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Supervisor’s Foreword

Among the techniques used in particle physics to advance the field, that of colliding
particles dates back to the beginning of the twentieth century: Ernest Rutherford
pioneered the technique and discovered the existence of the atomic nucleus by
bombarding a golden foil with alpha particles. Since then, and in particular, in the
second half of the century, the field has advanced immensely, bringing crucial
contributions to our understanding of the microscopic world of elementary parti-
cles. The discovery of the charm, bottom and top quark, the tau lepton, the elec-
troweak bosons, and the understanding of the internal structure of nucleons and
hadrons, in general, are the most relevant scientific results achieved by accelerating
particles to high energy and then smashing them head-on, or on fixed targets.

The Large Hadron Collider is the last generation product of this prolific tech-
nique. The LHC accelerates proton beams1 up to high energies in opposite direc-
tions, and collides them together, achieving a centre-of-mass energy of 14 TeV by
design (13 TeV at the time of writing). Thanks to this remarkable machine, the last
missing piece of the Standard Model of Particle Physics, the Higgs boson, has
finally been experimentally identified and measured with great precision.

Together with these great achievements, the LHC has also made very clear that
the Standard Model is a far better theory than many expected: it has successfully
predicted the outcome of each one of the hundreds of measurements performed in
this new energy regime. Many paradigms extending the Standard Model, developed
to address theoretical problems connected with the stability of the Higgs boson
mass under quantum corrections, have been scrutinised in great detail and put under
considerable pressure by the lack of evidence supporting the best motivated models.

Electroweak scale Supersymmetry is arguably one of the best motivated
extensions of the Standard Model: one of the key predictions is the existence of a
new particle with spin 0, otherwise sharing all gauge quantum numbers of the top
quark. This top s-quark, or stop, should have a mass within the reach of the LHC.
ATLAS is a collaboration of more than 3000 scientists recording and analysing the

1The LHC can also accelerate heavy nuclei. However, this remarkable aspect of the LHC is not
relevant for the thesis presented in this book.
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results of the proton-proton collisions produced by the LHC. This collaboration
developed a remarkable programme for the search for the stop. It is in this context
that Dr. Samuel Jones developed his research work. Dr. Jones focused on models
not well explored before, where the decay products of the stop carry low
momentum. He has made two novel contributions to the field:

• Together with German colleagues, he developed a novel search for the stop
decaying into a charm quark. The constraints imposed on new models by this
analysis were world leading at the time of the writing.

• He developed new algorithms to identify very low-momentum hadrons con-
taining b-quarks. This paved the way for a series of searches that explored (and
will explore) previously un-examined models.

Dr. Jones’s thesis work was remarkable from many points of view: the scientific
outcome, in the form of strong experimental constraints, will help guide the theory
community in further developing extensions to the Standard Model. At the same
time, some of the original tools developed by Dr. Jones during his work will be a
great experimental support for the years to come.

Brighton, UK
April 2020

Prof. Iacopo Vivarelli
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Abstract

This thesis presents a search for R-parity conserving Supersymmetry with the
ATLAS detector, in final states with missing transverse momentum and
jets. A search is designed, targeting pair produced scalar top quarks decaying as
~t1 ! c~v01 and scalar charm quarks decaying as ~c1 ! c~v01, where ~v01 is the lightest
neutralino. Charm tagging methods are used to identify jets originating from charm
quarks. This search is based on LHC proton-proton collision data collected by
ATLAS in 2015 and 2016, amounting to 36.1 fb−1 of integrated luminosity. No
significant excess of data beyond Standard Model expectations was observed and
squarks were excluded up to a mass of 850 GeV for a massless neutralino and up to
500 GeV for a mass splitting between the squark and neutralino of less than
100 GeV. All limits assume a 100% branching ratio to the c~v01 final state.

This thesis also presents a novel technique to identify low momentum b-hadrons
using tracks from the ATLAS inner detector. This technique is developed to target
compressed Supersymmetry models where the mass splitting between the squark
and neutralino is small, leading to low momentum b-hadrons in the final state. With
this technique, b-hadrons with transverse momentum in the range 10� 20 GeV
can be identified with an efficiency of � 20% with a mis-identification rate
corresponding to � 2:5% of simulated events with no b-hadrons.
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Chapter 1
Introduction

The Standard Model of particle physics is a theoretical framework for describing
fundamental particles and their interactions. It is a remarkably successful theory,
compatible with decades of collider data. In the Standard Model, W and Z bosons
acquire mass through the Higgs mechanism, which predicts the existence of a scalar
boson. The discovery and measurement of a Standard Model Higgs by ATLAS and
CMS at the Large Hadron Collider completes the Standard Model. The Standard
Model in its current form cannot account for a number of important observations.
For example, it provides no candidate for dark matter and no mechanism that can
explain electroweak baryogenesis. Another shortcoming of the StandardModel is the
apparent instability of theHiggsmass to the large variations of scales associated to the
fundamental interactions, which requires fine tuning of parameters to reproduce its
measured value, the so-called Hierarchy problem. Many extensions to the Standard
Model have been proposed to address these limitations.

Central to the Standard Model is the notion of symmetries. Symmetries have long
been associated with aesthetics and can simplify seemingly complex systems. It was
Emmy Noether who first demonstrated the deep connection between symmetries
and conservation laws in nature, and the relativistic fields described by the Standard
Model are representations of the Poincaré symmetry group. The force mediators
of the Standard Model, which describe the fundamental interactions, arise from
local gauge symmetries. Supersymmetry is an extension to the Standard Model that
posits an additional symmetry of nature between fermions and bosons, introducing
a bosonic partner for each fermion, and vice versa. Miraculously, the consequences
of assuming such a symmetry can address many of the limitations of the Standard
Model. Supersymmetry can provide a candidate for dark matter, a mechanism for
electroweak baryogenesis and stabilise the Higgs mass. Together with its theoretical
appeal, this provides strong motivation for Supersymmetry searches at the Large
Hadron Collider.

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020
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2 1 Introduction

The ability of Supersymmetry to address the limitations of the Standard Model
depends on the masses of Supersymmetric particles. In particular, for Supersym-
metry to stabilise the Higgs mass without reintroducing the need for fine tuning,
Supersymmetric particles should be below 1 TeV, accessible to the Large Hadron
Collider. At the time of writing, Supersymmetry is conspicuous by its absence, with
no search to date finding significant evidence for any Supersymmetric model. The
ATLAS and CMS Supersymmetry search program comprises dozens of individual
searches targeting simplified models, and each null result provides exclusion cover-
age for part of the Supersymmetry parameter space. This thesis presents a search for
Supersymmetry in final states with missing transverse energy and jets from charm
quarks using 36.1 fb−1 of data collected by ATLAS in 2015 and 2016. This search
provides additional coverage in the search for discovery, or eventual exclusion, of
Supersymmetry as a solution to the Hierarchy problem.

At the time of writing, Run 2 of the Large Hadron Collider has ended. With data
takingonhold for at least twoyears, it becomes crucial not only to improve the particle
identification capabilities of the ATLAS detector in preparation for Run 3, but also
to extend the reach of ATLAS searches in existing data. One important limitation of
particle reconstruction at ATLAS is the loss of low momentum b-hadrons, which are
present in the experimental signature of many interesting models of Supersymmetry.
This thesis presents a new algorithm that allows these low momentum b-hadrons,
previously beyond the reach of the ATLAS detector, to be recovered, extending the
sensitivity of ATLAS Supersymmetry searches.

The work of this thesis was conducted as part of the ATLAS collaboration. The
data collected by theATLASdetectormust be processed, reconstructed and simulated
for interpretation. This involves hundreds of auxiliary measurements and studies, a
highly collaborative effort involving thousands of physicists. The author of this thesis
contributed significantly to the ongoing calibration of the ATLAS electron trigger
from 2015–2017, the results of which are used by analyses throughout ATLAS,
including those documented in this thesis. This work is reported in a dedicated
appendix.

The analyses presented in this thesis build on years of previous work, and were
carried out by teams of researchers. In such a collaborative environment it can be
difficult to distinguish the contribution of an individual from the organisation as a
whole. In some cases the boundaries between contributionsmay not be easy to define,
for example calibration results that are used by hundreds of analyses that use ATLAS
data. A list of publications to which the author of this document played a central role,
along with the key contributions to each, is given below:

• Search for supersymmetry in final states with charm jets and missing transverse
momentum in 13 TeV pp collisions with the ATLAS detector [1], the subject of
Chap. 5.

– This analysis was conducted by a small research team within the ATLAS SUSY
working group. The author of this thesis was one of two PhD students working
in the team, contributing to most aspects of the analysis. These contributions
include: signal region development, background estimation (particularly relat-
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ing to the one-lepton and multijet backgrounds), optimisation of charm tagging
operating points and the derivation of associated efficiencies and systematic
uncertainties and the evaluation of the final results.

• Soft b-hadron tagging for compressed SUSY scenarios [2], the subject of Chap. 6.

– The above publication describes three techniques for the identification of soft
b-hadrons with the ATLAS detector. Chapter 6 focuses almost entirely on the
development of one of these techniques: the reconstruction of b-hadrons by
reconstructing their decay vertices in clusters of tracks. This analysis is the
author’s own work.

• Electron reconstruction and identification in the ATLAS experiment using the 2015
and 2016 LHC proton-proton collision data at

√
s = 13 TeV [3] and Performance

of electron and photon triggers in ATLAS during LHC Run 2 [4], both using the
results of Appendix A.

– These publications document electron trigger efficiency of the ATLAS detector
in Run 2 of the LHC. The author of this thesis provided the official electron
trigger efficiency measurements used by ATLAS for all of 2016 and 2017 data
taking, and continued to contribute in 2018 in a more supervisory capacity.

This thesis is structured as follows: Chap. 2 presents an overview of the Standard
Model, highlighting someof its important limitations, and introducesSupersymmetry
and its current status. Chapter 3 describes the Large Hadron Collider and the ATLAS
detector, with attention given to each of its main subsystems, including the hardware
of the trigger system. Chapter 4 gives details for data acquisition, processing and
reconstruction, including details of the Monte Carlo simulations that are essential
for interpreting the data. Chapter 5 presents a search for Supersymmetry in final states
with missing transverse energy and jets from charm quarks, and Chap. 6 presents a
new algorithm for the identification of low momentum b-hadrons at ATLAS. The
electron trigger calibration work and additional analysis details are given in the
appendices.
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Chapter 2
Theoretical Background

The experimental searches detailed in this thesis concern supersymmetry (SUSY)
and the Standard Model (SM). This chapter develops the theoretical background
necessary to set these searches in context. Section 2.1 describes the SM and
Sect. 2.2 its limitations. Section 2.3 introduces SUSY and its phenomenology at
the LHC, focusing on the SUSYmodels considered by the analyses presented in this
thesis. Finally, Sect. 2.3.6 expands the scope, discussing more general SUSYmodels
and the wider SUSY search effort, and presents some of the current limits on SUSY
parameters.

2.1 The Standard Model

The Standard Model1 of particle physics is a quantum field theory that successfully
accounts for three of the four fundamental forces of nature. The fourth, gravity, is
too weak to play a significant role at energies accessible to modern particle physics
experiments. Particle physics processes are described in terms of spin 1

2 fermionic
fields interacting through bosonic mediator fields with integer spin. Developed in
the 1970s, the SM is the culmination of more than seven decades of experimental
and theoretical discovery. This section provides a brief discussion of some the key
ingredients in the development of the SM and a summary of the SM itself.

1For readers less familiar with the Standard Model and its theory, Introduction to Elementary
Particles [1] is an excellent reference aimed at advanced undergraduates.
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6 2 Theoretical Background

2.1.1 Quantum Field Theories

TheSM is a quantumfield theory.2 Quantumfield theory (QFT) is a theoretical frame-
work that incorporates quantum mechanics and special relativity. This is achieved
through a procedure of quantisation of relativistic fields, with particles understood
as excitations of these fields.

The language of QFT is the Lagrangian formalism,3 where the dynamics of a
system are summarised by the Lagrangian densityL(φ, ∂φ), a function that depends
on relativistic fields and their derivatives. The equations of motion of a system are
derived by minimising the action S:

S =
∫

d4xL. (2.1)

The S-matrix4 element for a scattering process is computed in the interaction picture,
where the Lagrangian density is split into two components:

L = Lfree + Lint, (2.2)

where Lfree describes free fields and Lint the interactions between these fields. The
S-matrix can be represented as a perturbative expansion in powers of Lint. Once the
S-matrix has been determined, it can be used to make predictions about observable
quantities, for example cross-sections and decay rates.

Terms in the perturbative expansion can be represented diagrammatically using
Feynman diagrams,5 composed of vertices, lines and propagators, each representing
a factor in the final expression for the S-matrix . To first order the S-matrix is simply
the sumof the first order tree level Feynman diagrams. Higher order diagrams contain
loop corrections which typically contribute divergent integrals to the expression for
the S-matrix. A set of prescriptions exists to treat such divergences, collectively
known as renormalisation.

Renormalisation6 proceeds by splitting the Lagrangian into infinite and finite
pieces:

L = [L − δL(E)] + δL(E), (2.3)

where the energy E is some cutoff scale, and δL is the measurable part of the
Lagrangian. δL is constrained such that the measurable quantities, for example the

2For an introduction to quantum field theory, the author recommends An Introduction To Quantum
Field Theory [2] and The Quantum Theory of Fields: Foundations Volume 1 [3].
3The Lagrangian formalism is developed in Chap.11 of Ref. [1], Chap. 7 of Ref. [3] and a brief
discussion can be found in Chap.2 of Ref. [2].
4A detailed description of the S-matrix is given in Chap. 3 of Ref. [3].
5More details on Feynman diagrams can be found in Chap. 6 of Ref. [1] and Chap. 4 of [2].
6A brief discussion of renormalisation can be found in Chap. 7 of Ref. [1], and more detail can be
found in Refs. [2, 3].
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coupling constants and particle masses, do not depend on the cutoff energy. This
restriction gives rise to the renormalisation group equations (RGEs), which describe
how the coupling constants of the fundamental forces run with energy. For a QFT
to be predictive, it must be renormalisable. Any physically descriptive QFT must
therefore include only renormalisable terms in the Lagrangian.

2.1.2 Symmetries in Particles Physics

Afield theory is said to possess a symmetry7 if a transformation leaves the actionS of
the theory unchanged. Noether’s theorem [4] states that for any continuous symmetry
of S a corresponding conserved current can be derived. For example, the Noether
current associated to the invariance of the action S under space and time translations
gives rise to momentum and energy conservation, respectively. Noether’s theorem
demonstrates how the symmetries displayed by the Lagrangian reveal important
information about the behaviour of a theory.

Central to QFTs is the Poincaré symmetry group, which describes translations,
rotations and boosts inMinkowski space. A causal theory is constructed by requiring
that the action S be invariant under Poincaré transformations:

xμ → x ′
μ = �ν

μxν + aμ, (2.4)

where the � is a general Lorentz transformation and a is an additional translation
in spacetime coordinates. Any relativistic field is a representation of the Poincaré
group. QFTs are the result of quantisation of these fields.

The SM is a gauge theory, constructed by imposing invariance under a set of
gauge transformations. A gauge transformation is a continuous set of local transfor-
mations, forming a Lie group, which can be represented through a basis of linear
transformations. The independence of the chosen gauge in a theory represents redun-
dant degrees of freedom in the Lagrangian. To ensure invariance of the Lagrangian
under a gauge transformation, a corresponding gauge covariant derivative is defined,
introducing additional gauge fields in the Lagrangian. These gauge fields relate the
symmetry transformations at different points in spacetime, and are realised as force
mediators. The strong, electromagnetic (EM) andweak interactions can be associated
to specific gauge groups.

The basic recipe for constructing the SM is then to assume a set of fermion spinor
fields to correspond to the known fundamental particles of matter, assume a set of
gauge symmetries that can account for the fundamental interactions, and then write
down the most general, renormalisable Lagrangian.

7Both of Refs. [2, 3] provide discussions of the symmetries described in this section: Noether’s
theorem, the Poincaré symmetry group and gauge theory.



8 2 Theoretical Background

2.1.3 The Electroweak Interaction

TheEMandweak interactions are unified in theSMaccording to theGlashow-Salam-
Weinberg mechanism [5, 6]. Below the electroweak scale, O(246) GeV, they split
into the familiar EM and weak interactions through the mechanism of electroweak
symmetry breaking (Sect. 2.1.4).

Electroweak theory is described by the gauge group SU (2)L ×U (1)Y acting on
fermionic spinor fields, which can be represented in terms of left- and right-handed
chiral projections:

ψ = ψL + ψR = 1

2
(1 − γ5)ψ + 1

2
(1 + γ5)ψ, (2.5)

whereγ5 is thefifth gammamatrix.8 In the theory, left-handed fermions formdoublets
under SU (2)L and right-handed fermions form SU (2)L singlets. As a result, theweak
interaction couples only to left-handed chiral fields; this property is denoted by the
subscript L . The chirality of the weak interaction is not an emergent property of the
gauge symmetry, but necessary to account for experimental evidence of maximal
parity violation in weak interactions [7]. The Y subscript inU (1)Y denotes the weak
hypercharge which relates the unified electroweak interaction to electromagnetism
(see Eq. 2.10, later in this section).

Invariance of the Lagrangian under SU (2)L ×U (1)Y can be enforced by intro-
ducing the covariant derivative

∂μ → Dμ = ∂μ + igWa
μ t

a + ig′BμY, (2.6)

where a runs over 1, 2, 3 and g, g′ are coupling constants. The three gauge fieldsWa
μ

are associated to SU (2)L and Bμ to U (1)Y . Fermion and scalar fields are assigned
weak isospin I = 0, 1

2 andweak hyperchargeY quantumnumbers. The ta are defined

ta =
{
0 for I = 0,

σa for I = 1
2 ,

(2.7)

where I = 1
2 , 0 for fermions with left- and right-handed chirality, respectively. The

gauge fields for charged currents arise as a linear combination of SU (2)L eigenstates:

W±
μ = W 1

μ ∓ iW 2
μ√

2
. (2.8)

The physical neutral fields are obtained through the mixing of SU (2)L and U (1)Y :

8Definitions for the five gamma matrices are given in Refs. [1–3].


