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Preface

Because of negative consequences of anthropogenic climate change, protecting our
environment should be something that matters to all of us. An important paradigm
shift is necessary for the worldwide economy. Due to increasing globalization,
business operations are typically organized in complex supply chain networks,
while a coordinated scheduling of production, distribution, and sales allows for
realizing transient monetary benefits. Although the field of green supply chain
management has been established for a few years in the literature, there is still a
backlog in modeling objectives and constraints of sustainability. For this reason, this
book proposes new integrated mathematical optimization models and problem-
tailored solution algorithms that may contribute to a reconciliation of economic
and environmental issues.

The initial manuscript of this book has been accepted in January 2020 by the
University of Greifswald’s Faculty of Law and Economics. It is a habilitation thesis,
i.e., a research monograph for postdoctoral qualification in Germany.

First of all, I would like to express my deep gratitude to my academic advisor,
Professor Dr. Martin Steinrücke (University of Greifswald). During my time as a
postdoctoral researcher at his chair, several common articles have been published in
international peer-reviewed journals in the field of supply chain management. In
addition, he finally encouraged me to write this monograph. While acting as the first
reviewer of my habilitation thesis, his broad expertise was the basis of many fruitful
discussions. Additional external reviewers were Professor Dr. Richard Lackes
(Technical University of Dortmund) and Professor Dr. Hans Corsten (Technical
University of Kaiserslautern). I greatly appreciate the valuable comments of all three
reviewers. Besides, I am much obliged to Professor Dr. Jan Körnert (University of
Greifswald) for chairing the habilitation commission.

Sincere thanks to Springer and the series editor of “International Series in
Operations Research & Management Science” for accepting my manuscript for
publication.
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Finally, I would like to acknowledge the support of all friends, colleagues, and
students who accompanied me on my way to completing my habilitation. Warm
thanks go to my family.

Greifswald, Germany Wolfgang Albrecht
March 2021
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About this Book

This book offers practical tools and new perspectives to researchers and profes-
sionals in the field of supply chain management. It deals with hierarchical scheduling
of operations at/between sites of generic multi-stage networks taking into account
aspects of sustainability. Driven by an increasing environmental awareness as well
as current initiatives of legislation for reducing greenhouse gas emissions and waste,
it proposes new mixed-integer programming models combining problems of pro-
curement, production, distribution, sales, recycling, disposal, and emissions trading
simultaneously in consideration of existing interdependencies. The modularized
approach distinguishes between material flows of non-perishable and perishable
goods and additionally captures an aligned financial planning. Discrete-time models
are used for establishing closed-loop structures on the medium-term level. On the
short-term level, continuous-time scheduling in 24/7 operating networks allows for
coordinating decisions exactly while striving for a reconciliation of economic and
environmental issues. Computational experiments conducted on state-of-the-art
high-performance software and hardware reveal that instances of realistic scope
cannot be solved to optimality within acceptable times. For this reason, problem-
tailored variants of relax-and-fix heuristics and genetic algorithms are proposed.
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reverse logistics, and products supplied from SC stage λ that can be used
for manufacturing at site s 2 Sσ of SC stage σ ¼ 2, . . ., W

ηt technical parameter: η0 ¼ 0, η1 ¼ . . . ¼ ηtE�1 ¼ 1
κo technical parameter: κ1 ¼ 1, κ2 ¼ � 1
υt weighting factor of surpluses realized in time t 2 T+

Variables

af zoa credit amount (z ¼ 1) or repayment amount (z ¼ 2) of financing alternative
o 2 O, assigned to liquidity period a 2 A

apsa costs of forward and reverse operations at site s 2 Sσ of SC stage σ ¼ 1, . . .,
W, W + 2, assigned to liquidity period a 2 A
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arsa revenues (adjusted for marketing costs) at market site s 2 SW + 1, assigned to
liquidity period a 2 A

atsa transportation costs for transports starting from site s 2 Sσ of SC stage
σ ¼ 1, . . ., W + 2, assigned to liquidity period a 2 A

b auxiliary variable to be used as a counter
drs recycled quantity at site s 2 Sσ of SC stage σ 2 L
ebt number of emission allowances bought in time t 2 T
est number of emission allowances sold in time t 2 T
fizo amount paid in after realizing a financing alternative o 2 O (z ¼ 1) or

amount paid out for repaying the financing alternative (z ¼ 2)
fiotτ amount paid in after realizing a credit (o ¼ 1) or amount paid out after

realizing an investment (o ¼ 2), which starts in time t 2 T and ends in time
τ 2 T+

frs disposed quantity at site s 2 SW + 2

gfs equals 1 if market s 2 SW + 1 is supplied with a product package of grade
f 2 F, and 0 otherwise

grfsq quantity in quality grade f 2 F at market site s 2 SW + 1 that needs to be
processed in reverse logistics at site q 2 SW + 2

haιωθ allele of the gene θ 2 Θ on chromosome ω 2 Ω in generation ι 2 I
hrιω�θ allele of the gene θ 2 Θ that belongs to the chromosome, which is on rank

ω� 2 Ω in generation ι 2 I
hsθ allele of the gene θ 2 Θ that belongs to the chromosome, which is on the

first rank ω� ¼ 1 in the final generation ι ¼ |I|
inst inventory at site s 2 Sσ of SC stage σ ¼ 1, . . ., W in time t 2 T, t � 1

[note: initial stocks can be considered by a parameter ins0]
lf zoa equals 1 if financing alternative o 2 O starts (z ¼ 1) or ends (z ¼ 2) within

liquidity period a 2 A, and 0 otherwise
lpzsa equals 1 if operation at site s 2 Sσ of SC stage σ ¼ 1, . . ., W, W + 2 starts

(z ¼ 1) or ends (z ¼ 2) within liquidity period a 2 A, or if demand at site
s 2 SW + 1 is satisfied (z ¼ 1) or returned (z ¼ 2) within liquidity period
a 2 A, respectively, and 0 otherwise

nus recyclable quantity at site s 2 SW + 2, which is disposed of
nuλs recyclable quantity of the product manufactured in SC stage λ at site s 2 Sσ

of SC stage σ 2 L, which is disposed of
ocιω fitness value of the chromosome ω 2 Ω in generation ι 2 I

[note: equals the objective value of the submodel that results from the
fixation of the binary variables according to the chromosome’s alleles]

orιω� fitness value of the chromosome on rank ω� 2 Ω in generation ι 2 I
prs production quantity at site s 2 Sσ of SC stage σ ¼ 1, . . ., W

[interpretable as storage quantity for distribution stages]
prst production quantity at site s 2 Sσ of SC stage σ ¼ 1, . . ., W in time t 2 T

[interpretable as storage quantity for distribution stages]
qa liquidity in period a 2 A
qt liquidity withdrawal in time t 2 T+
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qrλsq quantity of the product manufactured in SC stage λ at market site s 2 SW + 1,
which needs to be processed in reverse logistics at site q 2 SW + 2

qrst quantity of the final product, which needs to be processed in reverse
logistics at site s 2 SW + 2 in time t 2 T

rrλs quantity of the product manufactured in SC stage λ available at site s 2 Sσ of
SC stage σ ¼ 2, . . ., W, which needs to be processed in reverse logistics

sf zo start time (z ¼ 1) or end time (z ¼ 2) of financing alternative o 2 O
sls tardiness in demand satisfaction at market site s 2 SW + 1 (in days)
snst equals 1 if site s 2 Sσ of SC stage σ ¼ 1, . . .,W,W + 2 is shut down in time

t 2 T, and 0 otherwise
spzs start time (z¼ 1) or end time (z¼ 2) of operations (e.g., production, storage,

recycling, disposal) at site s 2 Sσ of SC stage σ ¼ 1, . . .,W,W + 2, or time of
satisfying demand (z ¼ 1) or returning products (z ¼ 2) at market site
s 2 SW + 1

stsq temporary storage time for transports from site s 2 Sσ to site q 2 Sλ of SC
stages (σ, λ) 2 K

sust equals 1 if site s 2 Sσ of SC stage σ ¼ 1, . . .,W,W + 2 is set up in time t 2 T,
and 0 otherwise

tpsq equals 1 if transportation from site s 2 Sσ to site q 2 Sλ of the SC stages
(σ, λ) 2 K is conducted, and 0 otherwise

tpsqt equals 1 if transportation from site s 2 Sσ to site q 2 Sλ of the SC stages
(σ, λ) 2 K is conducted in time t 2 T, and 0 otherwise

uds auxiliary variable representing the variable recycling costs at site s 2 Sσ of
SC stage σ ¼ 1, . . ., W, W + 2

ufs auxiliary variable representing the variable disposal costs at site s 2 Sσ of
SC stage σ ¼ 1, . . ., W, W + 2

ups auxiliary variable representing the fixed and variable production costs at
site s 2 Sσ of SC stage σ ¼ 1, . . ., W, W + 2

urs auxiliary variable representing the fixed costs of reverse operations at site
s 2 Sσ of SC stage σ ¼ 1, . . ., W, W + 2

vsqU auxiliary variable (see set NsqU)
vet auxiliary variable representing the overall monetary consequences of

environmental decisions in time t 2 T
vot auxiliary variable representing the overall monetary consequences of

decisions on operations in time t 2 T+
vst auxiliary variable representing the overall monetary consequences of

decisions on site states in time t 2 T
xsq transportation quantity from site s 2 Sσ to site q 2 Sλ of SC stages (σ, λ) 2 K
xsqt transportation quantity from site s 2 Sσ to site q 2 Sλ

of SC stages (σ, λ) 2 K in time t 2 T
ys equals 1 if production/storage at site s 2 Sσ of SC stage σ ¼ 1, . . ., W is

conducted [for all continuous-time models], or if market site s 2 SW + 1 is
selected [for all continuous-time models except the one for perishable
goods, see Sect. 6.1.2], and 0 otherwise
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