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Preface

Mathematical finance provides a quantitative description of financial markets, more
specifically markets for exchange-traded assets, using mostly dynamic stochastic
models. It is used to tackle three basic issues.

* Valuation of assets
What can reasonably be said about the price of a financial asset? As opposed to
economic theory, mathematical finance focuses mainly on relative valuation of
securities in comparison to other assets. This is particularly useful and in fact
indispensable for derivative securities, which are by definition strongly linked to
corresponding underlying quantities in the market.

e Optimal or at least reasonable portfolio selection
How shall an investor choose her portfolio of liquid securities? Here, the focus
is on hedging, i.e. on minimising the risk which arises, for example, from selling
derivative contracts to customers.

e Quantification of risk
The random nature of asset prices naturally involves the risk of losses. How can
it be quantified reasonably?

Mathematical finance has grown into a field which is by far too broad to be covered
in a single book. Markets, products and risks are diverse and so are the mathematical
models and methods which they require.

The starting point and focal point of this present monograph is continuous-time
stochastic processes allowing for jumps. Most textbooks on mathematical finance
are limited to diffusion-type setups, which cannot easily account for abrupt price
movements. Such changes, however, play an important role in real markets, which
is why models with jumps have become an established tool in the statistics and
mathematics of finance. Just as importantly, purely discontinuous processes lead
to a much wider variety of, at the same time flexible and tractable, models. For
example, their marginal laws are often known explicitly, which is typically not the
case for diffusions.
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viii Preface

Compared to the abundant literature on continuous models, such as [29, 78, 149,
187, 204, 223, 223, 279], and many more, there still seems to be a scarcity of text-
books allowing for processes with jumps. Notable exceptions are the monographs
[60] and [38, 160, 276]. Other useful texts such as [143, 263], address more specific
questions rather than general principles of financial mathematics.

Our goal is twofold:

e to give an account of general semimartingale theory, stochastic control and
specific classes of processes to the extent needed for the applications in the
second part

* to introduce basic concepts such as arbitrage theory, hedging, valuation princi-
ples, portfolio choice and term structure modelling

In a single monograph, we cannot give a comprehensive overview of stochastic
models with and without jumps in mathematical finance. Rather, we provide an
introduction to the basic building blocks and principles, helping the reader to
understand the advanced research literature and to come up with concrete models
and solutions in more specific situations.

The book is divided into two parts. Part I introduces the stochastic analysis of
general semimartingales along with the basics of stochastic control theory. We do
not cover the whole theory with complete proofs, which can be found in a number
of excellent mathematical monographs. Rather, we focus on concepts and results
that are needed to apply the theory to questions in mathematical finance. Proofs
are mostly replaced by informal illustrations along with references to the literature.
Nevertheless, we made an effort to provide mathematically rigorous definitions and
theorems.

Part II turns to both advanced models and basic principles of mathematical
finance. It differs in style from Part I in the sense that results are stated as
engineering-style rules rather than precise mathematical theorems with all the
technical assumptions. For example, we do not distinguish between local and true
martingales, and questions of existence and uniqueness are swept under the rug. This
is done deliberately in order to make basic concepts accessible to the mathematically
less inclined reader who wants to apply advanced stochastic models in practice and
also to the non-specialist who wants to get an overview of the general ideas before
delving more thoroughly into the subject.

The theory of Parts I and II simplifies occasionally if one focuses on stochastic
processes without jumps. Major changes are summarised in Sect. A.7 for the
convenience of the reader. Mathematical finance in the broad sense has produced
some insights, which may seem counterintuitive and hence surprising to the novice
in the field. We collect links to such results in Sect. A.8. Otherwise, the appendix
mostly contains mathematical tools that are needed in the main part on the text.

This book could not have appeared in the present form without the help of
many people. An incomplete list includes Ale§ Cerny, Séren Christensen, Friedrich
Hubalek, Simon Kolb, Paul Kriihner, Matthias Lenga, Johannes Muhle-Karbe, Arnd
Pauwels, and Richard Vierthauer with whom we had long discussions, which had an
effect on the contents of the book. Funda Akyiiz and Britta Ramthun-Kasan assisted



Preface ix

with preparing the manuscript. Partial financial support through DFG Sachbeihilfe
1682/4-1 is gratefully acknowledged. We also benefited from the environment pro-
vided by the Freiburg Institute for Advanced Studies (FRIAS). We thank Catriona
Byrne and Marina Reizakis from Springer-Verlag for their interest, encouragement
and patience.

Errors can hardly be avoided in a text of this size. Since they will be discovered
only gradually, we refer to www.math.uni-kiel.de/finmath/~book for an updated list
of corrections. On this page, you can also find the Scilab code that we have used
to generate the figures and numerical examples. Of course, any comments and in
particular hints to errors are welcome.

Freiburg im Breisgau, Germany Ernst Eberlein
Kiel, Germany Jan Kallsen
June 2019
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Part I
Stochastic Calculus



Overview

A large part of mathematics for finance is written in the language of stochastic
processes, i.e. of random functions of time. The calculus of these processes is
introduced in this first part of the monograph. Some of its concepts naturally
generalise notions from ordinary calculus, others are intrinsically linked to their
probabilistic nature.

Even though this book deals with continuous-time models, we devote the first
chapter to stochastic calculus in discrete time. The results themselves will not
be needed in the sequel but they help to understand the intuition behind the
corresponding concepts in continuous time.

The remaining chapters generalise important notions from ordinary calculus to
the random case. Lévy processes can be viewed as the stochastic counterparts of
linear functions. They are of interest in their own right but they also appear as
building blocks of more general classes of processes. In Chap. 3 we cover the
theory of stochastic integration, which is indispensable for mathematical finance.
By contrast, it seems less obvious whether and how differentiation can be transferred
to the random case. In Chaps. 4 and 5 we discuss semimartingale characteristics and
infinitesimal generators as two natural candidates for a stochastic “differentiation”.
If Lévy processes and semimartingale characteristics generalise linear functions and
derivatives, respectively, affine Markov processes correspond to solutions of linear
ordinary differential equations. They play an important role in finance because of
their flexibility and analytical tractability. Finally, we introduce the basic concepts
of stochastic optimal control in Chap. 7 because many questions in Mathematical
Finance are explicitly or implicitly related to optimisation.

Informal differential notation and arguments are used occasionally in the physics
literature and to some extent in finance as well. We mimic such reasoning here in
a few so-called physicist’s corners. While these remarks may be insightful to some
readers, they could confuse others with a more formal mathematical background. In
the latter case they can be skipped altogether because they are primarily meant to
illustrate separately stated rigorous mathematical statements.



Chapter 1 )
Discrete Stochastic Calculus Chack for

The theory of stochastic processes deals with random functions of time such as
asset prices, interest rates, and trading strategies. As is also the case for Mathe-
matical Finance, it can be developed in both discrete and continuous time. Actual
calculations are often easier and more transparent in continuous-time models, which
is why we focus on the latter in this book. However, there is a price to be paid.
A completely sound treatment of the continuous case requires considerably more
complex mathematical arguments, which are beyond the scope of this monograph.
On the other hand, the phenomena and formulae in discrete and continuous time
resemble each other quite closely. Therefore we use the simpler discrete case as
a means to motivate the technically more demanding results in the subsequent
chapters.

1.1 Processes, Stopping Times, Martingales

The natural starting point in probability theory is provided by a probability space
(2, %, P). The more or less abstract sample space Q stands for the possible
outcomes of a random experiment. For example, it could contain all conceivable
sample paths of a stock price process. The probability measure P states probabilities
of sets of outcomes. For measure-theoretic reasons it is typically impossible to
assign probabilities to all subsets of €2 in a consistent manner. As a way out one
specifies a o-field .7, i.e. a collection of subsets of € which is closed under
countable set operations N, U, \, €. If the probability P(F) is defined only for events
F € Z, one can avoid the paradoxes involved in considering arbitrary sets.
Random variables X are functions of the outcome w € 2. Typically its values
X (w) are numbers but they may also be vectors or even functions, in which case X is
a random vector resp. process. We denote by E(X) and Var(X) the expected value

© Springer Nature Switzerland AG 2019 5
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6 1 Discrete Stochastic Calculus

and variance, respectively, of a real-valued random variable. Accordingly, E(X)
and Cov(X) denote the expectation vector and covariance matrix, respectively, of a
random vector X.

For static random experiments one needs to consider only two states of infor-
mation. Before the experiment nothing precise is known about the outcome, only
probabilities and expected values can be assigned. After the experiment the outcome
is completely determined. In dynamic random experiments such as stock markets
the situation is more involved. In the process of observation, some random events
(e.g. yesterday’s stock returns) have already happened and can be considered as
deterministic whereas others (e.g. tomorrow’s stock returns) still belong to the
unknown future. As time passes, more and more information is accumulated.

This increasing knowledge is expressed mathematically in terms of a filtration
F = (%):>0, i.e. an increasing sequence of sub-o-fields of .#. The collection
of events .%; stands for the observable information up to time ¢. Specifically, the
statement F € .%; means that the random event F (e.g. F = {stock return positive
at time ¢ — 1}) is no longer random at time 7. We know for sure whether it is true
or not. For example, if our observable information is given by the evolution of the
stock price, then .%; contains all events that can be expressed in terms of the stock
price up to time ¢. The quadruple (2, .%#,F, P) is called a filtered probability
space. We consider it to be fixed during most of the following. Often one assumes
Fo = {2, Q}, i.e. F is the trivial o -field corresponding to no prior information.

As time passes, not only the observable information but also probabilities and
expectations of future events change. For example, our conception of the terminal
stock price evolves gradually from vague ideas to perfect knowledge. This is
modelled mathematically in terms of conditional expectations. The conditional
expectation E(X|%;) of a random variable X is its expected value given the
information up to time 7. As such, it is not a number but itself a random variable
which may depend on the randomness up to time #, e.g. on the stock price up to ¢
in the above example. Mathematically speaking, ¥ = E(X|.%;) is .%;-measurable,
which means that {Y € B} := {w € Q : Y(w) € B} € % for any reasonable
(mathematically phrased: Borel) set B. Accordingly, the conditional probability
P(F|%;) denotes the probability of an event F € .# given the information up
to time ¢. As is true for conditional expectation, it is not a number but an .%;-
measurable random variable.

Formally, the conditional expectation E(X|.%;) is defined as the unique .%;-
measurable random variable Y such that E(XZ) = E(Y Z) for any bounded, .%;-
measurable random variable Z. It can also be interpreted as the best prediction of
X given .%;. Indeed, if E(X?) < oo, then E(X|.%;) minimises the mean squared
difference E((X — Z)?) among all .%;-measurable random variables Z. Strictly
speaking, E (X|.%;) is unique only up to a set of probability 0, i.e. any two versions
Y,Y satisfy P(Y # ?) = 0. In this book we do not make such fine distinctions.
Equations, inequalities etc. are always meant to hold only almost surely, i.e. up to a
set of probability 0.
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A few rules on conditional expectations are used over and over again. For
instance, we have

E(X|.7:) = E(X) (1.1)

if #; = {@, Q} is the trivial o-field representing no information on random events.
More generally, (1.1) holds if X and .%; are stochastically independent, i.e. if

P({X € BINF) = P(X € B)P(F)

for any Borel set B and any F € .%;. On the other hand we have E (X|.%;) = X and
more generally

E(XY|7) = XEY|F)

if X is .#;-measurable, i.e. known at time 7. The law of iterated expectations tells
us that

E(E(X|7)| %) = E(X|.F)
for s < t. Almost as a corollary we have
E(E(X|.%1)) = E(X).

Finally, the conditional expectation shares many properties of the expectation, e.g.
itis linear and monotone in X and it satisfies monotone and dominated convergence,
Fatou’s lemma, Jensen’s inequality, etc.

Recall that the probability of a set can be expressed as the expectation of an
indicator function via P(F) = E(1F). This suggests to use the relation

P(F|.#) = E(1p| ) (1.2)

to define conditional probabilities in terms of conditional expectation. Of course,
we would like P(F|.%;) to be a probability measure when it is considered as a
function of F. This property, however, is not as evident as it seems because of the
null sets involved in the definition of conditional expectation. We do not worry about
technical details here and assume instead that we are given a regular conditional
probability, i.e. a version of P(F|.%;)(w) which, for any fixed w, is a probability
measure when viewed as a function of F. Such a regular version exists in all
instances where it is used in this book.
In line with (1.2) we denote by

PXI71(B) .= P(X € B|.%,) := E(15(X)|.%)
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the conditional law of X given .%;. A useful rule states that
E(f(X,V)|F) = / f 1) PXI7(dx) (13)

for real-valued measurable functions f and .%;-measurable random variables Y. If
X is stochastically independent of .%;, we have pX|7 — pX , 1.e. the conditional
law of X coincides with the law of X. In this case, (1.3) turns into

E(f(X,.D|F) =[f(x,Y)PX(dX) (1.4)

for .%#;-measurable random variables Y.

A stochastic process X = (X (¢));>0 is a collection of random variables X (¢),
indexed by time ¢. In this chapter the time set is assumed to be N = {0, 1,2, ...},
afterwards we consider continuous time R = [0, 00). As noted earlier, a stochastic
process X = (X(#)):>0 can be interpreted as a random function of time. Indeed,
X (w, 1) is a function of ¢ (or sequence in the current discrete case) for fixed w.
Sometimes, it is also convenient to interpret a process X as a real-valued function
on the product space 2 x N or Q2 x Ry, respectively. In the discrete time case we
use the notation

AX()=X(@)— Xt —1).
Moreover, we denote by X_ = (X_(¢));>0 the process

X (1) = {X(t —1) fort >1,
X (0) fort = 0.

We will only consider processes which are consistent with the information
structure, i.e. X (¢) is supposed to be observable at time . Mathematically speaking,
we assume X (r) to be .%#;-measurable for any f. Such processes X are called
adapted to the filtration F.

There is in fact a minimal filtration F such that X is F-adapted. Formally, this
filtration is given by

T =0 (X(s) 15 <1), (1.5)

i.e. % is the smallest o-field such that all X(s), s < ¢, are .%;-measurable.
Intuitively, this means that the only available information on random events is
coming from observing the process X. One calls F the filtration generated by X.

For some processes one actually needs a stronger notion of measurability than
adaptedness, namely predictability. A stochastic process X is called predictable if
X (¢) is known already one period in advance, i.e. X(¢) is .%;_j-measurable. The
use of this notion will become clearer in Sect. 1.2.
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Example 1.1 (Random Walks and Geometric Random Walks) We call an adapted
process X with X(0) = 0 a random walk (relative to F) if the increments
AX(t),t > 1, are identically distributed and independent of .%;_;. We obtain such
aprocess if AX(7),t > 1 are independent and identically distributed (i.i.d.) random
variables and if the filtration F is generated by X.

Similarly, we call a positive adapted process X with X(0) = 1 a geometric
random walk (relative to F) if the relative increments

AX(t X(t
o _ X0 16
Xt—-1) X@¢—-1
are identically distributed and independent of .%;_; for t > 1. A process X is a
geometric random walk if and only if log X is a random walk or, equivalently,

X (1) = exp(Y (1))

for some random walk Y. Indeed, the random variables in (1.6) are identically
distributed and independent of .%;_; if and only if this holds for

AX (1)
A(log X(t)) =log X(¢t) —logX(t — 1) = 10g<X(t N + 1), t>1.

Random walks and geometric random walks represent processes of constant
growth in an additive or multiplicative sense, respectively. Simple asset price models
are often of geometric random walk type.

A stopping time 7 is a random variable whose values are times, i.e. are in
N U {oco} in the discrete case. Additionally one requires that t is consistent with
the information structure F. More precisely, one assumes that {t = t} € % (or
equivalently {t <t} € %) for any ¢. Intuitively, this means that the decision to say
“stop!” right now can only be based on our current information. As an example
consider the first time T when an observed stock price hits the level 100. Even
though this time is random and not known in advance, we obviously know 7 in the
instant it occurs. The situation is different if we define t to be the instant one period
before the stock hits 100. Since we cannot look into the future, we only know 7 one
period after it has happened. Consequently, this random variable is not a stopping
time. Stopping times occur naturally in finance, e.g. in the context of American
options, but they also play an important technical role in stochastic calculus.

As indicated above, the time when some adapted process first hits a given set is
a stopping time:

Proposition 1.2 Let X be some adapted process and B a Borel set. Then
t:=inf{t > 0: X(¢) € B}

is a stopping time.
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Proof By adaptedness, we have {X (s) € B} € %, C %, s <t and hence

t

{rgt}:U{X(s)eB}e%. O
s=0

Occasionally, it turns out to be important to “freeze” a process at a stopping
time. For any adapted process X at any stopping time t, the process stopped at t
is defined as

XT(t) = X(z A 1),

where we use the notation a A b := min(a, b) as usual. The stopped process X°
remains constant on the level X () after time 7. It is easy to see that it is adapted as
well.

The o-field .%; represents the information up to time ¢. Sometimes we also need
the concept of information up to 7, where T now denotes a stopping time rather than
a fixed number. The corresponding o -field .%; can be interpreted as for fixed 7: an
event F belongs to .%#; if we must wait at most until t in order to decide whether F
occurs or not. Formally, this o-field is defined as

Fr :={Fe§:Fﬂ{t§t}e§tforanyt20}.

Although it may not seem evident at first glance that this definition truly implements
the above intuition, one can at least check that some intuitive properties hold:

Proposition 1.3 Let 0, T, 1, be stopping times.

Fr is a o-field.

If T =t is a constant stopping time, F; = F;.

o < T implies that #5; C F;.

T is F-measurable.

Infima and suprema of finitely or countably many stopping times are again
stopping times.

6. t, | T implies ¥ = NpenFr,.

Proof

Lk L~

1. It is straightforward to verify the axioms.
2. Since {t < s} = Q fors <t and & for s > ¢, this follows immediately from the
definition of .%7.

.For F e %, wehave FN{t <t}=(FN{o <t})N{t <t} e F.

4. We need to show that {t < s} € Z; forany s > 0. Since {t < s}N{r <t} =
{t <s At} e P CF foranyt > 0, this follows from the definition of ;.

5. For stopping times 7;,i € [ andt > 0 we have {sup;; ; <t} = Njer{n; <t} €
Zy and {infie; 1; <t} = Uie{t; <t} € F;.

W
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6. The inclusion C follows from 3. If F € %, for all n, we have

Fnfr<n=JFn{n <) e,
neN

which yields the claim. O

If X is a process and t a stopping time, we denote by X () the random variable
X (w, T(w)). Since this does not make sense if 7(w) = 0o, we consider X (7)1 {7 <o)
if this may happen.

Proposition 1.4 If X is an adapted process and T a stopping time, X (t)1{z <cc) is
F-measurable.

Proof For Borel sets B C R \ {0} we have

XMooy € BIN{r <1} = J((X() € ByN{z =5)) € &

s<t

as desired. O

The concept of martingales is central to stochastic calculus and finance. A mar-
tingale (resp. submartingale, supermartingale) is an adapted process X that is
integrable in the sense that £ (] X (r)|) < oo for any ¢ and satisfies

EX()|F) = X(s) (tesp. > X(s), < X(s)) (1.7)

for s < t. If X is a martingale, the best prediction for future values is the present
level. For example, if the price process of an asset follows a martingale, it is neither
going up nor down on average. In that sense it corresponds to a fair game. By
contrast, submartingales (resp. supermartingales) may increase (resp. decrease) on
average. They correspond to favourable (resp. unfavourable) games.

If £ denotes an integrable random variable, then it naturally induces a martingale
X, namely

X(1) = E¢G|7).

X is called the martingale generated by £. If the time horizon is finite, i.e. we
consider the time set {0, 1, ..., T — 1, T'} rather than N, any martingale is generated
by some random variable, namely by X (7). This ceases to be true for infinite time
horizons. For instance, random walks are not generated by a single random variable
unless they are constant.

Example 1.5 (Density Process) A probability measure Q on (£2,.%) is called
equivalent to P (written Q ~ P) if the events of probability O are the same under
P and Q. By the Radon—Nikodym theorem, Q has a P-density and vice versa, i.e.
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there are some unique random variables Z,g , j S such that

B do B dp
O(F) —EP<1FdP>, P(F) —EQ<1FdQ>

for any set F' € %, where Ep, E o denote expectation under P and Q, respectively.
P, Q are in fact equivalent if and only if such mutual densities exist, in which case
dP _ 1,dQ
we have 40 = /5
The martingale Z generated by Zg is called the density process of Q, i.e. we
have

d
Z(t) = Ep(dg ‘ 9}) .

One easily verifies that Z(¢) coincides with the density of the restricted measures
0|z, relative to P| 7, i.e. Z(t) is #;-measurable and

Q(F) = Ep(1pZ(1))

holds for any event F € .%;. Note further that Z and the density process Y of P
relative to Q are reciprocal to each other because

d0\|z, _1 dP|gz,
dP|z, d0|z,

The density process Z can be used to compute conditional expectations relative
to Q. Indeed, the generalised Bayes’ rule

Z(t) = =1/Y().

EpE4217)

Eg|7) = 7(0)

(e.g. [226, Lemma 8.6.2], [154, 1I1.3.9]) holds for sufficiently integrable random
variables & because

d
Eg(§¢) =Ep (Eé‘ d1Q9>
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for any bounded .%;-measurable ¢. Similarly, one shows

E Z F
Eo| %) = P@Z((St))' ) (18)

for s <t and .%;-measurable random variables &.

For later use, we note that a supermartingale with constant expectation is actually
a martingale.

Proposition 1.6 If X is a supermatingale and T > 0 with E(X(T)) = E(X(0)),
then (1.7) holds with equality for any s <t < T.

Proof The supermartingale property means that E((X(¢) — X(s))1r) < O for any
s <tandany F € %;. Since
0= E(X(T)) — E(X(0))
=EX(T) = X(1)) + E((X(1) = X(s)1F) + E((X(1) — X ()1 c)
+ E(X(s) — X(0)

<0
forany s <t < T and any event F € %, the four nonpositive summands must
actually be 0. This yields E((X (#) — X (s))1 r) = 0 and hence the assertion. |

The following technical result is used in Sect. 1.5.

Lemma 1.7 Let X be a supermartingale, Y a martingale, t < T, and F € %; with
Xt)=Y@)on Fand X(T) = Y(T). Then X(s) =Y(s)on F fort <s <T. The
statement remains to hold if we only require X — X', Y — Y" instead of X, Y to be
a supermartingale resp. martingale.

Proof From
X(s) = Y(s) = E(XX(T) = Y(T)|F) = 0
and
E((X(s) —Y()IF) = E((X(@0) —Y@)1F) =0
it follows that (X (s) — Y ()17 = 0. O

The concept of a martingale is “global” in the sense that (1.7) must be satisfied
for any s < t. If we restrict attention to the case s = r — 1, we obtain the slightly
more general “local” counterpart. A local martingale (resp. submartingale,



14 1 Discrete Stochastic Calculus

supermartingale) is an adapted process X which satisfies E(|X(0)]) < oo,
E(IX()||.#1-1) < oo and

EX®|Fi—1)) =Xt —1) (esp. =Xt —1), <Xt —1)) (1.9)

for t = 1,2,... In discrete time the difference between martingales and local
martingales is minor:

Proposition 1.8 Any integrable local martingale (in the sense that E(|X (t)|) < 0o
for any t) is a martingale. An analogous statement holds for sub- and supermartin-
gales.

Proof This follows by induction from the law of iterated expectations. O

Integrability in Proposition 1.8 holds, for instance, if X is a nonnegative local
supermartingale.

The above classes of processes are stable under stopping in the sense of the
following proposition, which has a natural economic interpretation: you cannot turn
a fair game into, say, a favourable one by stopping play at some reasonable time.

Proposition 1.9 Let © denote a stopping time. If X is a martingale (resp. sub-
/supermartingale), so is X*. A corresponding statement holds for local martingales
and local sub-/supermartingales.

Proof We start by verifying the integrability conditions. For martingales (resp. sub-
supermartingales) E(| X (¢)|) < oo implies E(| X" (7)]) < E(ZzzolX(s)D < Q.
For local martingales (resp. local sub-/supermartingales) E(|X (¢)||.%—1) < o0
yields

13
E(X"OILZi-1) <Y E(X®)I1F-1)
s=0
t—1
=Y IX®|+ EIXO|.Fi-1) < 0.
s=0

In order to verify (1.9), observe that {t > ¢} = {r <t — 1}C € %#;_1 implies
EX" ()1 r=n)|F1-1) = EX )20 F1-1)
= EX®)|F1-1) {21
=X — Dlp>ny
=X — D>



1.1 Processes, Stopping Times, Martingales 15

(resp. >, < in the sub-/supermartingale case). For s < t we have {t = s} € %, C
Z%,_1 and hence
EX" ()1 (r=s}|- F1-1) = E(X ()l (r=5}|-F1-1)
= X(s)l{rzs}
= X"(t — D1{r=s).

Together we obtain

t—1
EX'(O|F1-1) = Z EX" () z=)|F1-1) + E(X )1z F1-1)
s=0
t—1
= fo(t — Dlppmg) + X7 = Dz =X — 1)
s=0
(resp. >, <). a

An alternative more complicated definition of local martingales uses stopping
times, which turns out to be useful in continuous time.

Proposition 1.10 An adapted process X is a local martingale if and only if there
exists a sequence (T, )neN Of Stopping times, increasing to 0o almost surely, such that
the stopped processes X™ are martingales for any n. A corresponding statement
holds for sub-/supermartingales.

Proof In order to show the if statement suppose that X™ is a martingale for any n.
Note that {t, >t} = {tr, <t —1}€ € .%_; and integrability of X% (¢) imply
E(XOFi-D]1g,=n = E(IX O {z,>131F1-1)
= E(X" )|lz,>n]F1-1) < 00

and

E(XOF1-D g,z = EX O g,z F1-1)
= EX™" () iz, )| F1-1)
= EX" O F1-1)lz,21)
= X"(t = Dljg,>n
= X(t — Dljg20).

Therefore E (| X (¢)||-#1—1) < oo and (1.9) hold on U,>1{z, > t} and hence almost
surely.
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For the only if statement we define a sequence of stopping times t, := inf{t > 0 :
E(|X(t + 1)||-%#:) = n}. By Proposition 1.9, X™ is a local martingale for any n.
Since

t—1
E(X™ @+ D)) = E(1X(0)[1{r,=0)) + Z E(IX(s + D[1{r,=s+1))
s=0

+ E(|X(t + 1)|1{r,,>t})

t
< E(XOD+ D> E(IX(s + DIl <)
s=0

t
— EQXO)N + Y E(E(X(s + DIIF) 5 <)
s=0

= E(IXO)D)+ (¢ + Dn < oo,

X™ is a martingale by Proposition 1.8. The assertion for sub-/supermartingales
follows along the same lines. O

If X is a martingale, the martingale property (1.7) holds also for bounded and
sometimes even general stopping times.

Theorem 1.11 (Doob’s Stopping Theorem) If X is a martingale, we have
E(X(1)|F6) = X(0)

for any two bounded stopping times o < t. If the martingale is generated by some
random variable X (00), we need not require o, T to be bounded.
For a supermartingale X, we have accordingly

E(X (D)) = X(0)

for any two bounded stopping times ¢ < T.
Proof

Step 1:  We show E(X(r)|-%s) = X (o) (resp. “<” in the supermartingale case).
Indeed, E(X (r)|- %) = X (o) means E((X (r)—X (0))1r) = Oforany F € %,.
For such F wehave FN{o =t} = (FN{o <tH\ (FN{o <t —1}) € % and
hence E((X(r) — X(0))1f) = Z;:O E((X(r) — X)) Fn{o=r)) = 0 because
X(@t) = EX(r)|#).

Step 2:  In view of Proposition 1.10, we can apply step 1 to the stopped process
XT and obtain E(X(1)|.%) = E(X"(r)|%s) = X" (o) = X (o) (resp. “<”
in the supermartingale case). The statement for unbounded o, T follows for
r=00. d
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Sometimes one needs statements on uniform integrability of martingales. Here,
inequalities such as the following one prove to be useful.

Theorem 1.12 (Doob’s Inequality) We have

E<supX(s)2) <4E(X(®)?), t=0,1,2,...

s<t

for any martingale X.
Proof The proof can be found, for example, in [275, Corollary VII.3.2]. m]

One easily verifies that an integrable random walk X is a martingale if and
only if the increments AX (¢) have expectation 0. An analogous result holds for
integrable geometric random walks whose relative increments AX(#)/ X (t — 1)
have vanishing mean. For the martingale property to hold, one does not actually
need the increments resp. relative increments of X to be identically distributed.

Martingales are expected to stay on the current level on average. More general
processes may show an increasing, decreasing or possibly variable trend. This fact is
expressed formally by a variant of Doob’s decomposition. The idea is to decompose
the increment AX (¢) of an arbitrary process into a predictable trend component
AAX(¢) and a random deviation AMX () from this short time prediction.

Theorem 1.13 (Canonical Decomposition) Any integrable adapted process X
(i.e. with E(]X (t)|) < oo for any t) can be uniquely decomposed as

X =X(©0) 4+ M¥ + A% (1.10)

with some martingale MX and some predictable process A satisfying M* (0) =
AX(0) = 0. We call AX the compensator of X.

Proof Define AX (1) = Y\_; AAX(s) by AAX(s) := E(AX(s)|F—1) and set
MX = X — X(0) — AX. Predictability of AX is obvious. The integrability of X
implies that of AX and thus of MX. The latter is a martingale because

EMX(@t)|Fi—1) = M*(t — 1) + E(AX(t) — AAX(1)|.F—1)
=M¥X(t = 1) + E(AX()]Fi-1) — E(E(AX(O)].Z-D)|.Fi-1)
=MX@1t—1).
Conversely, for any decomposition as in Theorem 1.13 we have
E(AX(D)]F-1) = EQAMX()]F,-1) + E(AAX (0)|.F1-1) = AAX (1),

which means that it coincides with the decomposition in the first part of the proof.
0
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For instance, the compensator of an integrable random walk X equals

t
AX(1) = Y E(AX () Fi-1) = tE(AX (D),

s=1

If X is a submartingale (resp. supermartingale), then AX is increasing (resp.
decreasing). This is the case commonly referred to as Doob’s decomposition.

Note that uniqueness of the decomposition still holds if we require M X to be only
a local martingale. In this relaxed sense, it suffices to assume E (| X (¢)||-F—1) < o0
for any ¢ in order to obtain (1.10) and to define the compensator AX.

1.2 Stochastic Integration

Gains from trade in dynamic portfolios can be expressed in terms of stochastic
integrals, which are nothing else than sums in discrete time. Consider an adapted
process X and a predictable—or at least adapted—process ¢. The stochastic
integral of ¢ relative to X is the adapted process ¢ * X defined as

t
9+ X(1) =) p(s)AX(s). (1.11)

s=1

If both ¢ = (¢1,...,94) and X = (X1, ..., Xg) are vector-valued processes, we
define ¢ * X to be the real-valued process given by

t d
9 XD =) ) ei©)AXi(s). (1.12)

s=1i=1

In order to motivate this definition, let us interpret X (¢) as the price of a stock
at time 7. We invest in this stock using the trading strategy ¢, i.e. ¢(¢) denotes the
number of shares we own at time 7. Due to the price move from X ( — 1) to X (¢) our
wealth changes by ¢ (1) (X (r) — X (t — 1)) = ¢(t) AX (¢) in the period between ¢ — 1
and 7. Consequently, the integral ¢ * X (¢) stands for the cumulative gains from trade
up to time ¢. If we invest in a portfolio of several stocks, both the trading strategy ¢
and the price process X are vector-valued. ¢; (#) now stands for the number of shares
of stock i and X; (¢) is its price. In order to compute the total gains of the portfolio,
we must sum up the gains ¢; (r) AX; (¢) in each single stock, which leads to (1.12).

For the above reasoning to make sense, one must be careful about the order in
which things happen at time 7. If ¢(#)(X () — X (t — 1)) is meant to stand for the
gains at time 7, we obviously have to buy the portfolio ¢(¢) before prices change
from X (¢ — 1) to X(¢). Put differently, we must choose ¢(¢) at the end of period
t — 1, right after the stock price has attained the value X (#+ — 1). This choice can
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only be based on information up to time ¢+ — 1 and in particular not on X (), which
is as yet unknown. This motivates why one typically requires trading strategies to
be predictable rather than adapted. The purely mathematical definition of ¢ * X,
however, makes sense regardless of any measurability assumption.

The covariation process [X, Y] of adapted processes X, Y is defined as

t
[X,Y](@) = Z AX(s)AY(s). (1.13)

s=1
Its compensator

t
(X, Y)(1) =Y E(AX(s)AY () | F5-1)

s=1

is called the predictable covariation process if it exists. In the special case X = Y
one refers to the quadratic variation resp. predictable quadratic variation of X.
If X, Y are martingales, their predictable covariation can be viewed as a dynamic
analogue of the covariance of two random variables.

We are now ready to state a few properties of stochastic integration:

Proposition 1.14 For adapted processes X, Y, Z and predictable processes ¢, Y
we have:

1. ¢ * X is linearin ¢ and X.

[X, Y] and (X, Y) are symmetric and linear in X and Y.
VelpX)=Wo) X

[+ X, Y]=9¢*[X, Y]

(p* X,Y) =9+ (X,Y) whenever the predictable covariations are defined.
(Integration by parts)

SANRANR NI

XY =XO)YO0)+X_+Y+Y+X (1.14)
=XO0OYO0)+X_Y+Y_X+I[XVY]

7. If X is a local martingale, then so is ¢ * X.
8. If ¢ = 0 and X is a local sub-/supermartingale, ¢ * X is a local sub-/super-
martingale as well.
9. A?*X = ¢ + AX if the compensator AX exists in the relaxed sense following
Theorem 1.13.
10. If X, Y are martingales with E(|X (t)Y (t)]) < oo for any t, the process XY —
(X, Y) is a martingale, i.e. (X, Y) is the compensator of XY .
11. [X,[Y, Z]1(t) = [[X, Y], Z]1(t) = Zi:l AX(S)AY (s)AZ(s).
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Proof

1. This is obvious from the definition.
2. This is obvious from the definition as well.
3. This follows from

AW = (@ X)) =¥ (Ap* X)) =¥ AX () = A((Ye) * X)(1).
4. This follows from
Alp * X, Y1(1) = () AX(1)AY (1) = Ap * [X, YD ().
5. Predictability of ¢ yields

Alp* X, Y)(1) = E(Alp * X)(OAY (1) |- F1-1)
= E(@()AX @AY (1) [.F1-1)
=9 EAXO)AY (1) [.F1-1)
= Alp * (X, Y)(®).

6. The first equation is

t
XOY (@) = XO)Y©0) + Y (X($)Y(s) — X(s — DY (s — 1)

s=1

t
=XO)Y0) + Y (X(s = DX (s) = ¥(s — 1))

s=1

t
+ Y (X () = X(s = )Y (5))

s=1

t
=X(O)Y(©0)+ Y (X(s — DAY (s) + Y ()AX(5))

s=1
= X(0)Y(0)+ X_*Y(t)+ Y *X().

The second follows from

YeX()=Y_+ X))+ (AY)* X(t) = Y_* X(1) + [X, Y](0).
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7. Predictability of ¢ and (1.9) yield

E@@XWOIFi-1) =E@* X1t - D +oOX0) — X1 —D)IF-1)
=@ X1t =D+ eO(EXDF-1) — X —1))
=@ Xt —1).
8. This follows along the same lines as 7.
9. This follows from statement 7 because ¢ * X = ¢ « MX 4+ ¢ « AX is the
canonical decomposition of ¢ * X.

10. This follows from statements 6 and 7.
11. This follows from the definition. O

If they make sense, the above rules hold for vector-valued processes as well, e.g.
YelpeX)= o)X

if both ¢, X are R?-valued.
It0’s formula is probably the most important rule in continuous-time stochastic
calculus. This motivates why we state its simple discrete-time counterpart here.

Proposition 1.15 (Ito’s Formula) If X is an R?-valued adapted process and f
R? — R a differentiable function, then

t
FX@) = FXO)+ ) (F(X(5)) = fF(X(s — 1))

s=1

= f(X(0) +Df(X-)* X(1)

t
+ 3 (FX @) = f(XGs = 1) = DFX (s = D) TAXE)),
s=1

(1.15)

where Df (x) denotes the derivative or gradient of f in x.

Proof The first statement is obvious. The second follows from the definition of the
stochastic integral. O

If the increments A X (s) are small and f is sufficiently smooth, we may use the
second-order Taylor expansion

F(X($) = f(X(s = 1)+ AX(s))

1
~ fX(s = D)+ fI(X(s = 1)AX(s) + 2f”(X(S — D)(AX(5))?
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in the univariate case, which leads to

t
1
FXO)~ fFXO)+ f(X )X+ o f(XGs = D) (AX (5))*

s=1
1
= f(XO0) + f/(X-)* X(1) + 2f”(X—) * [X, X1().

If X is vector-valued, we obtain accordingly

d
FX@®) ~ f(XO0)+ Df(X-)+ X(1)+ ; Z Dij f(X) « [Xi, X;1(2).
Ve (1.16)
Processes of multiplicative structure are called stochastic exponentials.
Definition 1.16 Let X be an adapted process. The unique adapted process Z
satisfying
Z=1+7Z_+X

is called the stochastic exponential of X and it is written &(X).

The stochastic exponential can be motivated from a financial point of view. Suppose
that 1€ earns the possibly random interest AX; in period ¢, i.e. 1€ at time r — 1
turns into (1 + AX,)€ at time 7. Then 1€ at time O runs up to &(X)(¢) € at time ¢.
It is easy to compute & (X) explicitly:

Proposition 1.17 We have

t
X)) =[a+axe).

s=1
where the empty product for t = 0 is set to 1.
Proof For Z(t) = [[i—;(1 + AX(s)) we have

AZ()=Zt) — Z(t — 1) = Z(t — DAX (1)

and hence

1 1
Z0)=20)+ Y AZ()=14Y Z6—)AX($)=1+Z_+X@). g
s=1 s=1
We note in passing that Z = ¢& (X) is the unique solutionto Z = ¢ + Z_ * X for
celRR
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The previous proposition implies that the stochastic exponential of a random
walk X with increments AX (t) > —1 is a geometric random walk. More
specifically, one can write any geometric random walk Z alternatively in exponential
or stochastic exponential form, namely

Z=eX=&X)
with random walks X, X, respectively. X and X are related to each other via
AX(@1) =X _1 resp. AX(1) =log(l + AX(1)).

If the increments A X (s) are small enough, we can use the approximation
1 2
log(l + AX(s)) ~ AX(s) — , (AX(5))

and obtain

t

EXO0 =[Ta+axe)

s=1

t
= exp(Z log(1 + AX(s)))

s=1

t
~ exp(Z (AX(s) - ;(AX(S))2>)

s=1
1
= exp(X(t) - X0 — [, X](t)) .

The product of stochastic exponentials is again a stochastic exponential. Observe
the similarity of the following result to the rule e*e? = ¢** for the exponential
function.

Proposition 1.18 (Yor’s Formula)
EX)EX)=EX+Y +[X, Y]

holds for any two adapted processes X, Y.
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Proof Let Z := &(X)&(Y). Integration by parts and the other statements of
Proposition 1.14 yield
Z=Z0)+EX)_+EX)+EX)-«EX)+[E(X), EY)]
=14+ EX)-EX)-) Y +(EX)-E(X)-) * X+ (E(X)-E(Y)-) * [X, Y]
=1+Z_X+Y+I[X,Y),

which implies that Z = &(X + Y + [X, Y]). O

If an adapted process Z does not attain the value 0, it can be written as
Z=Z0)EX)

with some unique process X satisfying X (0) = 0. This process X is naturally called
the stochastic logarithm .#(Z) of Z. We have

L(Z) = zl, . Z.

Indeed, X = Zl, « Z satisfies

Z_ Z_ ( 1 > 1 Z
e X = . e 7| = o/ = -1
Z(0) Z(0) Z_ Z(0) Z(0)
and hence

z
Z(0) =&(X)

as claimed. Observe that the same notation .Z(Z) is used for the stochastic
logarithm of a process and for the law of a random variable Z. It should be evident
from the context which one we are referring to.

Changes of the underlying probability measure play an important role in
Mathematical Finance. Since the notion of a martingale involves expectation, it is
not invariant under such measure changes.

Proposition 1.19 Let Q ~ P be a probability measure with density process Z. An
adapted process X is a Q-martingale (resp. Q-local martingale) if and only if XZ
is a P-martingale (resp. P-local martingale).

Proof X is a Q-local martingale if and only if

Eo(X(O)|F-1) =X —1) (1.17)
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for any 7. By Bayes’ rule (1.8) the left-hand side equals E(X (1) Z(¢)|.%1-1)/ Z(t —
1). Hence (1.17) is equivalent to E(X () Z(¢)|-F:—1) = X(t — 1)Z(¢t — 1), which
is the local martingale property of X Z relative to P. The integrability property for
martingales (cf. Proposition 1.8) is shown similarly. O

A martingale X may possibly show a trend under the new probability measure Q.
This trend can be expressed in terms of a predictable covariation.

Proposition 1.20 Ler Q ~ P be a probability measure with density process
Z. Moreover, suppose that X is a P-martingale. If X is Q-integrable, its Q-
compensator equals (£ (Z), X), where the angle bracket is computed relative to P.

Proof Denote the Q-compensator of X by A. In view of the comment after Theo-
rem 1.13, we have that X — X (0) — A is a Q-local martingale. By Proposition 1.19
this means that Z(X — X (0) — A) is a P-local martingale. Integration by parts yields

ZX—-X0)—A)=Z_X+X-XO0)_*Z+[Z,X-XO0)]-Z_+A—-A-Z.

The integrals relative to X and Z are local martingales. Hence
[Z,X]-Z_A=[Z,X-X(0)]—-Z_-A

is a P-local martingale as well, which implies Z_ + A = (Z, X). Consequently,

A= zl, *(Z,X)=(ZL(Z), X) as desired. O

The continuous-time analogue of the following representation theorem plays an
important role in Mathematical Finance.

Proposition 1.21 (Martingale Representation) Suppose that X is a random
walk such that the increments AX(t) have only two values a, —b, attained with
probabilities p and 1 — p, respectively. If X is a martingale and if the filtration
is generated by X, any martingale M can be written as a stochastic integral
M = M(0) + ¢ * X with some predictable process .

Proof The martingale property of X implies ap — b(1 — p) = 0. Since AM(¢) is
o(AX(1),..., AX(t))-measurable, there is some function f; : {—b, a}’ — R such
that AM(¢t) = f;(AX(),..., AX(t)). The martingale property of M and (1.4)
yield

0=EAM®)|F-1)
=pfi(AX(D),...,AX(t —1),a) + (1 = p) f{(AX(D),..., AX(t — 1), —b)

and hence

1 1
JIAXD), L AX( = 1) a) = = f(AXD), . AX G = 1), —b) =1 9 (0).
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This implies
p(MAX(@) = fi(AX(D),...,AX(t —1),a) = AM()

for AX (t) = a and likewise for AX (t) = —b. O

The following statement and its continuous-time counterpart play a key role in
Mathematical Finance.

Theorem 1.22 (Optional Decomposition) Let S denote an R -valued process
and 2 the set of all Q ~ P such that S is a Q-local martingale (in the sense
that Sy, ..., Sq are Q-local martingales). Moreover, let X be a process which is a
Q-local supermartingale relative to all Q € 2. If 2 is not empty, there exists a
predictable RY-valued process ¢ such that C := X (0) + ¢ * S — X is increasing.

Proof This is stated in [114, Theorem 2] if the time horizon is finite, i.e. if S and X
are constant after some deterministic time 7 < oo. The general case follows from
[114, Theorem 1].

We illustrate the statement in the case of a finite time horizon 7 € N and a finite
sample space 2 whose elements have strictly positive probability.

Step 1:  The proof will be based on an application of the separating hyperplane
theorem A.14. To this end, let U be the finite-dimensional space of adapted
processes x = (x(t));=o,....r With x(0) = 0. Moreover, we consider V := U
as the dual space of U via y(x) := E(ZIT=1 x()y()). Set

K = {((p(t)TAS(t))tzow‘T : ¢ predictable and Rd-valued}

and

,,,,,
,,,,,

T
adapted process with x(0) = 0 and E< Z x(t)) =1 }

=1

One easily verifies that K is a subspace and M a compact convex subset of U.
Step 2:  In steps 2—4 we show by contradiction that K N M # &. Otherwise the
separating hyperplane theorem A.14 yields the existence of y € V with

T
E(Zx(t)y(t)) =0, xeKk, (1.18)
t=1

T

E(Zx(t)y(t)) >0, xeM. (1.19)

=1



1.2 Stochastic Integration 27

Since x € M for

_ [1p/E(F) fors =1,
x(8) 1= {0 otherwise

with fixedt € {1, ..., T} and F € .%;, we conclude from (1.19) that y is strictly
positive. Define the martingale

t
_ y(s) B
N =2 (E(y(s)%o 1)

s=1

and Z = &(N). Since AN > —1, we have that Z is the density process of some
probability measure Q ~ P.

Step 3:  We show that O € 2. By Proposition 1.19 this follows if (¢ * S)Z is
a martingale for any predictable R¢-valued ¢. Defining the predictable, positive
process a(t) := E(y(t)|%-1),t = 1,..., T, it suffices to show that V :=
Z“f * ((¢ » §)Z) is a martingale, cf. Proposition 1.14(7). Fixt € {0, ..., T} and
F € %;. Since

(@ SZ=(p*S)-Z+Z_*(¢p*S)+I[p*S Z]
and Z = &(N), we have
(@*S)Z=Z_ +((9*S)-*N+¢*S+[p*S Nl. (1.20)

Hence V equals

t

a*(p+S+1lp=S N = Za(s)((p(s)TAS(s) + w(s)TAS(s)GEg - 1))

s=1

t
=2 0 ASE)y) = V(®)

s=1
up to a martingale. Observe that

T

E((V(@) - Vi) = E( ) cp(s)TAS(sw(s)lF)

s=t+1

T
= E(Zfﬁ(s)TAS(s)y(s)) (1.21)

s=1
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for the predictable process

~ . Jo@)lF fors > 1,

vis) = {0 fors <t.
By (1.18) we have that (1.21) equals 0, which in turn means that V and hence
also V are martingales as desired.

Step 4: By assumption X is a Q-supermartingale. Since

X()Z(s) = Eo(X(DIF) Z(s) = E(X()Z(1)|Fy)

for s < 1 by (1.8), we have that XZ is a supermartingale relative to P.
By Proposition 1.14(8) this in turn implies that § = J < (XZ) is a
supermartingale. Essentially the same calculations as in (1.20-1.21) yield

T
0> ES(T) - 5(0) = E(Z AX(s)y(s))

s=1

in contradiction to (1.19). It follows that K N M = & cannot hold, cf. step 2.

Step 5:  Since K N M # @, there exists some predictable ¢, some A € [0, 1] and
some nonnegative adapted x with x(0) = 0 and P(ZtT:I x(t) > 0) > 0 such
that

AAX( + (1 —0x(0) =) ASH), t=1,...,T. (1.22)

Assume by contradiction that A = 0. This implies Zthl x(t) = ¢ * S(T). For
any Q € 2 we have Eg(p * S(T)) = 0. On the other hand, Zthl x(t) > 0and

Q(ZIT:1 x(t) > 0) > 0imply that Eg(¢ * S(T)) > 0 and hence a contradiction
to (1.19). Consequently A > 0.
Step 6:  From (1.22) and A > 0 we obtain

T _
AX (1) = g”(;) AS() — | \ o, t=1,...T.

whence X = X (0) ~|—‘f * S—C for the increasing process C(¢) = Zi:l 1;)‘x(s).

This yields the assertion. O

A prime example for a process X as in Theorem 1.22 is given by

X(t) =esssupEg(H|%#), t=>0, (1.23)
Qe2

where H denotes a bounded random variable.
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Proposition 1.23 X in (1.23) is a Q-supermartingale for all Q € 2.
Proof

Step 1:  Fix t > 0. We show that (E ¢ (H|.%#;)) ge2 has the lattice property in the
sense of Lemma A.3. To this end, take Q, Q> € 2 with density processes Y;, Y»
and consider F := {Eg,(H|%#;) < Eg,(H|.%#;)} € #;. Using Proposition 1.19
it is easy to verify that

Yi(s) fors <t,
Y(s):=1{ Yi(s) on F€ fors > t,
28 Y2(s) on F fors >t
is the density process of some probability measure 0 € 2. Since

E5(H|Z:) = Eg,(H|F)1pc + Eg,(H|F)1F
= Eq,(H|%) V Eq,(H|F),

the lattice property holds.

Step 2: Fix Q € 2 and ¢ > 0. By Lemma A.3 there is a sequence of probability
measures Q, € 2 such that Eg,(H|.%#;) 1 ess SUPGe 2 E(H|%;) asn — oo.
Denote by Y, and Y the density processes of O, and Q, respectively. Using
Proposition 1.19 and the generalised Bayes’ rule (1.8) it is easy to verify that the
process

Y(s) fors <t,

You(s) :=
n(s) { };((tt)) Yu(s) fors >t

is the density process of some probability measure én € 2 satisfying én |z, =

Qlg, and E5 (H |.Z:) = Eg,(H|#). Together with the monotone convergence
theorem for conditional expectations we conclude that

2)

= sup Eg(Eg,(H|.F)|.Z)
neN

Eo(X(1)|.%) = Eg (ess sup E3(H|.7)
ée,@

=FEp ( sup Eg,(H|.%;)
neN

— sup E (Eé (H|.Z)) %)
nEN n n
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=supEg, (H|Z5)
neN

< esssup EQ(HL?‘})
QGQ

= X(s)

fors <t. O

1.3 Jump Characteristics

The distribution of a concrete stochastic process as a whole is often unknown in the
first place. However, we usually have a local conception of its dynamics, i.e. at time
t — 1 we are aware of the distribution of the next value X () given the history up to
t — 1. This information can be used in a second step to derive unconditional expected
values E (X (t)), probabilities etc. We consider two concepts of local descriptions of
the process, jump characteristics in the present section and generators of Markov
processes in the next.
If X is an adapted process with values in £ C R?, we call the mapping

K*(t,B) := P(AX(t) € B|Zi—1) := E(15(AX (1))|-F1-1) (1.24)

fort = 1,2,... and B € %B(E) the jump characteristic of X. It is nothing else
than the conditional law of the increments of the process. The name is inspired by
semimartingale characteristics. This more involved continuous-time counterpart is
discussed in Chap. 4.

In applications the jump characteristic depends only on the present value of the
process. Specifically, we say an adapted process X is of Markov type if KX (¢, B)
depends on w, ¢ only through X (+ — 1)(w), i.e. more precisely if it is of the form

KX(t,B) =« (Xt — 1), B) (1.25)

with some function « that is a probability measure in its second argument. This
Markovian case is studied more thoroughly in the next section.
Random walks have particularly simple jump characteristics.

Proposition 1.24 (Random Walk) An adapted process X with X(0) = 0 is a
random walk if and only if its jump characteristic is of the form

K*(t, B) = v(B)

for some probability measure v which does not depend on (w, t). In this case v is
the law of AX (1). Note that X is of Markov type.
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Proof If X is a random walk, we have PAXOI1Fi-1 — pAX() — pAX(D) gince
AX (¢) is independent of .%;_; and has the same law for all 7.
Conversely,

P{AX() € BN F) = E(1p(AX(1))1F)

Z/E(1B(AX(t))|%_l)1FdP

= / v(B)IpdP
= v(B)P(F)
for F € %#;_. For F = Q we obtain P(AX(t) € B) = v(B) = P(AX(1) € B).
Hence A X (¢) is independent of .%; _| and has the same law for all ¢. |
Geometric random walks turn out to be of Markov type as well.

Example 1.25 The jump characteristic of a geometric random walk X is given by
KX(t,B) = o(fx e R?: X(t — 1)(x — 1) € B}),

where o denotes the distribution of X (1)/ X (0) = X (1). Indeed, we have

. X (@)
E(15(AX(0)|Fi-1) = E <1B<X(t - D(xo T 1))‘%0
= f 1p(X(t — 1)(x — 1)o(dx)

by (1.4) and the fact that X (#)/ X (t — 1) has law o and is independent of .%; _.

Since adapted processes are invariant under stochastic integration, stopping,
application of continuous mappings and measure changes, it makes sense to discuss
the effect of these operations on the jump characteristic. The following propositions
are provided as a motivation for similar rules in Chap. 4.

Proposition 1.26 (Stochastic Integration) If X is an adapted process with jump
characteristic KX and ¢ is a predictable process, the jump characteristic K¢*X of
@ * X is given by

KX, B) = / 1g(e()x)KX(z, dx).
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Proof By (1.3) we have
E(13(A(p * X(O)|-Fi-1) = E(13(@() AX (1))|-F:-1)
- f 15 (p(0x) PAX D11 (),

which yields the claim because PAX O Fi-1 = KX (7, ). O

Proposition 1.27 (Stopping) If X is an adapted process with jump characteristic
KX and t is a stopping time, the jump characteristic KX* of XT is given by

KX'(t, B) = KX (t, B)l(z1) + £0(B) 1 <1).

Here, gy denotes the Dirac measure in 0.

Proof Since X* = X(0) + ¢ * X with ¢(¢) := 1{;>), the assertion follows from
the previous proposition. O

Proposition 1.28 (Functions) If X is an adapted process with jump characteristic
KX and f is a real- or vector-valued function, then the jump characteristic K7™
of the process f(X) is given by

KX, B):/lB(f(X(t— D +x) — f(X(t — D))K¥ (@, dx).
Proof By (1.3) we have
E(1a(f(X() — f(X(t = D)|Fi-1)
:/IB(f(X(t— D) +x) — (X (1 — 1)) PAXOITi-1 gy

= / Lp(f(X(t — 1) +x) — f(X (= 1))K*(t,dx),

which yields the claim. O

Proposition 1.29 (Change of Measure) Suppose that Q ~ P denotes a probabil-
ity measure with density process Z = Z(0)&(N). Let X be an adapted process and
denote by K XN the characteristic of the bivariate process (X, N). Then the jump
characteristic KX of X relative to Q is given by

KX, B) = / 1)1+ KXNM(t, d(x, y)).
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Proof By (1.8) we have

Eo(13(AX(1))|Fi-1) = E(15(AX (1) ;0 | Zi1)

= E(1g(AX()(1 + AN ()| .Z1—1).

Note that
E(f(AX(t), AN()|Fi—1) = f F, KX @ d(x, y)

holds by definition for indicator functions f(x,y) = lc¢(x,y) and hence by
standard arguments for arbitrary functions f, cf. the proof of Proposition 1.38.
Considering f(x,y) = l¢(x)(1 + y) yields the claim. |

Propositions 1.26—1.28 are easy to memorise: if x stands for the jump size of X
at 7, then ¢ « X jumps by ¢(¢)x (needed for Proposition 1.26), X* jumps by x if
T >t and by 0 if ¢ < ¢ (needed for Proposition 1.27), and f(X) by f(X( — 1) +
x) — f(X (¢t — 1)) (for Proposition 1.28). Proposition 1.29 may seem less obvious.
It can be understood by viewing the transition from P to Q as a composition of
one-period measure changes with conditional density 1 + AN(z).

In order to illustrate some of these rules, we consider the following

Example 1.30 We have already observed that geometric random walks can be
written as ordinary or alternatively as stochastic exponentials of random walks, i.e.

Z = exp(X) = £(X).

This can also be seen by computing their characteristics. Proposition 1.28 for
f(x) = e* yields

K%, B):/13(8‘“*1)“—eX“*“)KX(t,dx)
=/13(Z(t— D(e* — D)K¥ (1, dx),

where KX, KZ denote the jump characteristics of X and Z, respectively. Since X =

Z{ » Z, we have

kX, B) =/13(x/Z(t—1))KZ(t,dx)

_ / 15" — KX(t. dx) (1.26)
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for the jump characteristic of X by Proposition 1.26. From Proposition 1.24 we
observe that X is a random walk if and only if this holds for X.

Conversely, we could also have applied Proposition 1.26to Z = Z(0) + Z_ * X
to obtain

KZ(t, B) = / 15(2(t — Dx)KX (1, dx).
Proposition 1.28 for f(x) = logx now yields
KX, B) = / 15(log(Z(t — 1) +2) —log Z(t — 1)) K (1, d2)
=/1B(1og(1+x))1<’7(t,dx),

which is equivalent to (1.26).

For the following we define the identity process / as
I(t) :=1t.

The characteristics can be used to compute the compensator of an adapted process.

Proposition 1.31 (Compensator) If X is an adapted process, its compensator AX
and its jump characteristic KX are related to each other via

A =aX 1
with

aX(1) := /xKX(t, dx)

provided that X is integrable or, more generally, if the integral a* is finite.

Proof By definition of the compensator we have
AAX (1) = E(AX ()| .F—1) = /xPAX(’)“%*‘(dx)
= /xKX(t, dx) =a¥X@) = A@@® + D). O

Since the predictable covariation is a compensator, it can also be expressed in
terms of characteristics.
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Proposition 1.32 (Predictable Covariation) The predictable covariations of two
adapted processes X, Y and of their martingale parts MX, MY are given by

(X, y)=2%Y .,
(MX, MYy =2%Y o |
with

&) = / xyKEN @, d(x, y)),

) = f xyKE V@, d(x, y)) — a*(0)a” 1),

Y ~X,Y

provided that the integrals aX , a¥ , %Y are finite.

Proof The first statement follows similarly as Proposition 1.31 by observing that
AX,Y)@) = E(AX () AY(H)|Fi—1).
The second in turn follows from the first and from Proposition 1.31 because
AMX MY)(1) = E(AMX () AMY (1) Fi-1)
= E(AX()AY (1)|.F_1) — E(AX(1)|.Z_1) AAY (1)
— AAXEAY()|.Z1-1) + AAX () AAY (1)
= AX,Y)(1) — AAX@OAAY (1)

= / xyK XD, d(x, y) = a*0a" @) o
Let us rephrase the integration by parts rule in terms of characteristics.
Proposition 1.33 For adapted processes X, Y we have
&Yy =Xt —Da" )+ Y@t — DaX@) + %Y (1),

provided that X,Y and XY are integrable or, more generally, if the integrals
aX,a¥ 7Y are finite.

Proof Computing the compensators of

XY =XO)YO0)+X_*Y+Y_ *X+[X,Y]
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yields
aXY o[ = AXY
=X_+ AV 4y_+ AX 4 AT
=X_a) eI+ Y_aXy 1 +3%Y o]

by Propositions 1.14(3, 9) and 1.32. Considering increments yields the claim. O

1.4 Markov Processes

Fix a state space E C R¥ containing the possible values of the stochastic processes
under consideration. We call an adapted E-valued process X a (homogeneous)
Markov process if

P(X(s+1t) € B|%s) = P(t,X(s),B), s,t>0, Be HAB(E) (1.27)

holds for some family (P (t, x, -));>0,xc£ Of probability measures on E. Intuitively,
this means that the future evolution X (s + t) given the past up to s depends on this
past only through the present value X (s). In this sense the process has no memory.
Moreover, its dynamics do not depend explicitly on time. If the process attains the
value x at time ¢, it evolves in the future as if it had started afresh at this point.
Note that both sides of (1.27) are random variables, the right-hand side through the
starting value X (s).

The function (¢, x, B) — P(t, x, B) is called the transition function of X. The
value P(¢, x, B) is the probability of ending up in B if one started # periods ago in x.
The transition function “almost” satisfies P (0, x, B) = ¢o(B) and the Chapman—
Kolmogorov equation

P(s+t,x,B) =/P(t,y,B)P(s,x,dy) (1.28)

fors,t > 0,x € E, B € #(E). Indeed, for arbitrary r > 0 we have

P(s+t,X(),B)=P(X(r+s+1) € B|.%)
=E(P(X(r +s+1) € BlF15)| %)
= E(P(t,X(r +5), B)|%)

= / P(t,y, B)P(s, X(r),dy), (1.29)
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where the last line follows because P (s, X (r), -) is the law of X (» + s) given the
information up to time r. The restriction almost above refers to the fact that (1.29)
yields (1.28) only up to some set of points x that is visited with probability O by
X. To be more precise, we call (P(t, x, -));>0,xce a (homogeneous) transition
function only if (1.28) holds for any x without exception. Moreover, one generally
requires the family in the above definition of a Markov process to be a transition
function in this sense. Of course, it is unique only up to some set of points x that are
never visited by the process.

In discrete time it suffices to consider one-step transitions in order to verify the
Markov property:

Proposition 1.34 Suppose that P(X(t + 1) € B|.%;) = Q(X(®),B), t > 0,

B € AB(E) for some family (Q(x,-))xecE of probability measures on E. Then
X is a Markov process relative to the transition function defined recursively by
P(0,x,B) =&x(B)and P(t+ 1,x, B) = [ Q(y, B)P(t, x,dy).

Proof Equation (1.27) follows by induction because
P(X(s+t+1)eB|.Z)=EPX(s+1+1) € B|ﬁs+t)|ﬂ'})
= E(Q(X(s +1). B)|F;)

:/Q(y,B)P(t,X(s),dy)
=P(t+1,X(s),B).

Similarly, (1.28) is obtained by induction from
P(s+t+1,x,B) = / O(y,B)P(s +1t,x,dy)
=/ Oy, B)P(t,z,dy)P(s, x,dz)

= / P(t+1,z, B)P(s, x, dz). o

Proposition 1.35 An adapted process X is a Markov process if and only if it is of
Markov type in the sense of Sect. 1.3.

Proof Suppose that X is a Markov process. By (1.3) we have
KX(t, B) = E(15(X(1) = X(t = )| 1)
= / 1g(x — X(1 — 1)) PXO1Fi-1(4x)
= [ 10t = X = 1)PA X 1.0,

which is a function of X (r — 1) and B as claimed.
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Conversely, assume that KX (¢, B) = x (X (t — 1), B) with some function « that
is a probability measure in its second argument. Again by (1.3) we have

P(X(s+1) € B|.Z) = E(15(X(s) + AX (s + 1))|F)

= [ 15x6) + 0 PAX D )

le(X(s) + 0K (X (s), dx) (1.30)
: Q(X(s), B) (1.31)

for a family (Q(x, -))xcg of probability measures on E. The Markov property
follows from Proposition 1.34. O

Corollary 1.36 (Random Walks and Geometric Random Walks) Random walks
and geometric random walks are Markov processes.

Proof In view of Proposition 1.35, this follows immediately from Proposition 1.24
and Example 1.25. O

Together with the law of X (0), the transition function determines the distribution
of the whole process uniquely, as the following formula shows.

Proposition 1.37 Forany 0 < t; < --- < t, and any bounded or nonnegative
measurable function f : E" — R, we have

E(f(X(1),..., X (1)) = /---ff(m,-.-,xn)P(tn = In—1, Xn—1, dXp)
- P(ty — 11, x1, dx2) P(t1, x0, dx1) P* D (dxy).
Proof We proceed by induction on 7. For n = 1 we have
E(f(X (1)) = E(E(f(X(11))|%0))
= E( f f(xl)PX“l)%(dxl))

= E(/ S ) P(r1, X(0), dX1))

= / / ) P, xo, dx1) PO (dxy),
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where the third equation follows from the Markov property (1.27). Suppose now
that the assertion holds for n — 1. Again by (1.27), we obtain

E(f(X(t), ..., X)) = E(E(f(X(n), ..., X ()7, )

=E(/ FXAD, s X (tgm1), %) PXON T (dxn>)

= E(/ fX@), ..., X(th—1), X)) Pty — ty—1, X (ty—1), dxn))
=E@X(®),..., X (t-1))) (1.32)

with
gx1, .., xp1) = /f(xls ces Xpe 1, Xp) Pty — a1, Xp—1, dxy).

By assumption we have that (1.32) equals

/"'/g(xls~-~1xn71)P(tn71 — tyh—2, Xp—2,dXp—1)
- P(ty — 11, x1, dx2) P (11, x0, dx1) PX© (dxp),

which yields the claim. O

The integrator
Pty — ta—1, Xn—1,dxp) - - - P(ta — 11, x1, dx2) P(t1, x0, dx1) PX© (dx)

stands for the joint law of X (0), X(#1), ..., X(#,). Specifically, the probability
of observing X (0), X (#1),..., X(t;) in xg, ..., x, is given by the probability of
observing X (0) in x¢, multiplied by the probability of moving from x¢ to x; in
time #1, multiplied by etc. up to the probability of moving from x,_1 to x, in time
th —th—1.

The transition function leads naturally to a family (p;);>o of operators on
bounded measurable functions f : E — R, called the transition semigroup. These
operators are defined via

pe f(x) :=/f(y)P(t,x,dy)

for t > 0, bounded measurable f : E — R, and x € E. Put differently, p; f (x) is
the expected value of f(X (s + 1)) given that X (s) = x. In view of

ptlB(-x) = P(ta-xaB)a
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the transition function can be recovered from (p;);>0. The family (p;);>0 is called
semigroup because

Ds+t = Ds © Pt (1.33)

which means that ps+; f = ps(p:f) for any bounded measurable function f.
Equation (1.33) follows easily from the Chapman—Kolmogorov equation.

The Chapman—Kolmogorov equation or Proposition 1.34 shows that in discrete
time all p, and hence the distribution of the whole process can be recovered from
p1. Alternatively, the transition probabilities can be derived from the generator G
of the Markov process, which is another operator mapping bounded measurable
functions f : E — R on the like. It is defined as Gf := p; — po, i.e.

Gf(x) =p1f(x)— f(x). (1.34)

In terms of the probability measures Q(x, -) in Proposition 1.34 or the function «
in (1.25), we can write it as

Gf(x) = / FOIOG.dy) — F(x)

= /(f(x +y) = f)(x,dy),

cf. (1.30, 1.31). For the random walk in Proposition 1.24 we have

Gf(x) = / (f(x+y) = fF@))vdy).

The generator of the geometric random walk in Example 1.25 satisfies

G = [ (e = Fw)etan.
Observe that the generator has the property that
M) = f(X (1) = f(X(0) - Gf(X) 1

13
= f(X(t))—f(X(O))—ZGf(X(S— 1)
s=1

is a martingale for bounded measurable functions f because

EM®)|F-1) =M@ — 1) = E(f(X®) — f(X( = 1) = Gf (Xt — 1)|F1—1)

=p1f(X@-1) - f(X(t—-1D)-Gf(X1—1))
=0.
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Moments E(f(X(t))) of X (¢) can be computed by successive application of the
generator G:

Proposition 1.38 (Backward Equation) For bounded measurable f : E — R
the function u(t, x) := p: f (x) satisfies

u©,x) = f(x), u(,x)y=ul—1,x)+ Gu( —1,x),
where we use the notation
Gu(t —1,x) := (Gu(t — 1, ) (x). (1.35)

Proof u(0, x) = f(x) follows from pg f = f. By definition we have
ut—1,x)+Gu(t —1,x) = /u(t —1,y)P(1,x,dy)

=f fQ@P@E—1,y,dz)P(1,x,dy).

The Chapman—Kolmogorov equation (1.28) yields

// f(Z)P(t—1,y,dz)P(1,x,dy)=/f(z)P(t,x,dz) (1.36)

for f = 1p. By standard arguments from measure theory, (1.36) actually holds for
arbitrary bounded f. Indeed, both sides are linear in f and arbitrary measurable f
can be approximated by linear combinations of indicator functions.

Since the right-hand-side of (1.36) is p; f (x) = u(t, x), we are done. |

In Mathematical Finance the previous proposition can, for instance, be applied to
compute call option prices E((X(T) — K)™) for a stock following a geometric
random walk.

Conversely, the law of X (¢) can be obtained from the law of X (0) by successive
application of the adjoint A of the generator G. To make this precise, denote by
B(E) the set of bounded measurable functions £ — R. Any probability measure
w on E can be viewed as a linear mapping B(E) — R via uf := [ fdu. We
denote by .#Z (E), B(E)' the set of probability measures on E and the set of linear
mappings B(E) — R, respectively. Moreover, we define the adjoint operator A :
M (E) — B(E) of G by (Ap) f := u(Gf).

Proposition 1.39 (Forward Equation) The laws u, = PX¥, t = 0,1,2,...
satisfy

Me — pi—1 = Apg—1.
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Proof We need to verify that u, f — ;1 f = u—1(Gf) for any bounded measur-
able function f : E — R,ie. E(f(X (1)) —E(f(X(t—1))) = E(Gf(X(t—1))).
Since Gf(x) = p1f(x)— f(x)and p; f(x) = f f(»P(1,x,dy),Proposition 1.37
yields

EGf(Xt—1D)=Epi1f(X(@—1)—E(f(X(t—1)))
B /// F) P, x1,dx2) Pt — 1, x0, dx1) PX O (dxo) — E(f (X (1 — 1))
=E(f(X(1)) — E(f(X(—1)))

and hence the claim. O

1.5 Optimal Control

In Mathematical Finance one often faces optimisation problems of various kinds, in
particular when it comes to choosing trading strategies with in some sense maximal
utility or minimal risk. Such problems can be tackled with different methods. We
distinguish two approaches, which are discussed in the following sections and, for
continuous time, in Chap. 7. As a motivation we first consider the simple situation
of maximising a deterministic function of one or several variables.

Example 1.40

1. (Direct approach) Suppose that the goal is to maximise an objective function

T
(o) > Y ftx1,00) + gxr) (1.37)
t=1
overall x = (x1,...,x7) € R, o = (a1, ...,ar) € AT such that
Ax, :=x,—xt_1=8(xt_1,ot,), t=1,...,T

for some given function § : RY x R™ — R¢. The number or vector oy
stands for a dynamic control which determines the state x; of the system. The
reward (1.37) in turn depends primarily on x but possibly also on the control o
itself. The initial value xo € RY, the state space of controls A C R™ and the
functions f : {l,...,T} x RY x A — R, g: RY — R are assumed to be
given. The approach in Sect. 1.5.1 below corresponds to finding the maximum
directly, without relying on smoothness or convexity of the functions f, g, § or
on topological properties of A. Rather, the idea is to reduce the problem to a
sequence of simpler optimisations in just one A-valued variable ;.
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2. (Lagrange multiplier approach) Since the problem above concerns constrained
optimisation, Lagrange multiplier techniques may make sense. To this end, define
the Lagrange function

T

T
Lix,a,y) =Y ft,x-1,00) + g(xr) — Y yi(Ax; = 8(xi—1, @)

=1 =1

on (Rd)T x AT x (Rd)T. The usual first-order conditions lead us to look for a
candidate x* € RHT, a* € AT, y* ¢ RY)T satisfying

a) Ax} = 8(xt*71, af)fort =1,..., T, where we set x4 = X0,
b) y7 = Vgx7),
¢) Ay; = =V H(t, x|, af) fort = 1,...,T, where we set H(t,§,a) :=

f(t, & a)+y;6(¢, a) and V, H denotes the gradient of H viewed as a function
of its second argument,

d) o maximises a > H(t,x}_j,a)onAfort=1,...,T.

Provided that some convexity conditions hold, a)-d) are in fact sufficient for
optimality of «*:

Proposition 1.41 Suppose that the set A is convex, & +— g(&), (§,a) —
H(t, & a), t = 1,...,T are concave and ¢ +— g&), &€ — H(,§, a),
t = 1,...,T, a € A are differentiable. If conditions a)-d) hold, (x*, a*) is
optimal for the problem in Example 1.40(1).

Proof We set h(t, &) = sup,c4 H(t,&, a) for any competitor (x, o) satisfying
the constraints. Condition d) yields h(z,x; ) = H(, x|, of) for t =
1,..., T. We have

T T
Y fxra)+gler) = Y ftxf g af) — g(x})

=1 =1

[
M~

(Hxim ) = Haxiy @) = vi (A = AxD) + g(xr) = g(x)
1

~
Il

M~

(@ w1 0 = B xm0) + (0 x) = b))
1

~
Il

— 3! (A% — AX)) + Vg(i) (T — ¥}

M~

(Vahte Xz Gim = 57 = ¥i (Axy = AxD) Ve (xr = 57)
1

~
Il

(1.38)
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T
> (= AV G = XD =3 A = Ax)) +yiGr — v (139)

t=1

0 (X0 — x¢),

Yy
0

where the existence of VA (¢, x;_,), inequality (1.38) as well as equation (1.39)
follow from Proposition 1.42 below and the concavity of g. O

Under some more convexity (e.g. if § is affine and f(z, -, -) is concave for
t =1,...,T), the Lagrange multiplier solves some dual minimisation problem.
This happens, for example, in the stochastic examples 1.71-1.76 in Sect. 1.5.4.

The following proposition is a version of the envelope theorem which concerns
the derivative of the maximum of a parametrised function.

Proposition 1.42 Let A be a convex set, f : R x A —> R U {—00} a concave
function, and f(x) = supaeA f(x,a), x € RY. Then f is concave. Suppose in
addition that, for some fixed x* € RY, the optlmzser a* 1= argmax,cy f(x a)
exists and x — f(x, a*) is differentiable in x*. Then f is differentiable in x* with
derivative

Dif(x*)=Dif(x*,a*), i=1,....d. (1.40)
Proof One easily verifies that f is concave. For h € R? we have

FG* 4+ yh) > f(x* + yh,a*)

d
= f(*a) +y ) Dif(x*, a)hi +o(y) (1.41)

i=1

as y € R tends to 0. In view of [144, Proposition I.1.1.4],

O+ yh) = Fx®)
s(y) = y

is decreasing in y € R \ {0}. Denoting its limits in 0 by s(0—), s(0+), we obtain
s(0+) <s(0—) < Zl 1 Di f(x*, a*)h; < 5(0+) from (1.41). Consequently, f is
differentiable in x* with derivative (1.40). |

In the remainder of this section we discuss optimisation in a dynamic stochastic
setup.
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1.5.1 Dynamic Programming

Since we consider discrete-time stochastic control in this introductory chapter, we
work on a filtered probability space (2, %, F, P) with filtration F = (%#;);=0.1...T
for finite 7. For simplicity, we assume % to be trivial, i.e. all .%#y-measurable
random variables are deterministic. By (1.1) this implies E(X|%y) = E(X) for
any random variable X.

Our goal is to maximise some expected reward E (u(«)) over controls o € ..
The set .o/ of admissible controls is a subset of all R”-valued adapted processes
and it is assumed to be stable under bifurcation, i.e. for any stopping time t, any
event F € .77, and any «, @ € «/ with o = &7, the process («|tr|&) defined by

(a|tpla)(@) = 1pca(®) + 1Fa(r)

is again an admissible control. Intuitively, this means that the decision how to
continue may depend on the observations so far. Moreover, we suppose that «(0)
coincides for all controls & € 7. The reward is expressed by some reward function
u:Qx (RMOL.TH Ry {—o0}. For fixed o € <7, we use the shorthand u («)
for the random variable w — u(w, a(w)). The reward is meant to refer to the final
time T € N, which is expressed mathematically by the assumption that u(c) is
Zr-measurable for any « € 7.

Example 1.43 Typically, the reward function is of the form

T
w(@) =Y ft, X0 = 1), a) + g(X*(T) (1.42)

t=1

for some functions f : {1,...,T} x R x R" — RU{—o0}, g : R - RU
{—00}, and R¢-valued adapted controlled processes X® . The controlled process is
assumed to depend on the control only up to the present time, i.e. fort =0, ..., T
we have X@ (1) = X@ (1) if o = &'

We call o* € </ an optimal control if it maximises E (u(«)) over all @ € <7,
where we set E(u(«)) := —oo if E(u()™) := —o0. Moreover, the value process
of the optimisation problem is the family (¥(-, o))qcor Of adapted processes
defined via

V(t,a) :=esssup {Eu(@)|.%) : d@ € & withd' =o'} (1.43)

fort = 0,...,T and ¢ € /. To this end, recall that the essential supremum
in (1.43) is the smallest .%;-random variable that dominates the right-hand side
outside some null set, cf. Sect. A.2. The right-hand side of (1.43) represents the
optimisation problem if we follow the control « up to time ¢ and behave optimally
afterwards.
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The value process is characterised by some martingale/supermartingale property:
Theorem 1.44
1. If V(0) := supyc s Eu(a)) # £o0, the following holds.

a) Ve, d) =7t a) ifad =a.
b) (V(t, a))refo,..., T} IS a supermartingale with terminal value YV(T,a) =u(a)
for any admissible control a with E(u()) > —oo.

c¢) If o* is an optimal control, then (V' (¢, &*))seq0,..., T} is a martingale.

.....

2. Suppose that ("/7(~, o))qegr is afamily of processes such that

a) "/Z(t, a) = “17(t, a) ifa' = o'. The common value “17(0, a) is denoted by
"//~(0), _

b) (V(t,))ieqo,..., 1) is a supermartingale with terminal value ¥V (T, o) = u(c)
Jor any admissible control a with E(u(a)) > —00,

c) (V(t,a")ieo,...1} is a submartingale—and hence a martingale—for some

admissible control a* with E(u(a*)) > —oo0.

Then * is optimal and V' (t, a*) = "/7(1‘, a*) fort = 0,...,T. In particular,
Y (0) = 7(0).

Proof

1. The first statement, adaptedness, and the terminal value of ¥'(-, o) are evident.
In order to show the supermartingale property, letz € {0, ..., T'}. Stability under
bifurcation implies that the set of all E (u(a)|.%;) witha € .« satisfying &' = o’
has the lattice property. By Lemma A.3 there exists a sequence of admissible
controls &, with o, = o and E (u(a,)|-%) + ¥ (¢, «). For s < t we have

E(E(u(an) | F)|F5) = E(u(on)| F5) <V (s, ).

The supermartingale property E (¥ (¢, ®))|.%s) < ¥ (s, «) is now obtained by
monotone convergence.

Let o* be an optimal control. Since ¥ (-, «*) is a supermartingale, the martingale
property follows from

7(0,0%) = sup E(u(a)) = E(u(@®)) = E(V(T,a"))
14

and Proposition 1.6.
2. The supermartingale property implies that

Eu() = E(V(T,a)) < 7(0,a) = ¥(0) (1.44)

for any admissible control «. Since equality holds for a*, we have that o* is
optimal. By statement 1, 7'(-, «*) is a martingale with terminal value u(a*).
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Since the same is true for 77(-, a*) by assumptions 2b,c), we have 7 (¢, a*) =
Eu(®)| %) =7V, a*) fort =0,...,T. ]

The previous theorem does not immediately lead to an optimal control but it often
helps in order to verify that some candidate control is in fact optimal.

Remark 1.45

1.

It may happen that the supremum in the definition of the optimal value is not
a maximum, i.e. an optimal control does not exist. In this case Theorem 1.44
cannot be applied. Sometimes this problem can be circumvented by considering
a certain closure of the set of admissible controls which does in fact contain the
optimiser.

If this is not feasible, a variation of Theorem 1.44(2) without assumption 2¢) may
be of interest. The supermartingale property 2b) of the candidate value process
ensures that 7 (0) is an upper bound of the optimal value ¥ (0). If, for any & > 0,
one can find an admissible control a® with 7 0 < E (7/ (T, a®)) + &, then
4 (0) = 7(0) and the o yield a sequence of controls approaching this optimal
value.

. The conditions in statement 2 of Theorem 1.44 can also be used in order to

obtain upper and lower bounds of the true value process #". More specifically,
if (7/ (-, @))geor denotes a family of processes such that 2a) and 2b) hold, then
V(t,a) < V4 (t,a) fort =0,..., T and any admissible control . We may even
relax ¥ (T, o) = u(a) to ¥ (T, a) > u(a) in 2b).

If, on the other hand, (7'(-, @))yeor denotes a family of processes such that 2a)
and the submartingale property in 2¢) hold for some control, then ¥'(0) < #(0).

. The above setup allows for a straightforward extension to the infinite time

horizon T = oo. However, one must be careful that supermartingale and
(sub-)martingale in Theorem 1.44 refer to the time set {0, ..., T} as stated, i.e.
including T'. Specifically, ¥ (oo, &) is defined and satisfies E (¥ (0o, a)|-F;) <
YV (t,a) fort < T etc.

. In condition 2b) of the previous theorem it is enough to require that the process

is a local supermartingale unless 7 = oo, i.e. integrability need not be verified.
Indeed, the inequality E(u(x)|.%;) < 7/ (t «) (1.44) is obtained recursively in
time because we set E(u(«)) := —ocoif E(u(a)™) :=

. Let us have a brief look at the intermediate optimisation problem (1.43) for later

use. Fixt € {0,...,T}. If 7/( o) — ”1/( a)! in Theorem 1.44(2) is a martingale
for some admi551ble control & with E(u(a)) > —o0, then ¥ (s, a) = i (s, @)
and « is the maximiser in the definition of #'(s, a) fors = ¢, ..., T. This follows
as in the proof of Theorem 1.44(2). In particular, the optimal control «* also
maximises the conditional optimisation problem in the definition of 7#(z, o*).
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The value process can be obtained recursively starting from ¢ = T':

Proposition 1.46 (Dynamic Programming Principle) Suppose that ¥ (0) #
doo. Fort =1,..., T and any control @ € </ we have

Yt —1,a) = esssup iE(“l/(t, DN F1) & € A withd ™ = aH} .

Proof The inequality “<” is obvious because E(u(@)|.%#;) < ¥ (¢t,&) and hence
Eu(@)|F-1) = E(Ew@)|-F)|-F1-1) < E(V(t,8)|Fr-1).
In order to verify the converse inequality “>" fix a control @ € & with

a@'~! = o'7!. Let (a)n=1.2... be a sequence of controls with &/ = &' and such

that E (u(a,)|%) 1+ ¥ (¢, @) as n — oo. For any n we have
E(Eu(an)|F)|F1-1) = E@(an)| F-1) <V (t — 1, ).

Monotone convergence yields E (¥ (¢, @)|-Z;—1) < ¥ (¢t — 1, @), which implies the

desired inequality. O

Moreover, the value process has a certain minimality property, which has already
been mentioned in Remark 1.45(2):

Proposition 1.47 Suppose that 7 (0) # +oo. If a family of processes
(V' (-, ®))qegy satisfies 2a,b) in Theorem 1.44, we have ¥ (-,a) < V' (-,a) for
t=0,...,T and any control a € <.

Proof For any control & satisfying &’ = a' we have
Ew@)|F) = ET(T,0)|F) < V(1,8 = 71, ),
which implies that
V(t,a) =esssup | Ew@)|F;) 1 @ € of withd =o'} < V(1, ). O
As an example we consider the Merton problem of maximising the expected

logarithmic utility of terminal wealth.

Example 1.48 (Logarithmic Utility of Terminal Wealth) An investor trades in a
market consisting of a constant bank account and a stock whose price at time ¢
equals

t
S(t) = SOEX) (1) = SO) [ [+ AX(5))

s=1

with AX(t) > —1. Given that ¢(¢) denotes the number of shares in the investor’s
portfolio from time # — 1 to ¢, the profits from the stock investment in this period
are p(t)AS(¢). If vp > 0 denotes the investor’s initial endowment, her wealth at any
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time ¢t amounts to

t
Vo) =10+ @()AS(s) = vo + ¢ * S(1). (1.45)

s=1

We assume that the investor’s goal is to maximise the expected logarithmic utility
E(log Vy(T)) of wealth at time 7. To this end, we assume that the stock price
process S is exogenously given and the investor’s set of admissible controls is

o/ = {¢ predictable : V,, > 0 and ¢(0) = 0}.

It turns out that the problem becomes more transparent if we consider the relative
portfolio

Sit—1)

. t=1,...,T, (1.46)
Vot — 1)

(1) =)

i.e. the fraction of wealth invested in the stock at time # — 1. Starting with vy, the
stock holdings ¢(t) and the wealth process V,,(¢) are recovered from 7 via

t
Vo) = vo&(r » X)(t) = vo l—[(l + 7(s)AX(s)) (1.47)
s=1
and
L Vet=1  wE e X)) — 1)
) =7 (1) St —1) =7 (t) S — 1) .

Indeed, (1.47) follows from

Vot — D (t
AVy(t) = )AS(t) = wé(t )17;( )AS(t) = Vot = DA@T * X)(1).
If T = 1, a simple calculation shows that the investor should buy ¢*(1) =

7*(1)vg/S(0) shares at time O, where the optimal fraction 7*(1) maximises the
function y — E(log(l + y AX(1))). We guess that the same essentially holds for
multi-period markets, i.e. we assume that the optimal relative portfolio is obtained
as the maximiser 7*(w, t) of the mapping

y > E(log(l + y AX(D)).71-1)(®). (1.48)

For simplicity we suppose that this maximiser exists and that log(1 + 7* () AX (¢))
has finite expectation for ¢+ = 1, ..., T. Both can be shown to hold if the maximal
achievable utility sup,,c ., E(log V,(T)) is finite, e.g. based on duality results in
[126, 197].
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The corresponding candidate value process is

T
V(t,¢):=E <log (V‘p(t) ]_[ (1+ n*(s)AX(s))) ‘%)

s=t+1
T
=logV,(t) + E ( Z log (1 + n*(s)AX(s))‘ﬁ}) , (1.49)
s=t+1
where empty products are set to one and empty sums to zero as usual. Observe that

E (1, 9)|.F1-1) = log Vy(t — 1)

9()S(t 1) _
+E<1og<1+ Vot - 1) AX(t))‘Jt_1>

T
+E ( Z log (1 + 7*()AX (s)) %1>

s=t+1

IA

log Vo (t — 1) + E(log(1 + 7* () AX (1)) | Fi—1)

T
+E ( Z log (1 4+ 7*(s)AX (s)) %1>

s=t+1
=7(t—-1,¢)

forany + > 1 and ¢ € &7, with equality for the candidate optimiser ¢* satisfying
@*(t) = *(t)Vpr(t — 1)/S(t — 1). By Theorem 1.44, we conclude that ¢* is indeed
optimal.

Note that the optimiser or, more precisely, the optimal fraction of wealth invested
in stock depends only on the local dynamics of the stock. This myopic property holds
only for logarithmic utility.

The following variation of Example 1.48 considers utility of consumption rather
than terminal wealth.

Example 1.49 (Logarithmic Utility of Consumption) In the market of the previous
example the investor now spends c(¢) currency units at any time ¢t — 1. We assume
that utility is derived from this consumption rather than terminal wealth, i.e. the goal
is to maximise

T
E(Z log c(1) + log VW(T)) (1.50)

t=1
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subject to the affordability constraint that the investor’s wealth should stay positive:

t

0 < Vopolt) :=vo+¢+516) =) cls). (1.51)

s=1

The last term V,, o(T) in (1.50) refers to consumption of the remaining wealth at the
end. The investor’s set of admissible controls is

o = (g, ¢) predictable : V,,. > 0, (¢, ¢)(0) = (0, 0)}.

We try to come up with a reasonable candidate (¢*, c*) for the optimal control.
As in the previous example, matters simplify in relative terms. We write

c(n)

k(t) = , =1,...,T (1.52
) V(p,c(t -1 )
for the fraction of wealth that is consumed and
O=p@, 0D o e (1.53)
T = = .
POy ct—1—cty ="V, = DU = k()

for the relative portfolio. Since the wealth after consumption at time # — 1 is now
Vo,c(t — 1) — c(t), the numerator in (1.53) had to be adjusted. Similarly to (1.47),
the wealth is given by

13
Vo,c(t) = vo H(l — k()1 +7()AX () = voé'(—k * ))& (7 * X)(2).
s=1

(1.54)
We guess that the same relative portfolio as in the previous example is optimal in
this modified setup, which leads to the candidate

* o Vor ot —1) — c*(1)

1)y =m"(t
o0 =m0 "
As before we assume that 7* maximising (1.48) exists and that log(14+7*(t) AX (¢))
has finite expectation for + = 1,...,T. Moreover, it may seem natural that the
investor tries to spread consumption of wealth evenly over time. This idea leads to
k*(t) = 1/(T + 2 — t) and hence

Ve o (t — 1)

*IZ
<’ T+2—t
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because at time ¢ — 1 there are T 42 —¢ periods left for consumption. This candidate
pair (¢*, ¢*) corresponds to the candidate value process

t
Vi, (9,0) =) _logc(s)

s=1
T s—1

+E< > log(w,c(r) I1 ((1—:c*(r))(l+n*(r)AX<r>))x*(s>)

s=t+1 r=t+1

T
+log (v‘p,c(n [T (a-~ena +n*(r>AX(r)>)>‘<%>

r=t+1

t
= Zlog c(s) + (T +1—1)log Vo (1)

s=1
T

+ Y <(T F1- r)E(log (1+ n*(r)AX(r))‘%>

r=t+1

+(T+1=r)log ;7577 —log(T +2 — r)),

which is obtained if, starting from ¢ + 1, we invest the candidate fraction 7* of
wealth in the stock and consume at any time s — 1 the candidate fraction «*(s) =
1/(T 4 2 — s) of wealth. In order to verify optimality, observe that

t—1

E(7(t, (9, 0)|Fi-1) = Zlogc(s) +(T+1—1)logVyo(t — 1)

s=1
F(T+1— t)E(log(l +n(t)AX(t))‘ﬁ,,1)
(T +1—0log(l — k(1)) + logk (1) +log V.e(t — 1)

T
+ ) <(T F1- s)E(log (1+ n*(s)AX(s))‘y‘,_Q

s=t+1
+(T+1—-s)log 11375 —log(T +2 — s)>

t—1
< Y loge(s) + (T +2—1)log Vot — 1)

s=1

F(T+1— t)E(log (1+ n*(:)AX(t))‘%_l)
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+(T+1-0log(l— ;.5 ) —log(T +2—1)

T
+ Y <(T +1-9)E(log (147" (5)AX ()| Fi1)

s=t+1
+(T+1—s)log 11375 —log(T +2 — s)>
= /V(t - ls ((pv C))

for any admissible control (¢, ¢), where (), k (¢) are defined as in (1.53, 1.52). To
wit, the inequality holds because 7*(¢) maximises y + E(log(14+yAX (1))|-%:—1)
and 1/(T + 2 — t) maximises 6 — (T + 1 —¢) log(1 — &) + log 8. Again, equality
holds if (¢, c) = (¢*, c*). By Theorem 1.44 we conclude that (¢*, ¢*) is indeed
optimal.

The optimal consumption rate changes slightly if the objective is to maximise
E(ZIT=1 e 0=1 loge(t) + e 0T log V. o(T)) with some impatience rate § > 0.

The two previous examples allow for a straightforward extension to d > 1
assets. We continue with a second example which is also motivated by Mathematical
Finance.

Example 1.50 (Quadratic Hedging) In the context of option hedging, the question
arises how to approximate a given random variable by the terminal value of a
stochastic integral relative to a given process. The random variable represents the
payoff of a contingent obligation and the stochastic integral stands for the profits of
an investor as in Example 1.48, cf. Chap. 12 for details.

More specifically, let X denote a square-integrable random variable, vy a real
number, and S a martingale with E(S(1)?) < oofort = 0,...,T. The aim is to
minimise the so-called expected squared hedging error

E((Vo(T) — X)?) (1.55)

where V(1) := vo + ¢ * S(¢) represents the wealth of the investor except for the
obligation X and ¢ ranges over all admissible controls in the set

o = {g predictable : ¢(0) = 0 and E((V,(T) — X)?) < 00}
= {¢ predictable : ¢(0) = 0 and E(V(p(T)z) < 00}

= {¢ predictable : ¢(0) = 0 and E((p2 * (S, S)(T)) < oo}

The problem becomes simpler by introducing the martingale V (¢t) := E(X|-%;)
generated by X and also the martingale M, := V,, — V, which means that we have
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to maximise E (u(¢)) with u(p) := —MW(T)z. Integration by parts yields

My(1)? = My(0)? + 2(My)— * My(t) + [My, My](t)
= My(0)*> + N (1) + (My, My) (1),

where N := 2(My)— * M + [My, My] — (My,, M) is a martingale by Proposi-
tions 1.14(7) and 1.8. Consequently,

Eu()|F) = =My (1)* — E((My, My)(T) = (My, My)(1)| 7).

This expression is to be minimised in the definition (1.43) of the value process.
Observe that M, (r) only depends on ¢'. Moreover,

T
(Mg, M)(T) — (Mg, M)(t) = ) A(My, My)(s)
s=t+1
T
= Y (96218 9)6) = 20(6)ALS. V)(s) + AV, V)(s))
s=t+1

can be optimised separately for any s. It is easy to see that
9(s) > 9($)>A(S, S)(s) = 20()ALS, V)(s) + AV, V)(s) (1.56)

is minimised by

_A(S, V()

= ALS. $)(s) (1.57)

@*(s)
with minimal value
AV, V)(s) — ¢* ()2 A(S, S)(s).

This leads to the ansatz

T
Vit 9) = —M0)* — Y E (A(V, V)(s) — 0" (5)2A(S, S)(s)‘%> (1.58)
s=t+1
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for the value process, with ¢* defined in (1.57). Since 0 < ¢*(5)2A(S, S)(s) <
A(V, V)(s), the control ¢* is admissible. Obviously, we have ¥ (T, ¢) = u(¢p). For
t=1,..., T we obtain
E( (6, 0|F1) =V (t = 1,9) — E(My(0)* = My(t — )*|.7;_))
+ AV, V)(O) — ¢* () A(S, $)(0)
=7t-1,¢)— (fp(t)zA(S, S)(t) =20 A(S, V)(1) + AV, V)(1))
+ @ (OFA(S, 8) (1) — 20* () A(S, V(1) + AV, V)(0).
Since (1.56) is minimised by ¢*(s), we have E(¥ (¢, 9)|-Z1—1) < V' (t — 1, ¢) with

equality for ¢ = ¢*. Theorem 1.44 yields that ¢* is indeed optimal. Moreover, the
optimal value of the original control problem (1.55) amounts to

T
—H(0,9") = (Ve (0) = VOD? + 3" E(A(V, V(1) = 9" () ALS. 5)(0))

t=1

= (= ECO)? + E((V. V)(T) = (") (S.5)(T)) .

If this is to be minimised over the investor’s initial capital vy as well, the optimal
choice is obviously v9p = E(X), leading to the optimal value

E((v, v)(T) = (@) = (5. S)(T))

of the control problem.

1.5.2 Optimal Stopping

An important subclass of control problems concerns optimal stopping. Given some

time horizon 7 < oo and some adapted process X with E(sup,c(o 7y |X()]) <
00, the goal is to maximise the expected reward
T E(X(1)) (1.59)

over all stopping times T with values in {0, ..., T}.
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Remark 1.51

1. In the spirit of Sect. 1.5.1, a stopping time 7 can be identified with the corre-
sponding adapted process o (t) := l{;<¢}, and hence X () = X(0) + o * X(T).
Put differently, &7 := {« predictable: « {0, 1}-valued, decreasing, «(0) = 1} and
u(e) == X(O0) + o * X(T) in Sect. 1.5.1 lead to the above optimal stopping
problem.

2. Sometimes X may not be adapted in applications such as in Example 1.58 below.
Then we can replace it with the adapted process X (1) := E(X()|.%;). Indeed,
we have

T
E(X(1) =Y E(X(1)1{z=)

t=0

E(E(X(r)|%)1{r=z})

M~ 10

E(X()1(r=n)

Il
o

t

= E(X(1))

because {t = t} € .%; for any stopping time <.

The role of the value process in general control problems is now taken by the
Snell envelope of X, which denotes the adapted process V given by

V(1) :=ess sup{ E(X (7)|.%) : T stopping time with values in {r,7 + 1,..., T}}.
(1.60)

It represents the maximal expected reward if we start at time ¢ and have not stopped
yet. The following martingale criterion may be helpful to verify the optimality of a
candidate stopping time. We will apply its continuous-time version in an example
in Chap. 7.

Proposition 1.52

1. Let T be a stopping time with values in {0, ..., T}. If V is an adapted process
such that V' is a martingale, V(t) = X(t), and V(0) = M) for some
martingale (or at least supermartingale) M > X, then t is optimal for (1.59)
and V coincides up to time t with the Snell envelope of X.

2. More generally, let T be a stopping time with values in {t, ..., T} and F € ;.
Suppose that M is a process with M > X on F and such that M — M' is a
martingale (or at least a supermartingale). If V is an adapted process such that
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VT — V! is a martingale, V(t) = X (), and V(t) = M(t) on F, then V(s)
coincides on F fort < s < t with the Snell envelope of X and t is optimal on F

for (1.60), i.e. it maximises E(X (t)|.%;) on F.

Proof
1. This follows from the second statement.
2. Lets e {¢t,..., T}. We have to show that

V(s) = esssup ’E(X(?)Lﬁs) : T stopping time with values in {s, ..., T}}

holdson{s < t}NF.
“<”:0n{s < 1t} N F we have

V(s) = E(VI(T)|F)
=EX(t Vs)|F)
< esssup ’E(X (T)|%;) : T stopping time with values in {s, .. ., T}].
(1.61)
“>":Note that V¥ (T) = V() = X(t) < M(t) = M*(T) and Lemma 1.7 yield
Vi(s) = M"(s) = E(M(D)|F) = E(X(T)|-F) (1.62)
on {s < t} N F for any stopping time T > s.

(1.61) and (1.62) yield that 7 is optimal on F. Indeed, E(X (t)|-%;) = V() >
E (X (T)|%) holds for any stopping time T > f. |

The following more common verification result corresponds to Theorem 1.44 in

the framework of optimal stopping.

Theorem 1.53

1.

Let T be a stopping time with values in {0, ..., T}. If V > X is a supermartingale
such that V' is a martingale and V (t) = X (1), then t is optimal for (1.59) and
V coincides up to time t with the Snell envelope of X.

. More generally, let T be a stopping time with valuesin {t, ..., T}. IfV > X isan

adapted process such that V — V' is a supermartingale, V' — V' is a martingale,
and V(1) = X(1), then V (s) coincides fort < s < t with the Snell envelope of
X and T is optimal for (1.60), i.e. it maximises E (X (t)|.%;).

. If T is optimal for (1.60) and V denotes the Snell envelope, they have the

properties in statement 2.
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Proof

1. This follows from the second statement.

2. This immediately follows from choosing M = V and F = Q in statement 2
of Proposition 1.52 but we give a short direct proof as well. For any competing
stopping time T with valuesin {¢,7 + 1, ..., T}, Proposition 1.9 yields

E(X®)|F) < EV@I|F) = EVI(T)|.Z) < Vi) = V),

with equality everywhere for T = 7.

3.t >,V > X, and adaptedness of V are obvious. It remains to be shown that
V — V! is a supermartingale, V' — V' is a martingale, and V (t) = X (7). Using
the identification of Remark 1.51(1), we have V (t) = ¥#'(¢, 1). Theorem 1.44(1)
yields that V and hence also V — V! are supermartingales. In particular, V (¢) >
E(V(t)|%#;). But optimality of T implies

V() = EX(DIF) = E(V(D)|F). (1.63)

Hence, equality holds in (1.63), which yields X(t) = V(r) and E(V'(T) —
VI(T)) =0 = V*(0) — V’(0). The martingale property of V* — V' now follows
from Proposition 1.6. O

Remark 1.54 Statement 3 in Theorem 1.53 shows that the sufficient condition
in Proposition 1.52(1) is necessary, i.e. for the Snell envelope V there exists
a martingale M as in statement 1 of this proposition. Indeed, one may choose
M = V(©O)+MVifV = V(©O)+ MV + AV denotes the Doob decomposition
of V.

Hence, Proposition 1.52 can in principle be used to determine the Snell envelope
numerically, namely by minimising M (0) over all martingales dominating X.
The resulting process coincides with the Snell envelope up to time 7. Cf. also
Remark 7.20 in this context.

The following result helps to determine both the Snell envelope and an optimal
stopping time. The first statement corresponds to the backward recursion of
Proposition 1.46 in the context of optimal stopping, the third to Proposition 1.47.

Proposition 1.55 Letr V denote the Snell envelope.
1. 'V is obtained recursively by V(T) = X (T) and

Vit—-1)= max{X(t - 1), E(V(t)|§t_1)}, t=T-1,...,0. (1.64)
2. The stopping times

t,o=inf{s e {t,....T}: V(s) = X(5)}
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and
=T Ainf{seft,....T—1}: E(V(s + D|.F) < X(5)} (1.65)
are optimal in (1.60), i.e. they maximise E(X (1)|.%;).
3. V is the smallest supermartingale dominating X.

Proof

1. and 2. Define V recursively as in statement 1 rather than as in (1.60) and set T =
7, or T = 7,. We show that 7 and V satisfy the conditions of Theorem 1.53(2).
It is obvious that V is a supermartingale with V. > X and V(r) = X (7). Fix
sef{t+1,t+2,...,T}.Ontheset{s <t} wehave V(s — 1) = E(V(s)|-Fs—1)
by definition of 7. Hence V¥ — V' is a martingale.

3. In view of statement 1 or Theorem 1.53(3) it remains to be shown that V. < W
for any supermartingale dominating X. To this end observe that

V(t) = ess sup{E(X(r)L?t) : T stopping timein {¢t,r 4+ 1, ..., T}}

< ess sup{E(W(r)L?,) : 7 stopping time in {#,¢ + 1, ..., T}}
<W(@®

by Proposition 1.9. O

In some sense, 7, is the earliest and 7, the latest optimal stopping time for (1.60).
Often the optimal stopping time is unique, in which case we have r, = 1,. The
solution to the original stopping problem (1.59) is obtained for = 0. In particular,
Proposition 1.55(2) yields that an optimiser of (1.59) exists.

Remark 1.56
1. In terms of the drift coefficient a¥ of V' as in Proposition 1.31, (1.64) and (1.65)
can be reformulated as
max {a"(), X(t - 1) -V —-1}=0, t=1,....T (1.66)

and

1) =T Ainf{seft,...T—1}:a"t+1) < X(1) = V(1))
=T ninflsefr,...T—1}:a"(t+1) <0}, (1.67)

respectively. The second equality in (1.67) follows from (1.66).

2. If the reward process X is nonnegative, one may also consider the infinite time
horizon T = oo, in which case we set X (c0) := 0. Propositions 1.52, 1.55(1,3)
and Theorem 1.53 remain true in this case if we make sure that the martingale
resp. supermartingale property always refers to the time set {0, ..., 7'} including



60 1 Discrete Stochastic Calculus

T = oo, cf. Remark 1.45(3). However, it is not obvious how to obtain V from
the “infinite recursion” (1.64) any more. Moreover, an optimal stopping time may
fail to exist.

As an example we consider the price of a perpetual put option in the so-called
Cox—Ross—Rubinstein model.

Example 1.57 (Perpetual Put) Suppose that S(#)/S(0) is a geometric random walk
such that S(#)/S(+ — 1) has only two possible values u > 1,d := 1/u < 1 which
are assumed with probabilities p resp. 1 — p. In particular, the process S moves
only on the grid S(0)u’. Consider the reward process X (1) = e ""(K — S(t))T,
t=20,1,2,... with some constants » > 0, K > 0. In the context of Mathematical
Finance, S(¢) represents a stock price and X (¢) the discounted payoff of a perpetual
put option on the stock that is exercised at time ¢. The goal is to maximise the
expected discounted payoff E (X (r)) over all stopping times 7.
We make the natural ansatz that the Snell envelope is of the form

V() =e "v(S(t)) (1.68)

for some function v. If we guess that it is optimal to stop when S(¢) falls below
some threshold s* < K, we must have v(s) = (K — s)T for s < s*. As long as
S(t) > s*, the process e ""v(S(t)) should behave as a martingale, i.e.

0= EAV()|.F1-1)
= 7" (pu(S(t — Du) + (1 = p)o(S(t — Dd) — " v(S(t — 1)), (1.69)

which only holds if v grows in the right way for s > s*. A power ansatz for v turns
out to be successful, i.e.

o(s) = K — s fors < s*,

" es™® fors > s*

with some constants s*, a, ¢ > 0. In order for (1.69) to hold, a needs to be chosen
such that pu=® + (1 — p)u® =€, i.e.

ya € Ve —dp=p)
2p

Subsequently, we hope that some sort of contact condition at the boundary leads to
the solution, which is often true for optimal stopping problems. More specifically,
we choose the largest ¢ > 0 such that the linear function s +— K — s and the
decreasing convex function s > ¢s~¢ coincide at least in one element s* in S (0)uZ,
ie. s* = S(0)u* for some integer k. Define the stopping time v := inf{t > 0 :
S(¢) < s*} and V as in (1.68) with V(co) = 0. We suppose that p < 1/2 so that t
is almost surely finite. It is now easy to verify that V > X,V (t) = X(7),and V7 is
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a martingale. By dominated convergence, the martingale property actually holds on

{0, ..., 00} = N U {oo} rather than just N. In view of Theorem 1.53, it remains to
show that V is a supermartingale. To thisend, fixt € {1,...,T}.On {S(t—1) > s*}
we have

EV®O|F_1) = Ee eSO N Fe) =e " VeSt— D)™ =v(i —1).
Similarly, we have

EV|F-1) <E@DcS@) F—) =" VeSG—1) =V —1)
on {S(t — 1) =s*}.0n {S(t — 1) < s*} we argue that

E(V(t)|F—1) = E(e”"(K — S(1))

R _St—=1 St —1) i SO \| 4

=e K<l o ) + " E<e (K S(r — 1)5 ) F

5 ﬂK<1 _sa- 1)) LS 1>E<enc< S() s*)* 2
s* s* St —1)

— e—rtK(l _ S(tv: 1)) + St — 1)e—r(t—1)c(s*)—a

s*
St —1
=e_”K<1— ( * )>+
s

< e—r(tfl)(K _ S(t _ l)) = V(f — 1)1

Fi—1)

S(t

S

-1
)e—r(t—l)(K s

*

which finishes the proof.

If u is small, we can compute approximations of ¢, s*. Indeed, at s* the linear
function s > K — s is almost tangent to s — ¢s~¢, i.e. their derivatives coincide.
The two conditions cs*® = K — s* and —acs* *~! ~ —1 are solved by s* ~
Ka/(14a)and c ~ K14 /(1 4+ a)'*.

As another example we consider the famous so-called secretary or marriage
problem.

Example 1.58 (Marriage Problem) Suppose that you are looking for a spouse, a
flat, or an employee. We assume that time permits you to examine n candidates
before a decision must be made. Moreover, you are supposed to be satisfied only
with the best of all T aspirants. The problem is that you can inspect them only one
by one and that you have to opt for or against any candidate before you can see the
next one. The goal is to maximise the probability of choosing the best one.

In mathematical terms we assume the ranks 1, ..., T of the candidates to appear
in totally random order. The rank of candidate ¢ is denoted by N(z). But when
applicant t shows up, you only observe his or her relative rank R(t) compared to all
previous applicants. Since any permutation is assumed to be equally likely, it is not
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hard to show that the law of R(¢) is uniformon 1, ..., #, independently of the past,
i.e. R(¢) is independentof R(1), ..., R(¢+—1). The decision to stop must be based on
the observed relative ranks, i.e. on the filtration .%; := o (R(1), ..., R(t)). The goal
is to maximise P (N (r) = 1) among all stopping times t with values 1,2, ..., T.In
order to make this problem look as in (1.59), note that P(N(7) = 1) = E(X (1)) for
X (1) := 1{n()=1)- However, the reward process X is not adapted to our ﬁltratlon
In line with Remark 1.51(2), we replace it with its conditional expectation X 1) =
E(X(1)|.%;). It is easy to see that

)?(t)z{o %fR(t):O,
t/T if R(t) = 1.
Indeed, ¢ cannot be globally optimal if not even the relative rank is 1. If, on the
other hand, it has relative rank R(¢#) = 1, it is globally optimal if and only if the
global optimiser is among the first ¢ candidates. This happens with probability ¢/ T,
independently of the observed relative ranks R(1), ..., R(?).

We can now determine the Snell envelope recursively according to V(T) =
)~((T) and (1.64) with X instead of X. We obtain V(T) = 1{r(1)=1y and

V(T — 1) = max {X(T — 1), E(V(T)| F1-1)}

T —
= max{ . I{R(T71)=1}, P(R(T) = 1)}

T — 1 1
= max =11,
7 HRT-D=1}

T 1

L{r(T—1)=0}-
T {R(T—1)=0}

1
(R(T-1)=1} + T

By induction, we show that—at least for n small enough—

n
V(T —n) = T LR —m=1} + vT—n L{R(T—n)=0}

where v, is given recursively by vy = 0 and v,—; = ; + ’:1 vyfort=T—-1,T —
2, ... Indeed,

V(T —n) = max {X(T —n), E(V(T —n+ )| Fr_,)}

T—n1
= max —=11»
r HRT-m=1}

T —n+1
T

T—n1 T—n+1 1 n T —n
max —m=11, vr_
7 CRT-m=1} T T—n+1 Tontlp 0

PRT —n+1)=D4+vr— 1 P(RT —n+1) = O)}
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T—n
max| L(R(T—n)=1}> VT—n

T —n
= 7 Lr(T—my=1} + v7—n L{R(T —n)=0}-

However, the last equality only holds as long as vy, < T; " . Otherwise the second
term in the maximum is larger, regardless of the value of R(T — n). Therefore we
obtain

Vi) = {vzo, t <1,

}1{R(z)=1} + v l{rr)=0}, t > to,

where f( is the largest integer such that t}’ < vy, Proposition 1.55 together with the
above derivation yields that it is optimal to stop at

t:=inf{t >t9: R@) =1} AT

and P(N(t) =1) = E()?(r)) = V(0) = vy.
The solution to the recursion for v; is

T-11

as one can easily verify. Hence 1 is the largest integer ¢+ with } =" = > 1. For

large T we obtain the approximation

T—1 1 T—1 » 1 1 1 ¢
E = E T ~ ds = —log .
—=s P (s/T) T S T

The threshold condition ZZ;; i ~ 1 can then be rephrased as — log ITO ~ 1 or

o 1
O~ " ~0.368,
T

e

which leads to v, &~ —e~!loge™! and hence

Vg A ! ~ 0.368.
e
Put differently, it is approximately optimal to let 37% of all candidates pass and
then pick the next one that is better than all which have been observed so far. This
strategy leads to the globally optimal candidate with approximately 37% probability,
which may seem surprisingly high if the total number T of candidates amounts to



