International Series in Operations Research & Management Science

Wolfgang Albrecht

Scheduling in Green Supply Chain Management

A Mixed-Integer Approach

International Series in Operations Research & Management Science

Volume 303

Series Editor

Camille C. Price Department of Computer Science, Stephen F. Austin State University, Nacogdoches, TX, USA

Associate Editor

Joe Zhu Foisie Business School, Worcester Polytechnic Institute, Worcester, MA, USA

Founding Editor

Frederick S. Hillier Stanford University, Stanford, CA, USA The book series International Series in Operations Research and

Management Science encompasses the various areas of operations research and management science. Both theoretical and applied books are included. It describes current advances anywhere in the world that are at the cutting edge of the field. The series is aimed especially at researchers, doctoral students, and sophisticated practitioners. The series features three types of books:

- *Advanced expository books* that extend and unify our understanding of particular areas.
- *Research monographs* that make substantial contributions to knowledge.
- *Handbooks* that define the new state of the art in particular areas. They will be entitled

Recent Advances

in (name of the area). Each handbook will be edited by a leading authority in the area who will organize a team of experts on various aspects of the topic to write individual chapters. A handbook may emphasize expository surveys or completely new advances (either research or applications) or a combination of both.

The series emphasizes the following four areas: *Mathematical Programming*: Including linear programming, integer programming, nonlinear programming, interior point methods, game theory, network optimization models, combinatorics, equilibrium programming, complementarity theory, multiobjective optimization, dynamic programming, stochastic programming, complexity theory, etc. Applied Probability: Including queuing theory, simulation, renewal theory, Brownian motion and diffusion processes, decision analysis, Markov decision processes, reliability theory, forecasting, other stochastic processes motivated by applications, etc. Production and Operations Management: Including inventory theory, production scheduling, capacity planning, facility location, supply chain management, distribution systems, materials requirements planning, just-in-time systems, flexible manufacturing systems, design of production lines, logistical planning, strategic issues, etc. Applications of Operations Research and Management Science: Including telecommunications, health care, capital budgeting and finance, marketing, public policy, military operations research, service operations, transportation systems, etc.

More information about this series at http://www.springer.com/series/6161

Wolfgang Albrecht

Scheduling in Green Supply Chain Management

A Mixed-Integer Approach

Wolfgang Albrecht Faculty of Law and Economics University of Greifswald Greifswald, Germany

ISSN 0884-8289 ISSN 2214-7934 (electronic) International Series in Operations Research & Management Science ISBN 978-3-030-67477-9 ISBN 978-3-030-67478-6 (eBook) https://doi.org/10.1007/978-3-030-67478-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG. The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Because of negative consequences of anthropogenic climate change, protecting our environment should be something that matters to all of us. An important paradigm shift is necessary for the worldwide economy. Due to increasing globalization, business operations are typically organized in complex supply chain networks, while a coordinated scheduling of production, distribution, and sales allows for realizing transient monetary benefits. Although the field of green supply chain management has been established for a few years in the literature, there is still a backlog in modeling objectives and constraints of sustainability. For this reason, this book proposes new integrated mathematical optimization models and problemtailored solution algorithms that may contribute to a reconciliation of economic and environmental issues.

The initial manuscript of this book has been accepted in January 2020 by the University of Greifswald's Faculty of Law and Economics. It is a habilitation thesis, i.e., a research monograph for postdoctoral qualification in Germany.

First of all, I would like to express my deep gratitude to my academic advisor, Professor Dr. Martin Steinrücke (University of Greifswald). During my time as a postdoctoral researcher at his chair, several common articles have been published in international peer-reviewed journals in the field of supply chain management. In addition, he finally encouraged me to write this monograph. While acting as the first reviewer of my habilitation thesis, his broad expertise was the basis of many fruitful discussions. Additional external reviewers were Professor Dr. Richard Lackes (Technical University of Dortmund) and Professor Dr. Hans Corsten (Technical University of Kaiserslautern). I greatly appreciate the valuable comments of all three reviewers. Besides, I am much obliged to Professor Dr. Jan Körnert (University of Greifswald) for chairing the habilitation commission.

Sincere thanks to Springer and the series editor of "International Series in Operations Research & Management Science" for accepting my manuscript for publication.

Finally, I would like to acknowledge the support of all friends, colleagues, and students who accompanied me on my way to completing my habilitation. Warm thanks go to my family.

Greifswald, Germany March 2021 Wolfgang Albrecht

About this Book

This book offers practical tools and new perspectives to researchers and professionals in the field of supply chain management. It deals with hierarchical scheduling of operations at/between sites of generic multi-stage networks taking into account aspects of sustainability. Driven by an increasing environmental awareness as well as current initiatives of legislation for reducing greenhouse gas emissions and waste, it proposes new mixed-integer programming models combining problems of procurement, production, distribution, sales, recycling, disposal, and emissions trading simultaneously in consideration of existing interdependencies. The modularized approach distinguishes between material flows of non-perishable and perishable goods and additionally captures an aligned financial planning. Discrete-time models are used for establishing closed-loop structures on the medium-term level. On the short-term level, continuous-time scheduling in 24/7 operating networks allows for coordinating decisions exactly while striving for a reconciliation of economic and environmental issues. Computational experiments conducted on state-of-the-art high-performance software and hardware reveal that instances of realistic scope cannot be solved to optimality within acceptable times. For this reason, problemtailored variants of relax-and-fix heuristics and genetic algorithms are proposed.

Contents

1	Intr	oductio) n	1
	1.1	Motiv	ation	1
	1.2	Frame	work of Analysis	3
	1.3	Outlin	ie	5
	Refe	erences		6
2	Scho	eduling	in Supply Chain Management	9
	2.1	Chara	cteristics and Management of Supply Chains	9
	2.2	Discre	ete-Time and Continuous-Time Supply Chain Scheduling	14
	Refe	erences		17
3	Gre	en Sup	ply Chain Management	21
	3.1	Origin	as and Drivers of Green Supply Chain Management.	22
	3.2	Rever	se Logistics and Closed Loop Supply Chains	24
		3.2.1	Scope and Definitions	24
		3.2.2	Aspects of Organization, Coordination,	
			and Standardization	25
		3.2.3	Implementation and Modeling of Closed Loop Supply	
			Chain Networks	28
	3.3	Emiss	ion Management	32
		3.3.1	Scope and Market-Based Regulation	32
		3.3.2	Implementation of Emission Management	35
	Refe	erences	· · · · · · · · · · · · · · · · · · ·	37
4	Lite	rature	Review	41
	4.1	Revie	w of Static Approaches	42
	4.2	Revie	w of Discrete-Time Approaches	47
		4.2.1	Approaches without Elements of Green Supply Chain	
			Management	47
		4.2.2	Approaches Including Elements of Green Supply Chain	

	4.3	Review of Continuous-Time Approaches	54
		4.3.1 Approaches without Elements of Green Supply Chain	
		Management	54
		4.3.2 Approaches Including Elements of Green Supply Chain	
		Management	58
	4.4	Research Gap and Contributions	59
	Refe	erences	61
5	Disc	rete-Time Scheduling in Green Supply Chain Management	65
	5.1	Model Formulation	66
		5.1.1 Networks with Recycling and Emission Trading	72
		5.1.2 Integration of Financial Planning	80
	5.2	Numerical Analysis	83
	Refe	erences	91
6	Con	tinuous-Time Scheduling in Green Supply Chain	
	Mai	nagement	93
	6.1	Model Formulations	94
		6.1.1 Networks with Recycling of Non-perishable Goods	94
		6.1.2 Networks with Recycling of Perishable Goods	115
		6.1.3 Integration of Financial Planning	127
	6.2	Heuristic Solution Methods	136
		6.2.1 Relax-and-Fix Algorithm	136
		6.2.2 Genetic Algorithm	140
	6.3	Numerical Analysis	149
	Refe	erences	159
7	Sum	mary and Conclusions	163
	Juli		100
In	dex .		167

Abbreviations

CPU	Central processing unit
EU	European Union
EU ETS	European Union's Emissions Trading System
GA	Genetic algorithm
GAMS	General Algebraic Modeling System
GB	gigabyte
GHz	gigahertz
GSCM	Green supply chain management
GT/s	gigatransfers per second
ISO	International Organization for Standardization
MILP	Mixed-integer linear program
MIP	Mixed-integer program
RAM	Random-access memory
R&F	Relax and fix
SC	Supply chain
SCM	Supply chain management

List of Symbols

Sets and Indices

A	set of liquidity periods; $a \in A := \{1,, A \}$
$C_{s\tau}$	set of capacity profiles, selectable for a site $s \in S_{\sigma}$, if the site has been
	set up for operations before the planning horizon ($\tau = -1$) or the site
	is set up for operations in time $\tau = 0,, t_E - 1$, respectively; $c \in C_{s\tau}$
F	set of quality grades; $f \in F$
l K	set of generations in genetic algorithm, $i \in I := \{1,, I \}$
K	set of feasible combinations of SC stages for describing potential
	material nows [depending on the specific model formulation] $K_{-}((z - 1) - W_{+}(1)) \times ((z - z + 1)) \wedge (z - W_{+}(2)) \times ((z - 1))$
	$\mathbf{A} = \{ (\sigma = 1, \dots, w+1) \times (\lambda = \sigma + 1) \land (\sigma = w+2) \times (\lambda = 1, \dots, w+1) \}$
	within the discrete time model [Sect 5.1]
	Within the discrete-time model [Sect. 5.1] $K = \{(z = 1, \dots, W) \} \times \{(z = z + 1, \dots, W + 1)\} \land \{(z = 2\}\}$
	$\mathbf{K} = \{ (o = 1,, w) \times (\lambda = 0 + 1,, w + 1) / (o = 2,, w) \times (\lambda = 0 + 1,, w + 1) / (o = 2,, w) \times (\lambda = 1,, w) \times (\lambda = 0 + 1,, w + 1) / (v = 1,, w) \times (\lambda = 0 + 1,, w)$
	within the continuous time model for internal recycling [Sect.
	6.1.1.11
	$K = \{ (\sigma = 1, W) \times (\lambda = \sigma + 1, W + 1) \land (\sigma = W + 1) \}$
	$I) \times (\lambda = W + 2) \land (\sigma = W + 2) \times (\lambda = 1,, W) \}$
	within the continuous-time model for external recycling [Sect.
	6.1.1.2]
	$K = \{ (\sigma = 1,, W) \times (\lambda = \sigma + 1,, W + 1) \land (\sigma = W + 1) \}$
	$1) \times (\lambda = W + 2) \land (\sigma = W + 2) \times (\lambda = 1,, W) \land (\sigma = 2,,$
	$W) \times (\lambda = 1,, \sigma - 1) \land (\sigma = 2,, W) \times (\lambda = W + 2)\}$
	within the continuous-time model for combined recycling [Sect.
	6.1.1.3]
	$K = \{ (\sigma = 1, \ldots, W) \times (\lambda = \sigma + 1, \ldots, W + 1) \land$
	$(\sigma = W + 1) \times (\lambda = W + 2) \land (\sigma = 2, \dots, W) \times (\lambda = W + 2)\}$

	within the continuous-time model for perishable goods [Sect. 6.1.2]
L	set of SC stages with recycling [depending on the specific model
	formulation]
	$L = \{2, \dots, W\}$
	within the continuous-time model for internal recycling [Sect.
	6.1.1.1]
	$L = \{W + 2\}$
	within the discrete-time model [Sect. 5.1], the continuous-time
	model for external recycling [Sect. 6.1.1.2], and the continuous-time
	model for perishable goods [Sect. 6.1.2]
	$L = \{2, \dots, W, W + 2\}$
	within the continuous-time model for combined recycling [Sect.
	6.1.1.3]
N_{sqU}	set of sites belonging to one potential material flow between sites s and
	$q; N_{sqU} \coloneqq U \cup \{s,q\}; U \in \mathscr{D}'(SW); (s,q) \in S_1 \times S_{W+1}$
0	set of financial transactions; $o \in O$
	[note: credits $(o = 1)$ and investments $(o = 2)$ in discrete-time
	scheduling, financial alternatives in continuous-time scheduling]
Р	set of human-induced greenhouse gases; $p \in P$
S_{σ}	set of sites assigned to SC stage $\sigma \in \Gamma$; <i>s</i> , <i>q</i> , <i>i</i> , <i>j</i> $\in S_{\sigma}$
SG	set of sites selected for consideration in a genetic algorithm;
	$SG \subseteq \bigcup^{W+1} S_{\sigma}$
SW/	$\sigma=1$ W
5 **	set of all sites belonging to SC stages $\sigma = 2,, W$; $SW = \bigcup_{\sigma=2}^{U} S_{\sigma}$
T_{-}	set of points in time representing decisions on site states; t ,
	$\tau \in T_{-} \coloneqq \{-1, 0, \dots, t_{E} - 1\}$
T.	[note: $t = -1$ represents the initial site state]
Ι	set of points in time representing decisions on operations; t ,
Т	$\tau \in I \coloneqq \{0, \dots, t_E - 1\}$
1 +	set of points in time representing monetary surpluses/withdrawais, $t \in C$ $T := \{0, \dots, t\}$
7	$i, i \in I_+ \leftarrow \{0, \dots, i_E\}$ set of event boundaries: $z \in \mathbb{Z}$: $\mathbb{Z} \leftarrow \{1, 2\}$
L	Set of event boundaries, $z \in \mathbb{Z}$, $Z := \{1, 2\}$ [note: $z = 1$ for start of an event $z = 2$ for end of an event]
Г	set of SC stages: σ $\lambda \in \Gamma$: $\Gamma := \{1, W+2\}$
1	[note: the assignment of operations to SC stages depends on the
	model: in general, $\sigma = 1,, W$ are before-market stages (e.g., for
	production, distribution, or recycling), $\sigma = W+1$ represents the market
	stage, and $\sigma = W+2$ is an after-market stage (e.g., for recycling. disposal)]
$(\Gamma_N, \ldots, <)$	ordered set of SC stages representing the sites, which belong to a
(''sqU' -/	potential material flow according to N_{saU} ; $\Gamma_{N_{saU}} \subseteq \Gamma$
Λ	set of steps in relax-and-fix algorithm, $h \in \Lambda := \{1,, \Lambda \}$
Θ	set of genes in genetic algorithm, $\theta \in \Theta \coloneqq \{1,, \Theta \}$

Υ_h	subset of binary variables to be optimized in the <i>h</i> -th step of
	a relax-and-fix algorithm
Ω	set of chromosomes in genetic algorithm, $\omega \in \Omega \coloneqq \{1,, \Omega \}$
	[note: ω * represents the rank of the chromosome within a set that is
	ordered according to a descending sequence of fitness values]
\$ ⁵ (SW)	filtered power set of the set SW; $\wp'(SW) := \{U U \subseteq SW \land $
	$U \cap S_{\sigma}$ I $\leq 1, \sigma = 2, \dots, W$ }

Parameters

- $B^{\lambda\sigma}$ usable units of a product manufactured in SC stage $\lambda = 1, ..., \sigma 1$, which are required to manufacture one unit of a product in SC stage $\sigma = 2, ..., W$ B^{σ} usable units of a product manufactured in SC stage $\lambda = \sigma - 1$, which are
- required to manufacture one unit of a product in SC stage $\sigma = 2, ..., W$
- BB^{λ} units of a product manufactured in SC stage $\lambda = 1, ..., W$, which can be obtained from recycling one unit of a final product in SC stage $\sigma = W + 2$ BE_t buying price of an emission allowance in time $t \in T$
- BM_t maximum number of buyable emission allowances in time $t \in T$
- *CA*_{st} availability costs for site $s \in S_{\sigma}$ of SC stage $\sigma = 1, ..., W + 2$ in time $t \in T$ [note: represents marketing costs for $\sigma = W + 1$]
- CC_{sct} capacity costs for site $s \in S_{\sigma}$ of SC stage $\sigma = 1, ..., W, W + 2$ in time $t \in T$, if capacity profile $c \in C_{st}$ is selected
- CD_{st} shutdown costs for site $s \in S_{\sigma}$ of SC stage $\sigma = 1, ..., W, W + 2$ in time $t \in T$
- CE_p tons of carbon dioxide that are assumed to be comparable to one ton of greenhouse gas $p \in P$ (factor for determining the carbon dioxide equivalent)

[note: factor is one for carbon dioxide itself]

 $CO_{i\theta}$ equals 1 if the allele of the gene $\theta \in \Theta$ belonging to a specific chromosome of the generation i - 1 is to be transferred to the same gene on the chromosome of the new generation $i \in I$ during crossover procedure, or 0 otherwise

[randomly generated binary parameter for the genetic algorithm]

- CS_{st} setup costs for site $s \in S_{\sigma}$ of SC stage $\sigma = 1, ..., W, W + 2$ in time $t \in T$
- D_s demand at market site $s \in S_{W+1}$
- D_s^{λ} demand of the product manufactured in SC stage $\lambda = 1, ..., W$ at market site $s \in S_{W+1}$
- D_{st} demand of the final product at market site $s \in S_{W+1}$ in time $t \in T$
- DC_s costs of tardiness in demand satisfaction at market site $s \in S_{W+1}$ (per day)
- DD_s due date for meeting the demand at market site $s \in S_{W+1}$
- $DQ_{st} \qquad \text{returnable quantity of the final product at market site } s \in S_{W+1} \text{ in time } t \in T$ end time of the planning horizon
- ED_{ps} tons of greenhouse gas $p \in P$ emitted from recycling at site $s \in S_{\sigma}$ of SC stage $\sigma \in L$ (per product)

ED_{pst}	tons of greenhouse gas $p \in P$ emitted from recycling at site $s \in S_{W+2}$ in time $t \in T$ (per product)
EF_{ps}	tons of greenhouse gas $p \in P$ emitted from disposal at site $s \in S_{W+2}$ (per
	product)
EM	emission cap (tons of carbon dioxide equivalent) during the entire planning
EM.	emission cap (tons of carbon dioxide equivalent) in time period $t \in T$
EP_{ns}	tons of greenhouse gas $p \in P$ emitted from production at site $s \in S_{\sigma}$ of SC
= ps	stage $\sigma = 1, \dots, W$ (per product)
EPnst	tons of greenhouse gas $p \in P$ emitted from production at site $s \in S_{\tau}$ of SC
psi	stage $\sigma = 1,, W$ in time $t \in T$ (per product)
ET_{nsa}	tons of greenhouse gas $p \in P$ emitted from transportation from site $s \in S_{\sigma}$ to
$p_{3}q$	site $q \in S_{\lambda}$ of the SC stages $(\sigma, \lambda) \in K$ (per product)
ET_{psat}	tons of greenhouse gas $p \in P$ emitted from transportation from site $s \in S_{\sigma}$ to
1 . 1	site $q \in S_{\lambda}$ of the SC stages $(\sigma, \lambda) \in K$ in time $t \in T$ (per product)
EV	maximum emission (tons of carbon dioxide equivalent) per emission
	allowance
FA_o	credit limit of financing alternative $o \in O$
FC_s	maximum disposal capacity at site $s \in S_{W+2}$
FD_s	speed of disposal at site $s \in S_{W+2}$
$FL_{ot\tau}$	limit of a single credit ($o = 1$) or investment ($o = 2$), respectively, which
	starts in time $t \in T$ and ends in time $\tau \in T_+$
<i>FP</i> _{ot}	limit of all credits ($o = 1$) or investments ($o = 2$), respectively, which start in time $t \in T$
FT	overall credit limit during the planning horizon
FV_s	variable costs of disposal at site $s \in S_{W+2}$ (per product)
FZ_o	term of financing alternative $o \in O$ (difference between the end time and
	the start time of a financing alternative)
i _o	credit rate of financing alternative $o \in O$
$i_{ot\tau}$	interest rate of a credit ($o = 1$) or an investment ($o = 2$), respectively, which
	starts in time $t \in T$ and ends in time $\tau \in T_+$
IA_s	equals 1 if site $s \in S_{\sigma}$ of SC stage $\sigma = 1,, W, W + 2$ has been set up for
	operations before the planning horizon, and 0 otherwise
M	a sufficiently large number
MC_s	fixed marketing costs at market site $s \in S_{W+1}$
$MU_{i\omega}$	integer number in the interval [1,00] representing the index of a mutated gape on a chromosome $\omega \in \Omega$ of generation $i \in I$
	gene on a chromosome $w \in S2$ or generation $i \in I$
MV .	[randomly generated integer parameter for the generated agontumi] binary number representing the new allele of a mutated gene $A \subseteq \Theta$ on a
ινι ν ιωθ	chromosome $\omega \in \Omega$ of generation $i \in I$
	[random]y generated binary parameter for the genetic algorithm]
MZ	minimum processing time for operating sites
NF.	maximum number of transports starting from a site $s \in S_{-}$ of SC stage
- · • S	$\sigma = 1, \dots, W + 2$

MI	maximum quantity of recyclable products being disposed of
PC	maximum production capacity at site $s \in S$ of SC stage $\sigma = 1$ W
$I C_S$	[interpretable as maximum storage capacity for distribution stages]
PC	maximum production canacity at site $s \in S$ of SC stage $\sigma = 1$. Win
$I C_{sct}$	maximum production capacity at site $S \in S_{\sigma}$ of SC stage $\sigma = 1,, W$ in time t $\subset T$ if consolity models $\alpha \in C$ is calcuted
DE	time $t \in I$, it capacity profile $c \in C_{s\tau}$ is selected
PF_s	fixed production costs at site $s \in S_{\sigma}$ of SC stage $\sigma = 1,, W$
	[interpretable as fixed storage costs for distribution stages]
PI_{st}	variable inventory costs at site $s \in S_{\sigma}$ of SC stage $\sigma = 1,, W$ in time $t \in$
	T (per product)
PV_s	variable production costs at site $s \in S_{\sigma}$ of SC stage $\sigma = 1,, W$ (per
	product)
	[interpretable as variable storage costs for distribution stages]
PV_{st}	variable production costs at site $s \in S_{\sigma}$ of SC stage $\sigma = 1,, W$ in time $t \in$
	T (per product) [interpretable as variable storage costs for distribution
	stages]
$R_{\ell_{\alpha}}$	revenue of a product package of perishable goods in quality grade $f \in F$
- 15	according to the demand of market $s \in S_{W-1}$
\widetilde{D}	expected revenue of a perishable product recycled at site $s \in S_{W}$
K_s D^{λ}	expected revenue of a perishable product recycled at site $3 \in S_{W+2}$
K_{s}	revenue of the product manufactured in SC stage λ at market site $s \in S_{W+1}$
D	(per product)
R_{st}	revenue of the final product at market site $s \in S_{W+1}$ in time $t \in I$ (per
D.C.	product)
RC_s	maximum recycling capacity at site $s \in S_{\sigma}$ of SC stage $\sigma \in L$
RC_{sct}	maximum recycling capacity at site $s \in S_{W+2}$ in time $t \in T$, if capacity
	profile $c \in C_{s\tau}$ is selected
RD_s	speed of recycling at site $s \in S_{\sigma}$ of SC stage $\sigma \in L$
RF_s	fixed costs of reverse operations (recycling and/or disposal) at site $s \in S_{\sigma}$ of
	relevant SC stage σ
RG_{fsq}	maximum distribution range (i.e., time difference between the end and the
	beginning of a realized material flow) between sites $q \in S_{W+1}$ and $s \in S_1$
	that is allowed for a product package to be sold in grade $f \in F$
RT_s	time period at a market $s \in S_{W+1}$ between demand satisfaction and product
5	return
RV_{c}	variable costs of recycling at site $s \in S_{\sigma}$ of SC stage $\sigma \in L$ (per product)
RVat	variable costs of recycling at site $s \in S_W$, 2 in time $t \in T$ (per product)
SB	maximum temporary storage time allowed for transports from site $s \in S$ to
SD_{Sq}	site $a \in S$, of SC stages $(\alpha, \lambda) \in K$
SD	speed of production at site $s \in S$ of SC stage $\sigma = 1$ W
SD_s	speed of production at site $s \in S_{\sigma}$ of SC stage $\delta = 1,, W$
SE_t	senting price of an emission anowance in time $t \in T$
SM_t	maximum number of saleable emission allowances in time $t \in I$
TC_{sq}	maximum transportation capacity for transports from site $s \in S_{\sigma}$ to site
	$q \in S_{\lambda}$ of the SC stages $(\sigma, \lambda) \in K$

TC_{sqt}	maximum transportation capacity for transports from site $s \in S_{\sigma}$ to site $q \in S_{\lambda}$ of the SC stages $(\sigma, \lambda) \in K$ in time $t \in T$
TF_{sq}	fixed transportation costs for transports from site $s \in S_{\sigma}$ to site $q \in S_{\lambda}$ of the SC stages $(\sigma, \lambda) \in K$
TF_{sqt}	fixed transportation costs for transports from site $s \in S_{\sigma}$ to site $q \in S_{\lambda}$ of the SC stages $(\sigma, \lambda) \in K$ in time $t \in T$
TS_{sq}	variable costs of temporary storage for transports from site $s \in S_{\sigma}$ to site $q \in S_{\lambda}$ of the SC stages $(\sigma, \lambda) \in K$ (per day)
TV_{sq}	variable transportation costs for transports from site $s \in S_{\sigma}$ to site $q \in S_{\lambda}$ of the SC stages $(\sigma, \lambda) \in K$ (per product)
TV_{sqt}	variable transportation costs for transports from site $s \in S_{\sigma}$ to site $q \in S_{\lambda}$ of the SC stages $(\sigma, \lambda) \in K$ in time $t \in T$ (per product)
TZ_{sq} W	transportation time from site $s \in S_{\sigma}$ to site $q \in S_{\lambda}$ of the SC stages $(\sigma, \lambda) \in K$ number of SC stages belonging to forward operations
	[equals the number of SC stages before the market stage]
XC_s	maximum throughput capacity for recycled products at site $s \in S_{\sigma}$ of SC stage $\sigma = 1,, W$
XC_{st}	maximum throughput capacity for recycled and stocked products at site $s \in S_{\sigma}$ of SC stage $\sigma = 1,, W$ in time $t \in T$
α_{fs}	share of quantities in quality grade $f \in F$ at site $s \in S_{W+1}$ that needs to be processed in reverse logistics (recycling or disposal)
α_s	share of quantities at site $s \in S_{W+1}$ that needs to be processed in reverse logistics (recycling or disposal)
β_{fs}	share of quantities in quality grade $f \in F$ at site $s \in S_{W+2}$ that can be recycled [note: $(1 - \beta_{fs})$ represents the share of quantities that cannot be recycled and, thus, needs to be disposed of]
β_s	share of quantities at site $s \in S_{\sigma}$ of relevant SC stage σ that can be recycled [note: $(1 - \beta_s)$ represents the share of quantities that cannot be recycled and, thus, needs to be disposed of]
γs	share of perishable quantities at site $s \in S_{\sigma}$ of SC stage $\sigma = 2,, W$ that needs to be disposed of
δ_s	ratio between products supplied from SC stage λ that must be processed in reverse logistics, and products supplied from SC stage λ that can be used for manufacturing at site $s \in S_{\sigma}$ of SC stage $\sigma = 2,, W$
η_t	technical parameter: $\eta_0 = 0, \eta_1 = \ldots = \eta_{t_{k-1}} = 1$
κ_o	technical parameter: $\kappa_1 = 1, \kappa_2 = -1$
v_t	weighting factor of surpluses realized in time $t \in T_+$

Variables

af_{oa}^{z}	credit amount ($z = 1$) or repayment amount ($z = 2$) of financing alternative
	$o \in O$, assigned to liquidity period $a \in A$
ap_{sa}	costs of forward and reverse operations at site $s \in S_{\sigma}$ of SC stage $\sigma = 1, \ldots,$
	W, W + 2, assigned to liquidity period $a \in A$

ar _{sa}	revenues (adjusted for marketing costs) at market site $s \in S_{W+1}$, assigned to liquidity pariod $a \in A$
at	transportation costs for transports starting from site $s \in S$ of SC stage
ur _{sa}	$\sigma = 1,, W + 2$, assigned to liquidity period $a \in A$
b	auxiliary variable to be used as a counter
dr_s	recycled quantity at site $s \in S_{\sigma}$ of SC stage $\sigma \in L$
eb_t	number of emission allowances bought in time $t \in T$
es_t	number of emission allowances sold in time $t \in T$
fi_o^z	amount paid in after realizing a financing alternative $o \in O$ ($z = 1$) or amount paid out for repaying the financing alternative ($z = 2$)
$fi_{ot\tau}$	amount paid in after realizing a credit ($o = 1$) or amount paid out after realizing an investment ($o = 2$), which starts in time $t \in T$ and ends in time
	$ au\in T_+$
fr_s	disposed quantity at site $s \in S_{W+2}$
g_{fs}	equals 1 if market $s \in S_{W+1}$ is supplied with a product package of grade $f \in F$, and 0 otherwise
gr _{fsq}	quantity in quality grade $f \in F$ at market site $s \in S_{W+1}$ that needs to be processed in reverse logistics at site $q \in S_{W+2}$
$ha_{\iota\omega\theta}$	allele of the gene $\theta \in \Theta$ on chromosome $\omega \in \Omega$ in generation $\iota \in I$
$hr_{\iota\omega*\theta}$	allele of the gene $\theta \in \Theta$ that belongs to the chromosome, which is on rank $\omega * \in \Omega$ in generation $\iota \in I$
hs_{θ}	allele of the gene $\theta \in \Theta$ that belongs to the chromosome, which is on the
	first rank $\omega = 1$ in the final generation $\iota = I $
<i>in_{st}</i>	inventory at site $s \in S_{\sigma}$ of SC stage $\sigma = 1,, W$ in time $t \in T, t \ge 1$ [note: initial stocks can be considered by a parameter in_{s0}]
lf_{oa}^{z}	equals 1 if financing alternative $o \in O$ starts $(z = 1)$ or ends $(z = 2)$ within
	liquidity period $a \in A$, and 0 otherwise
lp_{sa}^{z}	equals 1 if operation at site $s \in S_{\sigma}$ of SC stage $\sigma = 1,, W, W + 2$ starts $(z = 1)$ or ends $(z = 2)$ within liquidity period $a \in A$, or if demand at site $s \in S_{W+1}$ is satisfied $(z = 1)$ or returned $(z = 2)$ within liquidity period
	$a \in A$, respectively, and 0 otherwise
nu_s	recyclable quantity at site $s \in S_{W+2}$, which is disposed of
nu_s^{λ}	recyclable quantity of the product manufactured in SC stage λ at site $s \in S_{\sigma}$ of SC stage $\sigma \in L$, which is disposed of
$OC_{i\omega}$	fitness value of the chromosome $\omega \in \Omega$ in generation $\iota \in I$ [note: equals the objective value of the submodel that results from the fixation of the binary variables according to the chromosome's alleles]
or	fitness value of the chromosome on rank $\omega_* \in \Omega$ in generation $i \in I$
nr	production quantity at site $s \in S$ of SC stage $\sigma = 1$ W
P's	[interpretable as storage quantity for distribution stages]
<i>Dr</i> _{st}	production quantity at site $s \in S_{\sigma}$ of SC stage $\sigma = 1,, W$ in time $t \in T$
r. st	[interpretable as storage quantity for distribution stages]
q_a	liquidity in period $a \in A$
q_t	liquidity withdrawal in time $t \in T_+$

qr_{sq}^{λ}	quantity of the product manufactured in SC stage λ at market site $s \in S_{W+1}$,
	which needs to be processed in reverse logistics at site $q \in S_{W+2}$
qr_{st}	quantity of the final product, which needs to be processed in reverse
	logistics at site $s \in S_{W+2}$ in time $t \in T$
rr_s^{λ}	quantity of the product manufactured in SC stage λ available at site $s \in S_{\sigma}$ of
	SC stage $\sigma = 2,, W$, which needs to be processed in reverse logistics
sf_o^z	start time ($z = 1$) or end time ($z = 2$) of financing alternative $o \in O$
sl_s	tardiness in demand satisfaction at market site $s \in S_{W+1}$ (in days)
sn _{st}	equals 1 if site $s \in S_{\sigma}$ of SC stage $\sigma = 1,, W, W + 2$ is shut down in time
	$t \in T$, and 0 otherwise
sp_s^z	start time ($z = 1$) or end time ($z = 2$) of operations (e.g., production, storage,
- 5	recycling, disposal) at site $s \in S_{\sigma}$ of SC stage $\sigma = 1,, W, W + 2$, or time of
	satisfying demand $(z = 1)$ or returning products $(z = 2)$ at market site
	$s \in S_{W+1}$
st_{sa}	temporary storage time for transports from site $s \in S_{\sigma}$ to site $q \in S_{\lambda}$ of SC
~4	stages $(\sigma, \lambda) \in K$
SU_{st}	equals 1 if site $s \in S_{\sigma}$ of SC stage $\sigma = 1,, W, W + 2$ is set up in time $t \in T$,
	and 0 otherwise
tp_{sq}	equals 1 if transportation from site $s \in S_{\sigma}$ to site $q \in S_{\lambda}$ of the SC stages
1	$(\sigma, \lambda) \in K$ is conducted, and 0 otherwise
tp_{sat}	equals 1 if transportation from site $s \in S_{\sigma}$ to site $q \in S_{\lambda}$ of the SC stages
1	$(\sigma, \lambda) \in K$ is conducted in time $t \in T$, and 0 otherwise
ud_s	auxiliary variable representing the variable recycling costs at site $s \in S_{\sigma}$ of
	SC stage $\sigma = 1, \ldots, W, W + 2$
uf_s	auxiliary variable representing the variable disposal costs at site $s \in S_{\sigma}$ of
	SC stage $\sigma = 1, \ldots, W, W + 2$
up_s	auxiliary variable representing the fixed and variable production costs at
	site $s \in S_{\sigma}$ of SC stage $\sigma = 1,, W, W + 2$
ur_s	auxiliary variable representing the fixed costs of reverse operations at site
	$s \in S_{\sigma}$ of SC stage $\sigma = 1,, W, W + 2$
V_{sqU}	auxiliary variable (see set N_{sqU})
ve_t	auxiliary variable representing the overall monetary consequences of
	environmental decisions in time $t \in T$
vo_t	auxiliary variable representing the overall monetary consequences of
	decisions on operations in time $t \in T_+$
vs_t	auxiliary variable representing the overall monetary consequences of
	decisions on site states in time $t \in T$
x_{sq}	transportation quantity from site $s \in S_{\sigma}$ to site $q \in S_{\lambda}$ of SC stages $(\sigma, \lambda) \in K$
x_{sqt}	transportation quantity from site $s \in S_{\sigma}$ to site $q \in S_{\lambda}$
	of SC stages $(\sigma, \lambda) \in K$ in time $t \in T$
y_s	equals 1 if production/storage at site $s \in S_{\sigma}$ of SC stage $\sigma = 1,, W$ is
	conducted [for all continuous-time models], or if market site $s \in S_{W+1}$ is
	selected [for all continuous-time models except the one for perishable
	goods, see Sect. 6.1.2], and 0 otherwise