibrations are amplified due to the resonance effect. In the consequence of this
undesirable effect, it is difficult to achieve the desired system properties in order to
meet the conflicted requirements for modern vibration reduction systems. The semi-
active or active systems should improve the effectiveness of vibration isolators, and
their concept model is shown in Fig. 1.7.

The feedback control of the vibration reduction system is intended to improve
the dynamics of isolated body and shape the system characteristics especially for
a specific vibro-isolation process realised by the system [2]. The control element
in semi-active and active vibration isolation systems is adjusted by means of the
controller which uses information concerning the system state and coming from a
measurement system [1, 6]. However, the effective control system should allow to
shape vibro-isolation properties of the system for the specified excitation signals
and different working conditions. Using a unique vibration control system, whose
structure and individual components will be proposed in this book, it will be possible
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Fig. 1.7 Concept model of the semi-active or active vibration isolation system

to achieve the desired system properties in view of the conflicted requirements for
modern vibration reduction systems.

The optimisation procedure proposed in this book ensures finding a set of the
compromise solutions (Pareto-optimal solutions). This procedure allows to adjust
the vibro-isolation properties of vibration isolator for the individual requirements
defined by the machine operator. The required configurability of passive systems
will be obtained by properly selecting their non-linear visco-elastic characteristics
or by suitable changing of the controller settings (decision variables) in semi-active
and active systems.

A selection of the vibro-isolation properties for the exemplary systems has to
be performed within the framework of this work. Such a selection of the dynamic
characteristics is conducted for the vibration isolation systems of different designs
that are generated using the signals representing the work of different machinery.
The optimisation process is led using the randomly starting points, because such
procedure ensures a high probability that the optimum found is a global one. Initially,
the separate minimising of the conflicted vibro-isolation criteria is carried out, and
then, a minimisation of the primary criterion is recommended taking into account
the other optimisation criteria.
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Chapter 2
Simulated Input Vibration

2.1 Nomenclature

Dsi(s) denominator polynomials of a total filter
Gsi(s) transfer function of a total filter

GHPij(s) transfer function of the Butterworth high-pass filter
GLPij(s) transfer function of the Butterworth low-pass filter
LSEsi least square error of a specified frequency response
Nsi(s) numerator polynomials of a total filter
PSDsi desired power spectral density, (m/s2)2/Hz

ˆPSDsi estimated power spectral density, (m/s2)2/Hz
¯PSDsi mean value of the desired power spectral density, (m/s2)2/Hz
Rsi multiple correlation coefficient

a1, ..., an coefficients of the Butterworth filter
f frequency, Hz

fHPij cut-off frequency of the high-pass filter, Hz
fLPij cut-off frequency of the low-pass filter, Hz

i directions of the vibration exposure (x, y, z)
j number of the signal generator (1, ...,l)

kij gain factor of the required magnitude of the power spectral density func-
tion in a specified frequency bandwidth, (m/s2)2/Hz

n filter order
p(q̈ij(t)) probability density function of the acceleration signal

q̈ij(t) acceleration of the input vibration, m/s2

(q̈si)RMS root mean square value of the acceleration signal, m/s2

s Laplace variable
tk computation time, s
ts time interval between samples, s

σ 2
ij variance of the random numbers.
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