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Chapter One

Introduction

This text has several parts:
In the first part of the text we develop a small-cancellation theory over cube

complexes. When the cube complex is 1-dimensional, we obtain the classical
small-cancellation theory, as well as the closely related Gromov graphical small-
cancellation theory.

It is hard to say what the main result is in the first part, since it seems the
definitions are more important than the theorems. For this and the second part,
the reader might wish to scan the table of contents to get a feel for what is
going on. We give the following sample result to give an idea of the scope here.
In ordinary small-cancellation theory, when W1, . . . ,Wr represent distinct con-
jugacy classes, the presentation 〈a, b, . . . |Wn1

1 , . . . ,Wnr
r 〉 is “small-cancellation”

for sufficiently large ni. In analogy with this we have the following:

C6-sample. Let X be a nonpositively curved cube complex. Let Yi→X be a local-
isometry with Yi compact for 1≤ i≤ r such that each π1Yi is malnormal, and
π1Yi, π1Yj do not share any nontrivial conjugacy classes. Then 〈X | ̂Y1, . . . , ̂Yr〉
is a “small-cancellation” cubical presentation for sufficiently large “girth” finite
covers ̂Yi→Yi.

Many other general small-cancellation theories have been propounded. For
instance two such graded theories directed especially towards Burnside groups
were produced by Olshanskii and McCammond. Stimulated by Gromov’s ideas of
small-cancellation over word-hyperbolic groups, there have been later important
works of Olshanskii, followed by more recent theories “over relatively hyperbolic
groups” by Osin [Osi06] and Groves-Manning [GM08]. The theory we propose
is decidedly more geometric, and arguably favors explicitness over scope. How-
ever, although it may be more limited by presupposing a nonpositively curved
cube complex as a starting point, it has the advantage of not presupposing (rel-
ative) hyperbolicity—yet some form of hyperbolicity must lurk inside for there
to be any available small-cancellation.

In the second part of the text we impose additional conditions that lead to
the existence of a wallspace structure on the resulting small-cancellation pre-
sentation. We can illustrate the nature of the results with the following sample: −1
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B6-sample. Let G be an infinite word-hyperbolic group acting properly and cocom-
pactly on a CAT(0) cube complex. Let H1, . . . , Hk be quasiconvex subgroups that
are not commensurable with G. And suppose that each Hi has separable hyper-
plane stabilizers. There exist finite index subgroups H ′

1, . . . , H
′
k such that the

quotient G/〈〈H ′
1, . . . , H

′
k〉〉 has a codimension-1 subgroup.

Here 〈〈A,B, . . .〉〉 denotes the normal closure of {A∪B ∪ · · · } in the group.
In the third part of the text, we probe further and seek a virtually special

cubulation.
We then prove the following:

Theorem A (Special Quotient Theorem). Let G be a word-hyperbolic group
that is virtually the fundamental group of a compact special cube complex. Let
H1, . . . , Hr be quasiconvex subgroups of G. Then there are finite index subgroups
H ′

i ⊂Hi such that: G/〈〈H ′
1, H

′
2, . . . , H

′
r〉〉 is virtually special.

We then prove the following:

Theorem B (Quasiconvex Hierarchy ⇒ Virtually Special). Let G be a word-
hyperbolic group with a quasiconvex hierarchy, in the sense that it can be decom-
posed into trivial groups by finitely many HNN extensions and amalgamated free
products along quasiconvex subgroups. Then G is virtually special.

There are two important applications of the virtual specialness of groups with
a quasiconvex hierarchy: It is applied to hyperbolic 3-manifolds with a geomet-
rically finite incompressible surface to reveal their virtually special structure.
This resolves the subgroup separability problem for fundamental groups of such
manifolds. It also completes a proof that Haken hyperbolic 3-manifolds are vir-
tually fibered. It is also applied to resolve Baumslag’s conjecture on the residual
finiteness of one-relator groups with torsion.

The fourth part of the text deals with groups that are hyperbolic relative
to virtually abelian subgroups, and provides similar structural results for many
such groups when they also have quasiconvex hierarchies.

-1
0
1



125-86147 Wise Groups 3p 30th January, 2021 21:14 6.125x9.25 Page 3

Chapter Two

CAT(0) Cube Complexes

2.a Basic Definitions

An n-cube is a copy of [− 1
2 ,

1
2 ]

n, and a 0-cube is a single point. We regard the
boundary of an n-cube as consisting of the union of lower dimensional cubes. A
cube complex is a cell complex formed from cubes, such that the attaching map
of each cube is combinatorial in the sense that it sends cubes homeomorphically
to cubes by a map modeled on a combinatorial isometry of n-cubes. The link
of a 0-cube v is the complex whose 0-simplices correspond to ends of 1-cubes
adjacent to v, and these 0-simplices are joined up by n-simplices for each corner
of an (n+1)-cube adjacent to v.

A flag complex is a simplicial complex with the property that each finite set
of pairwise-adjacent vertices spans a simplex. A cube complex C is nonpositively
curved if link(v) is a flag complex for each 0-cube v ∈C0.

Two-dimensional nonpositively curved complexes with one 0-cell, are a spe-
cial case of the C(4)-T (4) small-cancellation presentations that have old roots
within combinatorial group theory. The nonpositively curved cube complexes
were introduced to geometric group theory by Gromov in [Gro87] as a source
of examples of high-dimensional metric spaces with nonpositive curvature. The
supporting details of this theory were given by Moussong, Bridson, and Leary,
in the locally finite, finite dimensional, and general cases. We refer to [Mou88,
Lea13] but especially to [BH99] for a general account of CAT(0) geodesic metric
spaces.

2.b Right-Angled Artin Groups

Let Γ be a simplicial graph. The right-angled Artin group or raag or graph group
G(Γ) associated to Γ is presented by:

〈 v : v ∈ vertices(Γ) | [u, v] : (u, v)∈ edges(Γ) 〉.

For our purposes, the most important example of a nonpositively curved cube
complex arises from a right-angled Artin group. This is the cube complex C(Γ)
containing a torus Tn for each copy of the complete graph K(n) appearing in Γ
[CD95, MV95]. The cube complex C(Γ) is sometimes called a Salvetti complex.

−1
0
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Each added torus Tn is isomorphic to the usual product (S1)n obtained by
identifying opposite faces of an n-cube. Note that π1C(Γ)∼=G(Γ) since the 2-
skeleton of C(Γ) is the standard 2-complex of the presentation above.

To see that C(Γ) is nonpositively curved we must show that link(a) is a flag
complex where a is the 0-cube of C(Γ). Each vertex of link(a) corresponds to
an element of Γ0×{±1}. A set of vertices form an n-simplex precisely if they
correspond to a corner of an (n+1)-cube of c, which holds precisely if they
correspond to n+1 distinct generators oriented arbitrarily, that is, an (n+1)-
clique of Γ with a ±1 associated to each vertex. It is then clear that link(a)
is simplicial as the intersection of simplices is a simplex. Moreover, link(a) is a
flag-complex, since the 2n different ways of orienting the vertices of an n-clique
correspond to the 2n different corners of the associated n-cube of c, and hence
each collection of pairwise-adjacent vertices spans a simplex of link(a).

2.c Hyperplanes in CAT(0) Cube Complexes

Simply-connected nonpositively curved cube complexes are called CAT(0) cube
complexes because they admit a CAT(0) metric where each n-cube is isometric
to [− 1

2 ,
1
2 ]

n⊂R
n; however we shall rarely use this metric.

The crucial characteristic properties of CAT(0) cube complexes are the sepa-
rative qualities of their hyperplanes: A midcube is the codimension-1 subspace of
the n-cube [− 1

2 ,
1
2 ]

n obtained by restricting exactly one coordinate to 0. A hyper-
plane is a connected nonempty subspace of the CAT(0) cube complex C whose
intersection with each cube is either empty or consists of one of its midcubes.
The 1-cubes intersected by a hyperplane are dual to it. We will discuss immersed
hyperplanes within a nonpositively curved cube complex in Section 6.a.

Remark 2.1. Hyperplanes in a CAT(0) cube complex C have several important
properties [Sag95]:

(1) If D is a hyperplane of C then C −D has exactly two components.
(2) Each midcube of a cube of C lies in a unique hyperplane.
(3) Regarding each midcube as a cube, a hyperplane is itself a CAT(0) cube

complex.
(4) The union N(D) of all cubes that D passes through is the carrier of D and

is a convex subcomplex of C (see Section 2.d) that is isomorphic to D× I.

Here I = [− 1
2 ,+

1
2 ] is a 1-cube

2.d Geodesics and the Metric

Although we have defined the standard 1-cube to be a copy of [− 1
2 ,

1
2 ], it will

often be convenient to consider real intervals as 1-dimensional cube complexes
whose vertices are the integer points. In particular, we let In denote the interval

-1
0
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[0, n] subdivided so that all integers are vertices. A length n path from x to y
in a cube complex X is a combinatorial map In→X where 0, n �→x, y ∈X0.
A path is a geodesic if there is no shorter length path with the same end-
points. We emphasize that geodesics are almost never unique when dim(X)≥ 2,
indeed there are n! distinct geodesics connecting vertices at opposite corners
of an n-cube. We define the distance between 0-cubes in a connected nonpos-
itively curved cube complex to be the length of a geodesic between them. As
usual, this provides a genuine metric on the 0-cells of the 1-skeleton. More-
over we are then able to declare the distance d(A,B) between subcomplexes as
the minimal distance d(a, b) where a, b∈A0, B0. We also define the diameter
diam(Y ) of a connected complex to be the supremum of the lengths of geodesics
in Y .

The combinatorial viewpoint we have adopted does not use the CAT(0)
comparison metric, and we refer to [BH99] for an extensive account of that
viewpoint—for cube complexes and many other spaces.

2.e Properties of Minimal Area Cubical Disk Diagrams

This section was motivated by lectures of Andrew Casson from the University
of Texas at Austin in the ’80s (apparently on generalized C(4)-T (4) presenta-
tions related to Heegaard decompositions). I am grateful to Yoav Moriah who
shared his notes with me and to Michah Sageev who encouraged me to take
a look at this. Part of this material was explained using the alternate view-
point of “pictures” in [Sag95, Sec 4.1]. While the results are easy, I had not
previously considered the relevance of disk diagrams to cubical complexes of
dimension ≥ 3. The viewpoint here, and in particular Lemma 2.3, is due to Cas-
son. We note that the properties listed in Remark 2.1 can be deduced from this
viewpoint.

A disk diagram D is a compact contractible combinatorial 2-complex with
a chosen planar embedding D⊂R

2. Its boundary path or boundary cycle ∂pD
is the attaching map of the 2-cell containing the point at ∞ where we regard
R

2 ∪∞ to be the 2-sphere. The disk diagram D is trivial if it consists of a single
0-cell. A spur of D is an open edge in ∂D that ends on a valence 1 vertex of ∂D.
Note that there is a spur for each backtrack in ∂pD. A 1-cell of D is isolated if it
does not lie on the boundary of any 2-cell. A 0-cell v of D is singular if link(v)
is not isomorphic to a cycle, i.e., D does not look like R

2 at v. The diagram
D is singular if it has a singular 0-cell. Equivalently D is singular if it is not
homeomorphic to a closed 2-ball, in which case D is either trivial, has a cut
vertex, or consists of a single isolated edge.

We say D is a square disk diagram if it is a cube complex, i.e., all its 2-cells
are squares. Many of the arguments below are by induction on Area(D) which
equals the number of squares in D. (We note that there are instances where it is
more natural to instead count the number of edges or even the number of cells
in D.)

−1
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Figure 2.1. Dual curves in a square complex disk diagram.

Figure 2.2. A bigon, nongon, monogon, and oscugon.

A diagram in a complex X is a combinatorial map D→X where D is a
disk diagram. In this section, we study cubical disk diagrams which are disk
diagrams in a nonpositively curved cube complex X. Of course, every cubical
disk diagram is a square disk diagram.

We often use the following standard fact about the existence of disk diagrams
(see [§2.2] [ECH+92] or [LS77]):

Lemma 2.2 (van Kampen). A closed combinatorial path P →X is nullhomotopic
if and only if there exists a diagram D→X with P ∼= ∂pD so that there is a
commutative diagram:

∂pD → D

‖ ↓
P → X

LetD be a square disk diagram. The dual curves inD are (noncombinatorial)
paths that are concatenations of midcubes of squares of D. In addition, the
midcube of an isolated edge of D provides a dual curve that is a trivial path.
Note that when D→ ˜X is a disk diagram in a CAT(0) cube complex, each dual

curve maps to a hyperplane of ˜X.
The 1-cells crossed by a dual curve are dual to it. Note that each midcube

lies in a unique maximal dual curve (or cycle). One simply extends outwards
uniquely across dual 1-cells. A bigon is a pair of dual curves that cross at their
first and last midcubes. A monogon is a single dual curve that crosses itself at
its first and last midcubes.

An oscugon is a single dual curve that starts and ends at distinct dual 1-
cells that are adjacent but don’t bound the corner of a square. A nongon is a
single dual curve of length ≥ 1 that starts and ends on the same dual 1-cell,
so it corresponds to an immersed cycle of midcubes. We refer the reader to
Figure 2.2.

-1
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Figure 2.3. On the left is a smallest possible bigon. On the right is a monogon
which must contain a smaller bigon.

Lemma 2.3. Let D→X be a disk diagram in a nonpositively curved cube com-
plex. If D contains a bigon, nongon, or oscugon, then there is a new diagram
D′ such that:

(1) D′ and D have the same boundary path, so ∂pD
′→X equals ∂pD→X,

(2) Area(D′)≤Area(D)− 2, and
(3) pairs of edges on ∂pD

′ that lie on the same dual curve of D′ are precisely
the same as pairs of edges on ∂pD that lie on the same dual curve of D.

Corollary 2.4. No disk diagram contains a monogon.
If D has minimal area among all diagrams with boundary path ∂pD, then D

cannot contain a bigon, a nongon, or an oscugon.

Proof. The second statement follows immediately from Lemma 2.3. Consider
a minimal area counterexample D to the first statement: So D contains an
immersed rectangular strip [− 1

2 ,
1
2 ]× [0, n] of squares whose first and last square

map to the same “cross-square,” and this strip carries a dual curve σ at {0}×
[0, n]. We may assume n> 2 as if n=2 then two adjacent edges at the corner of
the cross-square are identified, and this violates the nonpositive curvature of the
nonpositively curved cube complex X that D maps to, and if n=1 then a square
fails to embed in X. Choosem with 1<m<n. Then the 1-cube {12}× [m− 1,m]
is dual to a dual curve λ which must cross σ a second time. We can therefore
apply Lemma 2.3 to replace D by D′ and obtain a smaller area diagram that is
still a counterexample by Condition 2.3.(3).

Proof of Lemma 2.3. Reducing to the bigon case: Consider a monogon, non-
gon, oscugon, or bigon within D that is smallest in the sense that the smallest
subdiagram E containing it has minimal area. We first observe this smallest
situation must arise from a bigon. Indeed, for a monogon, nongon, or oscugon,
the associated dual curve α has length ≥ 1, for by the nonpositive curvature
of the cube complex, squares locally embed, and so even for a monogon, the
dual curve must pass through at least one more square besides its self-crossing
square. Thus, as illustrated on the right in Figure 2.3, a second dual curve β
crosses α and then must cross α a second time to exit. The pair α, β then pro-
vides a smaller situation. We next observe that α and β cannot contain a proper
subpath that is a nongon or oscugon, for this would likewise lead to a smaller
situation.

−1
0
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⇒ ⇒

Figure 2.4. Some hexagon moves.

We are thus led to examine a bigonal diagram E which is a subdiagram
with the property that each of its squares is either: one of the squares s1, s2
where α, β intersect; or a square with a midcube traversed by exactly one of
α, β; or a square contained inside the bigon formed by α, β. Moreover, the big-
onal diagram has the additional feature that the rectangles carrying α, β both
embed.

Zipping a bigon: We now show that any bigonal subdiagram can be
replaced by a disk diagram with the same boundary path but smaller area.
Specifically, we will perform a slight modification to obtain a disk diagram with
the same boundary but containing a smaller area bigonal diagram, and hence
this smaller disk diagram itself can have its area reduced by 2.

The “base case” arises from two squares meeting along a corner as on the
left in Figure 2.3. By nonpositive curvature, these two squares map to the same
square in X, and hence we can remove this cancellable pair to decrease the area,
by replacing the pair of squares by a pair of edges glued together at a point.

Observe that every dual curve in E other than α, β must pass through both
α and β, since otherwise there would be a smaller bigon.

A hexagon move on a diagram D is the replacement of three squares form-
ing a subdivided hexagon by an alternate three squares forming a subdivided
hexagon. This corresponds to pushing a hexagon on one side of a 3-cube to
obtain the hexagon on the other side.

The plan is to find a (certain type of) minimal triangle in the complement
of the dual curves, and to then perform a hexagon move to obtain a new disk
diagram with a smaller bigon as in Figure 2.4. The first type of minimal triangle
has one side on α and one side on β and no dual curves passing through it. The
second type has its base on α, and neither of its two other sides are subsegments
of β.

If there is at least one crossing pair of dual curves as on the right of Figure 2.5,
then we shall show below that the second type of triangle exists, and so we
can perform a hexagon move of the second type. Hence by induction, the new
diagram can have its area reduced by 2. If the bigon contains no crossing pair
of dual curves as on the left in Figure 2.5, then the first type of triangle occurs,
and so we can perform a hexagon move of the first type. We emphasize that a
first type hexagon move can then be performed in either direction, i.e., at each
corner (and this is the crucial point in obtaining Lemma 2.6 below).

Hexagon moves do not affect the boundary path (nor affect whether or not
dual curves cross within the diagram); they simply adjust the route that dual
curves take within a diagram, and hence Condition 2.3. (3) holds.

-1
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Figure 2.5. Dual curves of a bigonal diagram.

β β
σ

?
∆

vuβ

Figure 2.6. The directed graph Λ formed from dual curves cannot have a directed
cycle.

A minimal triangle exists: The collection of dual curves within our bigon
forms a graph Λ, and we make Λ into a directed graph by orienting all dual
curves upwards from α to β, and thus orienting each edge of Λ (see the left of
Figure 2.6). Observe that Λ has no directed cycle. Indeed, consider a directed
cycle ξ. Suppose that ξ travels counterclockwise—as an analogous argument
works in the clockwise case. Among the dual curves contributing edges to ξ, let
σ denote the one having rightmost intersection with α. Let λ denote the next
dual curve contributing an edge in the directed cycle ξ. Then λ would intersect
α even further to the right which is impossible (see the middle of Figure 2.6).
Here we use that each pair of dual curves intersect only once which follows from
the minimality assumption on the bigon.

Each vertex of Λ (not on α, β) is the “top” of a triangle whose base is on
α. Choose a vertex v that is minimal (excluding the leaf vertices on α) in the
partial ordering induced by the directed graph with no directed cycles. Then the
corresponding triangle Δ is our desired triangle of the second type. Indeed, if any
other dual curve crosses either leg of Δ then there would be an even lower vertex
u, which contradicts the minimality of v (as on the right of Figure 2.6).

We shall later use the term shuffle to refer to an adjustment of a disk diagram
obtained through a finite sequence of hexagon moves.

Definition 2.5 (Cornsquare). Let D→X be a disk diagram. A cornsquare in D
consists of a 2-cube c in D and dual curves α, β emanating from consecutive
edges a, b of c that terminate on consecutive edges a′, b′ of ∂pD. The path a′b′

is the outerpath of the cornsquare.
We refer the reader to Figure 2.7. Note that we allow the possibility that

there are squares in D between α, β. However, D can be shuffled so that there
−1
0
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Figure 2.7. Three cornsquares in a disk diagram D. The outerpath of each is the
corresponding red horizontal subpath of ∂pD. Note thatD has other cornsquares
besides these.

are no such squares, and moreover, following Lemma 2.6, D can be shuffled so
that a′b′ actually forms the corner of a square.

The term “cornsquare” is short for “corner of generalized square” which
captures the idea that there is a hidden square along a′b′, and although it might
possibly be remote, it can be brought towards ∂pD by shuffling. This notion
arises again in Section 2.i and will play an important role in the more general
context of Chapter 3.

The final part of the argument of Lemma 2.3 leads to the following useful
point that we frequently employ.

Lemma 2.6 (Crossing pair has a square). Let D→X be a diagram in a nonposi-
tively curved cube complex. Suppose D contains a cornsquare whose outerpath is
a′b′. Then there is another diagram D′→X with Area(D′)≤Area(D) such that
D′ contains a square whose boundary path contains a′b′.

In particular, let D→X be a diagram containing dual curves α, β that are
dual to consecutive edges a′, b′ of a square, and also dual to edges a, b with a
common endpoint. Then the images of a, b in X bound the corner of a square
of X.

Proof. The “zipping bigon” part of the proof of Lemma 2.3 only used that there
was a square on one corner of the bigonal diagram. The sequence of moves
either push squares outwards through the top or bottom dual curves, or they
push hyperplanes past a′, b′ resulting in a shorter bigon. The final stage of this
sequence is a diagram consisting of a single square on a, b.

Remark 2.7. Let α, β be dual curves intersecting in a minimal area diagram
D→X. There is a cornsquare or spur in each of the four “quadrants” of D
subtended by α, β. Indeed, let aPb be a subpath of ∂pD, with a dual to α and b
dual to β, that does not contain a backtrack. Consider an innermost pair e1, e2
of edges in aPb whose dual curves σ1, σ2 are either equal or cross. Then e1, e2
must be consecutive and hence provide a cornsquare or spur. Indeed, an edge e3

-1
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b1 b2P

β

Figure 2.8. The digraph Λ consists of parts of the dual curves in D between
b1Pb2 and β. The two vertices without ancestors correspond to squares with a
corner on b1Pb2.

between e1, e2 would have a dual curve σ3 that either returned to aPb between
e1, e2 or that crosses σ1 or σ2, and this violates innermostness of e1, e2.

We now repeat the argument at the end of the proof of Lemma 2.3 to glean
a bit more information:

Lemma 2.8 (Square or spur on each side). Let D→X be a minimal area disk
diagram in a nonpositively curved cube complex. Let β be a dual curve in D that
starts and ends on edges b1, b2 where b1Pb2 is a subpath of ∂pD. Then b1Pb2
contains a length 2 subpath e1e2 such that either e1e2 is a backtrack at a spur
of D, or e1e2 bounds the corner of a 2-cube of D.

Proof. It suffices to assume that β is innermost, in the sense that the curve dual
to each edge of P must cross β. If P is trivial, then since D has no oscugon by
Corollary 2.4, we see that b1, b2 traverse the same edge, which is a spur and we
are done with b1, b2 = e1, e2. More broadly, innermostness allows us to assume
that b1Pb2→D embeds, for otherwise there would be a cutpoint in D, which
would subtend a diagram containing a dual curve that violates the innermost
assumption.

Consider the graph Λ whose vertices are centers of squares in the P -component
of D−β, and whose edges are parts of dual curves joining centers of adjacent
squares. We refer the reader to Figure 2.8. We direct Λ by directing β from b1
to b2, and directing all other dual curves from P to β. As in the end of the proof
of Lemma 2.3, there is no directed cycle ξ in Λ. Indeed, ξ cannot have an edge
on β, for then an edge of Λ is directed away from β which contradicts that dual
curves are directed from P to β. Regard traveling up towards β and then in the
direction of β as “clockwise.” Suppose ξ were a cycle not containing an edge
on β and assume it travels counterclockwise (a similar argument works in the
clockwise case). Among the dual curves forming ξ, let σ denote the one which
intersects P closest to b2. As there are no bigons or monogons by Lemma 2.3,
the next dual curve λ that ξ provides would have to intersect P closer to b2,
which is impossible.

−1
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Since Λ has no directed cycle, it has a vertex v with no ancestor. Then v is
the center of a square s with consecutive edges e1e2 forming a subpath of P .
Indeed, each dual curve (other than β) travels from P to β, for otherwise we
would either contradict that β is innermost, or there would be a bigon. Hence
the two incoming dual curves at v arrive from edges of b1Pb2 that lie on s, as
otherwise v would have an ancestor.

2.f Convexity

Although the basic properties of CAT(0) cube complexes and their hyperplanes
have been explained many times in the literature, the reviewers have asked me
to sketch some of these properties from the diagrammatic viewpoint elaborated
upon in Section 2.e.

A subcomplex Y ⊂X of the CAT(0) cube complex is convex if for each pair
of vertices a, b∈Y 0, each (combinatorial) geodesic joining a, b lies in Y .

Lemma 2.9. The intersection of two convex subcomplexes is a convex sub-
complex.

Proof. This follows immediately from the definitions.

Lemma 2.10 (Helly property). Let X be a CAT(0) cube complex. Let Y1, . . . , Yn
be finitely many convex subcomplexes. Suppose Yi ∩Yj �= ∅ for each i, j. Then
∩ni=1Yi �= ∅.

Proof. We first show this is true in the base case when n=3. For i �= j let xij be
a vertex in Yi ∩Yj . Let Pi be a geodesic in Yi from xki to xij . Let D be a disk
diagram for P1P2P3. Finally, choose the above such that Area(D) is minimal.

Consider a square s in D. Since each Pi is a geodesic, no dual curve in D
has both ends on the same Pi. Thus by the pigeon-hole principle, for some i,
each dual curve through s has an end on Pi. We thus have a cornsquare on Pi

and hence after shuffling we can reduce the area which is impossible. Thus D is
a tripod, and its central point is an element of Y1 ∩Y2 ∩Y3.

We now use the base case to help us prove the result by induction: For
1≤ i<n let Y ′

i =Yi ∩Yn. Since Yi, Yj , Yn have pairwise nonempty intersection
by hypothesis, the special case implies that Y ′

i ∩Y ′
j =Yi ∩Yj ∩Yn �= ∅. Thus

∩ni=1Yi =∩n−1
i=1 Y

′
i �= ∅ by induction.

An immersion is a local injection. A map φ :Y →X between nonpositively
curved cube complex is a local-isometry if it is an immersion and for each y ∈Y 0,
whenever u, v are ends of 1-cubes at y, if φ(u), φ(v) form a corner of a 2-cube in
X at φ(y), then u, v form a corner of a 2-cube in Y . A subcomplex that embeds
by a local-isometry is locally-convex. A connected locally-convex subcomplex
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˜Y of a CAT(0) cube complex ˜X is called convex. Equivalently, a connected
subcomplex Y ⊂X of a CAT(0) cube complex is convex if: for each cube c of X
with dim(c)≥ 2, if an entire corner of c lies in Y then all of c lies in Y . It can be

deduced from the viewpoint in Section 2.e that for a CAT(0) cube complex ˜X,

a subcomplex ˜Y ⊂ ˜X is convex if and only if firstly: an n-cube lies in ˜Y precisely
when its (n− 1)-skeleton lies in ˜Y , and secondly: P lies in ˜Y whenever P → ˜X
is a geodesic path whose endpoints lie in Y 0.

The combinatorial notion of convexity we employ here is consistent with
the usual notion of convexity one encounters for geodesic metric spaces. Indeed,
a subcomplex ˜Y ⊂ ˜X is “combinatorially convex” as defined above precisely

when it is “metrically convex” (in the CAT(0) metric) in the sense that P ⊂ ˜Y

whenever P → ˜X is a (not necessarily combinatorial) geodesic with endpoints

in ˜Y .

Lemma 2.11 (Locally-convex ⇒ convex). Let X and Y be CAT(0) cube com-
plexes. Let Y →X be a local-isometry. Then Y →X is an embedding, and its
image is a convex subcomplex.

In particular, a connected locally-convex subcomplex is convex.

Proof. Consider a geodesic P →X that is path-homotopic to a pathQ→Y →X.
Let D be a disk diagram between P →X and Q→X. Assume (Area(D), |Q|)
is minimal in the lexicographical order among all possible choices with P fixed.
There is no cornsquare on Q for otherwise we could shuffle to obtain a smaller
diagramD′ betweenQ′ and P . Thus each dual curve starting onQ ends on P and
no two cross. Suppose D contains a square s. Then at most one end of one dual
curve through s ends on Q, and so |P | ≥ |Q|+2, so P is not a geodesic. Thus D
is a line and P =Q. Thus Y →X is an isometry, and in particular an embedding.
Moreover, a geodesic P in X with endpoints in Y satisfies P =Q⊂Y .

Corollary 2.12 (Local-isometry π1-injects). If Y →X is a local-isometry of non-
positively curved cube complexes, then π1Y →π1X is injective.

Proof. If σ→Y represents a nontrivial element of π1Y then its lift σ̃→ ˜Y is not
closed. Hence the image σ→X of σ represents a nontrivial element in π1X since
its lift σ̃→ ˜X is also not closed, by Lemma 2.11.

2.g Hyperplanes and Their Carriers

Let M be the disjoint union of all midcubes of a cube complex X. Let M̄ be the
quotient of M obtained by identifying each midcube with the subcube of each
larger midcube that it lies in. Note that the map M→X induces a continuous
map M̄→X. An (abstract) hyperplane of X is a component U of M̄ .

−1
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The (abstract) carrier of U is defined to be N(U)=U × I, and we define
N(U)→X such that for each cube m of U , we have m× I maps isomorphically
to the cube c containing m as a midcube.

Lemma 2.13 (Hyperplanes exist). Let X be a CAT(0) cube complex. Every mid-
cube of a cube of X lies in a hyperplane of X.

Proof. Let U be a component of M̄ . Suppose that U→X is not injective. Then
there is a pair of midcubes of U mapping to the same cube of X. We can
assume these are 1-dimensional midcubes mapping to the same 2-cube s. Let
a, b be the consecutive edges of the 2-cube that these midcubes end on. There is
then a sequence of 1-midcubes joining them, and we thus obtain a corresponding
rectangular strip R that starts with a and ends with b. Let P be a path along one
side of this strip. By possibly extending R by adding a copy of s, we may assume
that P is a closed path in X, and so P bounds a disk diagram E→X. The union
D=E ∪P R is another disk diagram that contains an oscugon associated to the
dual curve carried by R. Applying Lemma 2.3, we obtain a new disk diagram
D′ with the same boundary path as D, but having no oscugons. Thus the initial
and terminal edge of R are identified to a spur in D′ under the composition
R→D→D′. In particular they map to the same edge in X. This contradicts
that a, b are not parallel in s.

Lemma 2.14 (CAT(0) hyperplane properties). Let X be a CAT(0) cube complex.

(1) The map N(U)→X is an embedding for each hyperplane U .
(2) N(U)⊂X is a convex subcomplex.
(3) Each hyperplane is simply-connected.
(4) Let U, V be hyperplanes of X that cross in the sense that they contain distinct

midcubes in a cube. If U, V are dual to 1-cubes a, b that share a 0-cube, then
a, b lie in a common 2-cube.

Proof. We first show that the map φ :N(U)→X is a local-isometry. Let a, b be
edges at a 0-cube v of N(U), and suppose φ(a), φ(b) bound the corner of a square
in X. If one of a, b is dual to U then a, b form the corner of a square in N(U).
If neither is dual to U , then they each form a square with the edge c dual to U
at v, and thus by nonpositive curvature of X, there is a 3-cube bounded by the
three squares with corners at φ(a), φ(b), φ(c). This 3-cube contains a midcube m
that is part of U , and a, b bound the corner of a square parallel to m in m× I.

As we have verified that N(U)→X is a local-isometry, the convexity of
N(U)⊂X holds by Lemma 2.11.

We now show that N(U) and hence U is simply-connected. Consider an
essential closed path P →N(U), such that P →X is nullhomotopic. Let D→X
be a disk diagram with boundary path D. We moreover choose the above such
that (Area(D), |P |) is minimal. IfD has a spur then we can shorten P . Otherwise,
an innermost pair of edges on P with crossing dual curves yields a cornsquare
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in D. By Lemma 2.6 we can shuffle to obtain a new disk diagram with the same
area but with a genuine square having a corner on P . By local convexity, we
can remove it to obtain a smaller area counterexample D′, P ′.

Property (4) holds by Lemma 2.6. Indeed, let a′, b′ denote the edges at the
square s′ where the hyperplanes U, V cross. Choose rectangular strips Ra, Rb

that start at the square s′ and end at the edges a, b. Let E be a disk diagram
between paths Pa, Pb along the bases of Ra, Rb. Let D→X be the diagram
formed by Ra ∪Pa

D∪Pb
Rb. Then Lemma 2.6 provides a square at a, b.

Alternatively, we sketch an explanation depending on convexity (which in
turn depended on Lemma 2.6): Note that N(U)∩N(V ) is a convex subcomplex
which contains a square s′ as well as a vertex a∩ b. Consider a length n geodesic
joining them, and then verify that it extends to a product I × I × [0, n] where
I × I ×{0} maps to s′ and I × I ×{n} maps to a square at a, b.

Let U be a hyperplane in a CAT(0) cube complex X. Let No(U) be the open
carrier consisting of the open cubes intersecting U . We refer to each component
of N(U)−No(U) as a frontier of U . Each frontier is a subcomplex U ×{± 1

2} if
we identify N(U) with U × [− 1

2 ,
1
2 ].

The complement X −U consists of two subspaces called halfspaces. Each
halfspace is associated with two combinatorial halfspaces, namely, the smallest
subcomplex containing it, and a largest subcomplex contained in it, and these
are referred to as a major halfspace and minor halfspace. Note that the major
and minor halfspaces meet along a frontier F , and are the closures of components
of X −F .

Another convenient property of hyperplanes is that:

Corollary 2.15. Let U be a hyperplane of the CAT(0) cube complex X. Each
frontier of U is convex. Each major and minor halfspace is convex.

Proof. Each subcomplex U ×{± 1
2} is a convex subcomplex of N(U), and thus

convex in X as it is a convex subcomplex of a convex subcomplex.
The closure of each component of X − (U ×{± 1

2}) is convex since its bound-
ary U ×{± 1

2} is convex. Indeed, it is sufficient to consider geodesics starting and
ending on the boundary of a component, which is a frontier.

Corollary 2.16. Let γ be a combinatorial path in a CAT(0) cube complex. Then
γ is a geodesic if and only if the hyperplanes dual to the edges of γ are distinct.
Thus the distance between 0-cells equals the number of hyperplanes separating
them.

Proof. Suppose γ is a geodesic, and suppose e1γ
′e2 is a subpath where e1, e2

are dual to the same hyperplane H. Then e1γ
′e2 has endpoints on one of the

subcomplexes H ×{± 1
2}⊂N(H), which is convex by Corollary 2.15, but e1 and

e2 do not lie in this subcomplex, and so its convexity is contradicted.
−1
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Conversely, suppose γ has the property that the hyperplanes dual to its edges
are distinct. Let γ′ be a shortest subpath of γ that is not a geodesic. Let σ be
a geodesic with the same endpoints as γ′. Then |σ| ≥ |γ′| since each hyperplane
dual to an edge of γ′ must separate the endpoints of σ and is hence dual to an
odd number of its edges.

The convex hull of a subset S⊂X is the subcomplex hull(S)⊂X that is the
smallest convex subcomplex of X containing S. Corollary 2.15 and Lemma 2.9
imply that hull(S) lies in the intersection of all minor halfspaces containing S.
We will see from Lemma 2.19 that hull(S) equals this intersection.

For 0-cubes p, q in a CAT(0) cube complex X, the interval I(p, q) is defined
by I(p, q)=hull({p, q}).

Lemma 2.17. For each 0-cube k∈I(p, q) we have d(p, k)+ d(k, q)= d(p, q).
Equivalently, each 0-cell k∈I(p, q) lies on a geodesic from p to q.

Proof. By the triangle inequality, it suffices to verify that d(p, k)+ d(k, q)≤
d(p, q). By Corollary 2.16, d(a, b) equals the number of hyperplanes separating
a, b. First observe that each hyperplane separating exactly one of p, k and k, q,
must also separate p, q. Secondly, we verify that no hyperplane H separates both
p, k and k, q. Indeed, then {p, q} lies in one halfspace of H but k lies in the other.
Hence K lies in the minor halfspace of H containing {p, q}, but k does not, so
k /∈I(p, q).

Lemma 2.18. Let P,Q be convex subcomplexes of the CAT(0) cube complex X.
Consider all paths that start at a vertex of P and end at a vertex of Q, and let
γ have minimal length among all such paths. Then every edge of γ is dual to a
hyperplane that separates P,Q.

Proof. Let p, q be the endpoints of γ in P,Q. Let I = I(p, q) be the inter-
val consisting of the convex hull of {p, q}. Let H be a hyperplane that sep-
arates p, q but intersects P . Since I, N(H), P pairwise intersect, they must
triply intersect by Lemma 2.10, so there exists a 0-cube k∈I ∩N(H)∩P . How-
ever d(k, q)< d(p, q) by Lemma 2.17, and since k∈P this contradicts the choice
of p, q.

As mentioned earlier, minor halfspaces play the following useful role:

Lemma 2.19. A subcomplex Y of a CAT(0) cube complex X is convex if and
only if Y is the intersection of minor halfspaces.

Proof. The intersection of minor halfspaces is convex by Corollary 2.15 and
Lemma 2.9. We now show that if Y ⊂X is convex, then Y is the intersection of
minor halfspaces. Let p be a 0-cube in X −Y . Let γ be a geodesic fom Y to p.
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Figure 2.9. We first add a square along Q→Y to obtain a bigon, and are then
able to reduce the area by 2.

By Lemma 2.18, each hyperplane U dual to an edge of γ separates Y, p. Thus a
minor halfspace of U contains Y but not p.

2.h Splaying and Rectangles

We now describe several related properties concerning the dual curves in minimal
area cubical disk diagrams. We emphasize that our treatment focuses on sub-
complexes and exclusively considers paths that are combinatorial, as discussed
in Section 2.d.

The following is implicit in the proof of Lemma 2.11.

Lemma 2.20 (Splayed). Let Y ⊂X be a convex subcomplex of a CAT(0) cube
complex. Let P be a path whose endpoints lie on Y , and let D be a disk diagram
between P and Y , so there is a [geodesic] immersed path Q→Y with the same
endpoints as P , and D is a diagram for PQ−1. Suppose D has minimal area
among all possible such choices fixing P and Y .

Then there is no intersection in D between dual curves starting on distinct
1-cells of Q.

The statement of Lemma 2.20 holds with Q allowed to vary either among
all such immersed paths, or among all such geodesics. Indeed, the argument by
contradiction given below provides a lower area diagram D without increasing
the length of Q.

Proof. We first show that when a and b are consecutive 1-cells in Q, then the
dual curve in D starting at a is disjoint from the dual curve starting at b.

Suppose a, b are parallel in D to 1-cells a′, b′ that meet at the corner of a
square c′ in D. Since X is CAT(0), by Lemma 2.14.(4), the 1-cells a, b must also
meet at a square c. Since Y is convex, we see that c⊂Y .

We can thus adjust the diagram D to obtain a new diagram D′ formed by
attaching c to Q along a, b. Now Area(D′)=Area(D)+ 1. However, D′ contains
a bigon, and therefore by Lemma 2.3, its area can be reduced by two, to obtain
a new diagram D′′ with Area(D′′)<Area(D). This would contradict the mini-
mality of D. See Figure 2.9.

Suppose there is a dual curve in D that starts on a and ends on b. Since
Q→Y is an immersed path, the edges a, b in D are distinct. The dual curve
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Q
P

Figure 2.10. As on the left, dual curves emanating from edges of Q→D are
splayed in the minimal area diagram D between P and the convex subcomplex
Y ⊂X. The configurations on the right cannot occur.

Q

D D′

P

S2

S1

Figure 2.11.

thus provides an oscugon in D. By Lemma 2.3, there is a new diagram D′ with
the same boundary path, but Area(D′)<Area(D).

The general statement holds by considering an innermost pair of 1-cells
whose dual curves are either equal or intersect. As proven above, these 1-cells
cannot be adjacent. But any 1-cell on Q between them would give another dual
curve, which either intersects one of these, or ends on another 1-cell of Q lying
between them as in the right in Figure 2.10. This contradicts our innermost
assumption.

Lemma 2.21 (Pushing beyond crossings). Let D→X be a minimal area disk
diagram. Let S be a rectangular strip carrying a dual curve in D that starts and
ends on 1-cells s1, s2 such that ∂pD is of the form s1Ps2Q. There exists a new
diagram D′ with ∂pD= ∂pD

′ and Area(D′)=Area(D) such that s1, s2 are still
connected by a strip S′ but the dual curves emanating from S′ to P are splayed:
No two cross each other on the P side of S′.

We refer to the left pair of diagrams in Figure 2.11 indicating the total
transformation from D to D′.

Proof. This follows by repeatedly using hexagonal replacement moves. Consider
an innermost pair of a, b of edges along ∂S whose dual curves cross on the side
bounded by P . If they are not adjacent, then they are not innermost. Note that
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Figure 2.12.

the two dual curves cannot equal each other, or there would be a bigon with S,
and thus the area can be reduced by Lemma 2.3.

Let c be the first square where the dual curves cross. Add a cancellable pair
of copies c′′, c′ of c along a, b. This increases the area by 2, and increases the
area between S and P by 2. Perform a hexagonal replacement along S and the
contiguous copy c′ of c to obtain S′; the area between P and S′ is now one more
than the area between P and S was. Finally the copy c′′ of c has a bigon with
c. We are able to reduce the area by 2. This area reduction is on the P side of
S′, and so the resulting diagram D′ has the property that the area between P
and S′ has been reduced by one. See the sequence of pictures in Figure 2.12 for
a single transformation. Performing this repeatedly yields a new diagram where
S′ has splayed strips on the P side, as claimed.

Remark 2.22. We can apply Lemma 2.21 to understand the potential behavior
between rectangular strips in disk diagrams. Let D be a diagram that has a pair
of disjoint strips. Then we can replace it with a new diagram with the same
boundary and at most as much area, such that the strips are moved inwards
towards each other, but strips emanating from them are now splayed. See the
transformation on the right in Figure 2.11.

This is particularly relevant when we consider a diagram between two con-
vex subspaces Y1, Y2, and in particular, a diagram between a convex subspace
and the carrier of a hyperplane. We are able to reach the conclusion of a “flat
rectangle” between the rectangular strips.

A grid is a complex isomorphic to Im× In for some m,n. We record the
following easy observation. We revisit this later with pseudo-grids in
Section 3.q.

Lemma 2.23. A square disk diagram D is a grid if and only if:

(1) ∂pD is a concatenation ∂pD=V1H1V2H2.
(2) Each dual curve is either vertical and ends on V1, V2 or is horizontal and

ends on H1, H2.
(3) Each horizontal dual curve crosses each vertical dual curve exactly once.
(4) Horizontal dual curves do not cross, and vertical dual curves do not cross.
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Corollary 2.24 (Grid with tails). Let D′→X be a minimal area disk diagram in
a nonpositively curved cube complex. Suppose ∂pD

′ =V ′
1H

′
1V

′
2H

′
2, and D

′ has no
spur or cornsquare with outerpath on V ′

1 , H
′
1, V

′
2 , or H

′
2. Then D

′ is the union of
a grid D together with a (possibly trivial) arc Aij attached at the four corners of
D, where ∂pD=V1H1V2H2, and the corners are at the four concatenation points.

Proof. Suppose a dual curve σ starts on V ′
i and ends on H ′

j . We claim σ is
trivial, as otherwise, σ crosses another dual curve σ′, and since σ, σ′ intersect
at a single point, σ′ has an endpoint on V ′

i or H ′
j , so there is a cornsquare on

V ′
i or H ′

j . Thus D
′ has four (possibly trivial) arcs Aij =V ′

i ∩H ′
j , and removing

these four arcs yields a diagram D that is a grid by Lemma 2.23.

2.i Annuli

This section can be postponed until annuli arise in Chapter 14 and more impor-
tantly Section 5.o and its sequels.

An annular diagram is a compact complex A with π1A∼=Z such that there
is a chosen planar embedding A⊂R

2. The annular diagram has two boundary
paths or boundary cycles which correspond to the attaching maps of the two
2-cells that can be added to A to form a 2-sphere S2.

An annular diagram in a complex X is a combinatorial map A→X where
A is an annular diagram. It is natural to refer to A as an annular diagram
between P1 and P2 as A indicates the homotopy between them as in the following
standard analog of Lemma 2.2 (see [LS77]): Let P1→X and P2→X be closed
paths in X. Then there is a homotopy between them if and only if there is an
annular diagram A→X, such that each Pi→X factors as Pi→A→X where
each Pi→A is a boundary path of A. Moreover, identifying the subdivided
circles P1 with S1×{0} and P2 with S1×{1}, the homotopy S1× [0, 1]→X
factors as S1× [0, 1]→A→X.

We say A is singular if A is not homeomorphic to a cylinder, and we adopt
the terminology used for disk diagrams: isolated 1-cell, singular 0-cell, spur, and
so forth. We now turn to studying annular diagrams in a nonpositively curved
cube complex X. The annular diagram is then a square complex, and we define
its dual curves as we did for a disk diagram. We define a cornsquare in A as in
Definition 2.5 except that we require that the dual curves emanating from the
cornsquare do not enclose a boundary path of A—as for instance in the third
annulus in Figure 2.13.

A flat annulus is an annular diagram A with the property that each dual
curve is either closed or has an end on each boundary path of A, and that for
each square, at least one of its dual curves is closed.

Lemma 2.25 (Flat annulus). Let A→X be an annular diagram. Suppose there
is no spur and no cornsquare with outerpath on a boundary path of A. Then A
is a flat annulus.
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Figure 2.13. Two flat annuli are illustrated on the left. The second is a prod-
uct. The first has only one closed dual curve, and it self-crosses several times.
The third and fourth figure illustrate the situation where a dual curve has
both ends on the same boundary path, in which case one can find a cornsquare.

We are especially interested in flat annuli that are minimal area, in which
case they do not contain any bigons. We note however that a flat annulus A that
is not a product will have a finite cover that contains bigons. The first annulus
in Figure 2.13 illustrates a simple but typical example of the type of annulus
examined in Lemma 2.25. This contrasts with the motivating case of a product,
illustrated by the second annulus in Figure 2.13. The reader can imagine more
elaborate examples.

Proof. Suppose d is a dual curve that starts and ends on the outer boundary
path. We will show that there is a cornsquare. The analogous argument works
when d starts and ends on the inner boundary path.

If d doesn’t cross itself, then we choose the side of d not containing the
inner boundary path. If d crosses itself, then we consider a minimal initial
and terminal part of d that cross at some square, and choose the side of the
diagram they subtend which does not contain the inner boundary path. The
“chosen” sides are shaded in the third and fourth diagrams in Figure 2.13. In
either case, our chosen side of the diagram contains an innermost pair of dual
curves that cross each other, and within this lies the claimed cornsquare, as in
Remark 2.7.

Now suppose there is a square s with two dual curves that end on the same
boundary path of A. This forms a “triangle” whose top is in s and whose base
is on ∂A. An innermost such triangle yields a cornsquare in A.

Remark 2.26. The dual curves not ending on ∂A can travel around A, but we
cannot always choose the annular diagram so that these dual curves do not
self-cross. For instance, we refer the reader to the annular diagram at the very
left of Figure 2.13. While minimal area of the diagram can help avoid some
such self-crossing behavior, there is no way to avoid it in general, and we can
only conclude that the “horizontal” dual curves travel “around” A, possibly
multiple times. Of course, in the special case when immersed hyperplanes of X
do not cross themselves, self-crossing of dual curves is impossible for any annular
diagram mapping to X.
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