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Preface

Dedicated to Shu-Heng Chen and Juan Manuel Corchado:

For all that has been and all that will be together with you
both, in the name of education, research, and intellectual
social responsibility.

E.B.

Decision Economics: A novel discipline.

Three years ago, very much inspired by the legacy of Herbert A. Simon (1916–
2001), we organised a special event in commemoration of the hundredth anniver-
sary of his birth under the umbrella of the 13th International Symposium on
Distributed Computing and Artificial Intelligence (DCAI) in the University of
Seville, Spain. This was also the first time that we attempted to introduce decision
economics as a new branch of economics formally. In the past, from a strictly
scientific point of view, the term “decision economics” was occasionally used in
conjunction with managerial economics, mainly as an application of neoclassical
microeconomics. However, given the increasingly interdisciplinary nature of
decision-making research, it is desirable to have a panoramic view that is much
broader and much more inclusive than the conventional standard view. Therefore,
in our first edition of decision economics, we have provided a tentative definition of
“decision economics” so as to register this neologism as a discipline in economics
(Bucciarelli, Silvestri and Rodriguez, 2016, p. vii), and we have further added some
remarks to elaborate on the proposed definition in subsequent editions (Bucciarelli,
Chen and Corchado, 2017, 2019). Our efforts over the last three years have suc-
cessfully aroused a new wave of interest in decision economics, and the special
sessions run over the last three years have now expanded into an autonomous
conference, beyond DCAI. This remarkable growth is manifested by a total of
35 chapters that are included in this volume, which is almost double the size of our
previous edition.
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We are certainly grateful to our collaborating partner DCAI for its determination
to support this new series. In addition to that, since this is the first international
conference on “decision economics” ever held in the world of economics, we would
like to highlight the significance of this milestone. For us, this milestone denotes
and corresponds to two important recent developments related to decision eco-
nomics. The first one is the changing and expanding domain of decision economics,
not just in terms of its methodology but also in its ontology. The second one, while
also related to the first one, is concerned with AI possibilities and their implications
for decision-making in economics and finance. Not only do these two developments
shape the structure of the fourth edition of this series, but they also give rise to the
subtitle of the volume, namely Complexity of Decisions and Decisions for
Complexity. Before leaving room for the individual chapters of this volume, all
inspired by a shared framework based on decision economics, let us elaborate on
the two underpinning developments.

First, the study of choice-making and decision-making is one of the most
well-received inner definitions of economics as well as one of its cutting edge
research that is carried out ever since the magnum opus of Lionel Robbins (1898–
1984), namely An Essay on the Nature and Significance of Economic Science
(Robbins, 1932). Robbins states, “For rationality in choice is nothing more and
nothing less than choice with complete awareness of the alternatives rejected. And
it is just here that Economics acquires its practical significance.” (Ibid., p. 136;
Italics added). With this spirit, the neoclassical economics that followed and
strengthened later tended to frame decision problems in an ideal form of logic,
endowed with a ‘sufficient’ degree of knowledge, descriptions and transparency; in
this way, complete awareness of the alternatives rejected was ensured. This for-
mulation may have helped economics become a formal – but impersonal and
detached from human experience – science (e.g., Stigum, 1990); in any case, an
unyielding devotion to it without reservation has also alienated economics itself
substantially from many realistic aspects of decision making from both normatively
and positively perspectives.

In reality, few non-trivial decision problems have a complete description or are
completely describable. Gerd Gigerenzer opens his book Gut Feelings (Gigerenzer,
2007) with the following sarcastic story:

A professor from Columbia University (New York) was struggling over whether to accept
an offer from a rival university or to stay. His colleague took him aside and said, “Just
maximize your expected utility–you always write about doing this.”. Exasperated, the
professor responded, “Come on, this is serious.” (Ibid, p. 3; Italics added).

Given the kind of the aforementioned problem, which is fraught with what Michael
Polanyi (1891–1976) coined as the tacit dimension (Polanyi, 1966), the decision is
usually made with the involvement of a set of bounded cognitive abilities, critical
skills, knowledge and experience, as well as imagination, gut feeling, affection,
emotion, social conformity, cultural routines, and so on and so forth. Unfortunately,
this list of added elements has not been sufficiently dealt with in mainstream
economics. Decision economics, as a new discipline in economics, acknowledges
the interdisciplinary nature of decision-making. Even though the two countervailing
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forces—pleasure and pain—had already been brought into economic theory back
in the days of Jeremy Bentham (1748–1832) and Stanley Jevons (1835–1882), it
may still be too optimistic to think that these two forces can be properly understood
in purely mathematical and quantifiable manner. Had not neoclassical economics
been generally oblivious to the complexity of decision problems, a pluralistic
approach to decision-making might have already been appreciated. In this regard,
decision economics attempts to serve as a bridge between economics and other
related disciplines, from biology, and the social sciences, to the humanities, and the
computer and cognitive sciences, and also to broaden and to deepen the connection
between economics and other disciplines. This scientific pluralism has been pursued
in our previous three editions and is also reiterated in this edition. After all, decision
economics aims neither to endorse exclusively nor to resemble exactly hard sci-
ences since its subject is considerably different from them and continually chang-
ing, starting with its immanent ontology (and ethics) and the underlying plurality of
paradigms which should, therefore, be regarded and welcomed. And it is precisely
this that makes economics − and decision economics therein − a fascinating sci-
ence, not at all dismal, but rather worthy of being further explored, studied, and
taught not only in the sacred groves of academe. Now that more and more social
scientists are approaching and realising the emergence of boundedly rational agents
− by the way, is there still any doubt remaining?! − if not even irrational agents,
and despite the existence of possible invariants of human behaviour (Simon, 1990),
the following quotation from Kurt W. Rothschild (1999) describes the idea con-
cisely: “A plurality of paradigms in economics and in social sciences in general is
not only an obvious fact but also a necessary and desirable phenomenon in a very
complex and continually changing subject.”. (Ibid., p. 5). In the final analysis,
accordingly, if anything were to be introduced a different normative standard, it can
not elude a rational theory of heuristics this time (Gigerenzer, 2016).

The second point we would like to emphasise is the relationship between AI
possibilities and decision economics. Within the cognitive sciences, AI has long
been regarded as a tool for building—among others—decision support systems to
cope with economic decision-making in increasingly complex business and IT
environments. This is why AI is a fulcrum of decision economics, and its func-
tionality has been well demonstrated in Gigerenzer and Selten (2001) and in our
previous edition (Bucciarelli, Chen and Corchado, 2019). Nevertheless, with the
third wave of the Digital Revolution (e.g. Gershenfeld, Gershenfeld and
Cutcher-Gershenfeld, 2017), AI is more than just a toolkit for decision economics;
it can go further to redirect the entire research trend and the emerging paradigm of
decision economics, supported in the first place by a different structure of thought
and cognitive representations than does neoclassical economics. As we have
emphasised in the last three editions, decision economics—or Simonian economics
—is built upon a broad notion of boundedly rational agents characterised by limited
cognitive capabilities, and hence the limited capability to search and generate
alternatives, as well as to process data and thus extract information and knowledge.
With this inescapable constraint, the search rules and the decision rules that are
implementable are naturally required to be bounded in their either computational
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complexity or algorithmic complexity (e.g. Velupillai, 2010, 2018). That being the
case, the criterion based on complete awareness of the alternatives rejected, the
premise suggested by Lionel Robbins, is difficult to comply with. And not only
difficult to comply with, but difficult to convey helpfully, too.

All things considered, in these prolific days of AI with the Internet of everything
(e.g. Lawless, Mittu and Sofge, 2019), people are anxious to know what the
meaning of decision-making is, should AI in the end be able to take care of all
decisions made by humans, definitely, after first handling those routine ones with
great success. In fact, today, once in a while, we may have been amazed by the
machine intelligence demonstrated by the intelligent assistants or chatbots residing
in our smartphones, just to mention one example. People start to wonder again on
when and to what extent the Turing test will be passed (e.g. Saygin, Cicekli and
Akman, 2000). In 1950, Alan Turing surmised that it may take a century to flag this
triumph (Turing, 1950), which is about 30 years from now on. To give a timely
review of this progress, we would like to make a preannouncement that Decision
Economics 2020 plans to have a celebration on “Turing Tests: 70 Years On” as the
main track of the conference, under the aegis of the United Nations.

To conclude this Preface, according to Minsky and Papert (1988), the human’s
pursuit of machine intelligence has gone through roughly two stages. The first one
is more ambitious in that it aims to design machines that can do what humans can
do. The McCulloch–Pitts neural network is an example of this (McCulloch and
Pitts, 1943). After being in the doldrums for a long while, the second one is more
humble; it aims to design machines that can learn what humans can do, entering the
era of learning machines or autonomous machines. The Rosenblatt’s perceptron
(Rosenblatt, 1962) is an example, too, but many other interesting examples have
only occurred in recent years. This second-stage machine intelligence substantiates
the so-called connectionism initiated by Donald Hebb (1904–1985) (Hebb, 1949)
and Friedrich Hayek (1899–1992) (Hayek, 1952), and hence can effectively absorb
the tacit knowledge from human experts.

Furthermore, armed with the Internet of everything, it can get access to an
essentially infinitely large space to retrieve historical data and to do great analysis
based on similarity. Long before, the philosopher and economist David Hume
(1711–1776) had already given the greatest guide to modern AI, namely the
authority of experience, as we quoted from his An Enquiry Concerning Human
Understanding in 1748:

In reality all arguments from experience are founded on the similarity which we discover
among natural objects, and by which we are induced to expect effects similar to those
which we have found to follow from such objects. […] and makes us draw advantage from
that similarity which nature has placed among different objects. From causes which appear
similar we expect similar effects. This is the sum of all our experimental conclusions. (Ibid,
1748, Section IV, Italics added).

Unfortunately, back in the eighteenth, nineteenth or even most of the twentieth
centuries, our bounded rationality, constrained by (very) limited memory or
archives and further crippled by the limited search capability, non-trivially
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restricted our ability to take advantage of those similarities. Today, when learning
machines become an extended part of humans like the idea of cyborgs portraits,
then one may wonder not only how decisions will be made, but what the decisions
will actually be. Would we be able to have smarter or better decisions? Given this
possible future, how should we decide the route leading towards it, that is to say,
our decisions for the complexity of our future (Helbing, 2019).

With these two highlights regarding the present and the future of decision
economics, let us also make a brief remark on our chosen subtitle. “Complexity of
Decisions” shows this volume as a continuation of our second edition of the series
(Bucciarelli, Chen and Corchado, 2017), referring to the complex ontology of
decisions. If decisions can be arranged in a hierarchy of complexity, then those
non-trivial and consequential decisions are expected to locate themselves at the
higher levels of the hierarchy, which are often cognitively demanding, radically
uncertain, imprecise, vague and incomplete. On the other hand, “Decisions for
Complexity” refers to the methods used to make complex decisions and relate this
volume to our previous edition (Bucciarelli, Chen and Corchado, 2019). The two
subtitles are then further illustrated by the 35 chapters collected in this volume.

Our final remarks are for those scholars who have contributed to the success of
DECON 2019. We have had the good fortune of working with an outstanding
group of scientists and scholars from several disciplines, starting from the members
of the International Program Committee: Beautiful minds and beautiful people, all
dedicated to our common cause, and their hard work has made our efforts easier. In
particular, without Sara Rodríguez González and Fernando De la Prieta, it is hard to
imagine how we would have completed this year’s conference on decision eco-
nomics and, of course, this special book. Our greatest debt of gratitude is both to the
members of the International Program Committee and to each of the contributors in
this volume. Among the latter, the winners of the two international awards
“Decision Economics 2019” are Robert E. Marks (University of New South Wales,
School of Economics, Sydney), for the best paper entitled “Calibrating Methods for
Decision Making Under Uncertainty”, and Friederike Wall (University of
Klagenfurt, Department of Management Control and Strategic Management), for
the best application paper entitled “Coordination and Search for New Solutions: An
Agent-based Study on the Tension in Boundary Systems”.

DECON 2019 was organised by the University of Chieti-Pescara (Italy), the
National Chengchi Unversity of Taipei (Taiwan), and the University of Salamanca
(Spain), and was held at the Escuela Politécnica Superior de Ávila, Spain, from
26th to 28th June, 2019. We acknowledge the sponsors: IEEE Systems Man and
Cybernetics Society, Spain Section Chapter, and IEEE Spain Section (Technical
Co-Sponsor), IBM, Indra, Viewnext, Global Exchange, AEPIA-and-APPIA, with
the funding supporting of the Junta de Castilla y León, Spain (ID:
SA267P18-Project co-financed with FEDER funds).

Edgardo Bucciarelli
Shu-Heng Chen

Juan Manuel Corchado
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Abstract. This paper uses simulation (written in R) to compare six
methods of decision making under uncertainty: the agent must choose
one of eight lotteries where the six possible (randomly chosen) outcomes
and their probabilities are known for each lottery. Will risk-averse or risk-
preferring or other methods result in the highest mean payoff after the
uncertainty is resolved and the outcomes known? Methods include max-
max, max-min, Laplace, Expected Value, CARA, CRRA, and modified
Kahneman-Tversky. The benchmark is Clairvoyance, where the lotteries’
outcomes are known in advance; this is possible with simulation. The
findings indicate that the highest mean payoff occurs with risk neutrality,
contrary to common opinion.

Keywords: Decision making · Uncertainty · Utility functions ·
Simulation · Clairvoyance · Risk neutrality

1 Introduction

This is not a descriptive paper. It does not attempt to answer the positive
question of how people make decisions under uncertainty. Instead, it attempts to
answer the normative question of how best to make decisions under uncertainty.
How best to choose among lotteries.

We must first define “best” and “uncertainty”. By “best” we mean decisions
that result in the highest payoffs, where the payoffs are the sum of the prizes
won across a series of lotteries. The experimental set-up is that each period the
agent is presented with eight lotteries, each with six possible known outcomes or
prizes (chosen in the range ±$10). No uncertainty about possible payoffs. But
there is uncertainty in each lottery about which payoff or prize will occur. The
best information the agent has are the probabilities of the six possible prizes
or payoffs in each lottery. Each lottery has six possible payoffs, but the values
of these payoffs and their probabilities vary across the eight distinct lotteries.
Choosing among these is what we mean by “decision making under uncertainty”.

c© Springer Nature Switzerland AG 2020
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2 Decision Making Under Uncertainty

We model agents as possessing various approaches to this problem.

– A simple approach (the Laplace method) is to ignore any information about
the probabilities of payoffs and instead just choose the lottery with the highest
average or mean payoff, by calculating the mean of each lottery’s six possible
payoffs.

– Another method (modelling an optimistic agent) is to choose the lottery with
the highest possible best payoff, the max-max method.

– Modelling a pessimistic agent, another method is to choose the lottery with
the highest possible worst payoff, the max-min method. Neither of these meth-
ods uses the known probabilities, or even five of the six payoffs.

– A fourth method is to use the known probabilities to choose the lottery with
the highest expected payoff, weighting each possible payoff by the probability
of its occurring, the Expected Value method.

– Three different families of utility functions.

2.1 Clairvoyance

The so-called Clairvoyant decision maker [1] knows the realisation of any uncer-
tainty, so long as this requires no judgment by the Clairvoyant, and the real-
isation does not depend on any future action of the Clairvoyant. Here, with
simulation of probabilistic outcomes, we can model a Clairvoyant who knows
the realised outcome (among the six random possibilities) of each of the eight
lotteries, while other decision makers remain ignorant of this. We simulate each
outcome as occurring with its (known) probability: only one realised outcome per
lottery. The Clairvoyant chooses the lottery with the highest realised outcome
of the eight.

We can say something of this: if A1, ...An are i.i.d. uniform on (0, 1), then
Mn = max(A1, ...An) has the expectation of n

n+1 . Here, n = 6 and the expected
maximum outcome for any lottery must be 6

7 × 20 − 10 = $7.14.1 But the
realisation of any lottery is in general less than its maximum outcome, and its
simulated realised outcome is generated from the weighted random probability
distribution of the six possible outcomes. The Clairvoyant is faced by eight lotter-
ies, and chooses the lottery with the highest simulated realised outcome (which
the Clairvoyant knows). It turns out (from the simulation) that the expected
maximum of these eight realised outcomes is $7.788.2 This is the best on aver-
age that any decision maker can achieve, given our experimental platform. It is
our benchmark.

1 The lottery outcomes fall randomly in the range ±$10; see Sect. 4.
2 With 48 outcomes, the expected maximum outcome across the eight lotteries is

$9.59; the expected maximum of the eight simulated realised outcomes is 81.2% of
this maximum.
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3 Three Utility Functions

The remaining methods map the known possible payoffs to “utilities”, where the
utilities are monotone (but not in general linear) in the dollar amounts of the
possible payoffs. These methods vary in how the utilities are mapped from the
payoffs.

By definition, the utility of a lottery L is its expected utility, or

U(L) =
∑

piU(xi), (1)

where each (discrete) outcome xi occurs with probability pi, and U(xi) is the
utility of outcome xi.

Risk aversion is the curvature (U ′′/U ′): if the utility curve is locally –

– linear (say, at a point of inflection, where U ′′ = 0), then the decision maker
is locally risk neutral;

– concave (its slope is decreasing – Diminishing Marginal Utility), then the
decision maker is locally risk averse;

– convex (its slope is increasing), then the decision maker is locally risk prefer-
ring.

We consider three types of utility function:

1. those which exhibit constant risk preference across all outcomes (so-called
wealth-independent utility functions, or Constant Absolute Risk Aversion
CARA functions; see Eq. (2) below);

2. those where the risk preference is a function of the wealth of the decision
maker (the Constant Relative Risk Aversion CRRA functions; see Eq. (5)
below); and

3. those in which the risk profile is a function of the prospect of gaining (risk
averse) or losing (risk preferring): the DRP Value Functions from Prospect
Theory. See Eqs. (6) and (7) below.

Since the utility functions are monotone transformations of the possible pay-
offs, it would be pointless to consider the max-max, max-min, or Laplace meth-
ods using utilities instead of payoff values.

3.1 Constant Absolute Risk Aversion, CARA

Using CARA, utility U of payoff x is given by

U(x) = 1 − e−γx, (2)

where U(0) = 0 and U(∞) = 1, and where γ is the risk aversion coefficient :

γ = −U ′′(x)
U ′(x)

. (3)

When γ is positive, the function exhibits risk aversion; when γ is negative,
risk preferring; and when γ is zero, risk neutrality, which is identical with the
Expected Value method.
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3.2 Constant Relative Risk Aversion, CRRA

The Arrow-Pratt measure of relative risk aversion (RRA) ρ is defined as

ρ(w) = −w
U ′′(w)
U ′(w)

= wγ. (4)

This introduces wealth w into the agent’s risk preferences, so that lower
wealth can be associated with higher risk aversion. The risk aversion coefficient
γ is as in (3).

The Constant Elasticity of Substitution (CES) utility function:

U(w) =
w1−ρ

1 − ρ
, (5)

with positive wealth, w > 0, exhibits constant relative risk aversion CRRA, as
in (4). In the CRRA simulations, we use the cumulative sum of the realisations
of payoffs won (or lost, if negative) in previous lotteries chosen by the agent plus
the possible payoff in this lottery as the wealth w in (5). It can be shown that
with w > 0, ρ > 0 is equivalent to risk aversion. With w > 0 and ρ = 1, the CES
function becomes the (risk-averse) logarithmic utility function, U(w) ≈ log(w).
With w > 0 and ρ < 0, it is equivalent to risk preferring.

3.3 The Dual-Risk-Profile DRP Function from Prospect Theory

From Prospect Theory [2], we model the DRP Value Function, which maps from
quantity x to value V with the following two-parameter equations (with β > 0
and δ > 0):

V (x) =
1 − e−βx

1 − e−100β
, 0 ≤ x ≤ 100, (6)

V (x) = −δ
1 − eβx

1 − e−100β
,−100 ≤ x < 0. (7)

The parameter β > 0 models the curvature of the function, and the parameter
δ > 0 the asymmetry associated with losses. The DRP function is not wealth
independent.3 Three DRP functions in Fig. 1 (with three values of β, and δ =
1.75, for prizes between ±$100) exhibit the S-shaped asymmetry postulated
by Kahneman and Tversky [2]. The DRP function exhibits risk seeking (loss
aversion) when x is negative with respect to the reference point x = 0, and risk
aversion when x is positive. We use here a linear probability weighting function
(hence no weighting for smaller probabilities). As Fig. 1 suggests, as δ → 1 and
β → 0, the value function asymptotes to a linear, risk-neutral function (in this
case with a slope of 1).

3 This does not require that we include wealth w in the ranking of the lotteries, as in
CRRA case; instead we choose a reference point at the current level of wealth, and
consider the prospective gains and losses of the eight lotteries.
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Fig. 1. A prospect theory (DRP) value function ([3])

4 The Experiments, by Simulation

The experimental set-up is to generate eight lotteries, each with six possible
outcomes, each outcome with its own probability of occurrence. The outcomes
are chosen form a uniform distribution between +$10 and −$10; the probabilities
are chosen at random so they add to unity for each lottery. The agent has
complete information about the outcomes and their probabilities. Then the agent
chooses the “best” lottery, based on the method of choice.

The actual realisation of one of the six possibilities from the chosen lottery
is simulated, using the generated probabilities: a payoff with a probability of 0.x
will be realised on average with a frequency of 100x%. The realisation of outcome
in the chosen lottery is the agent’s score (in dollars, say). In each iteration, payoff
realisations are derived for each of the eight lotteries.

Agents are presented with n iterations of the proceeding choice, and each
iteration generates new lotteries with new possible payoffs and new probabilities
of the payoffs. The mean payoff over these n choices is the score of the specific
decision method being tested.4

General opinion is that firms, at least, are better served by slightly risk-
averse behaviour. Too risk averse and attractive prospects are ignored (“nothing
ventured, nothing gained”), but too risk preferring is the same as gambling, with
the risk of losing heavily. What do our simulations tell us about the best method
of decision making under uncertainty?

4 See the R [4] code at http://www.agsm.edu.au/bobm/papers/riskmethods.r.

http://www.agsm.edu.au/bobm/papers/riskmethods.r


6 R. E. Marks

5 Results

Table 1 presents the mean results of 10,000 iterations (independent samples) of
the eight lottery/six prize experimental platform, with results for:

1. The benchmark Clairvoyant method
2. the Expected Value method
3. the Laplace method
4. the max-max method
5. the max-min method
6. random choice among the eight lotteries.

Table 1. Mean payoffs by method.

Method Payoff ($) % Clairvoyant % EV

Clairvoyant 7.787999 100

Expected value 3.87175 49.71431 100

Laplace 3.359935 43.14247 86.78

Max-max 1.391732 17.87021 35.95

Max-min 2.427924 31.1752 62.71

Random 0.02162699 0 0

The Clairvoyant would have won $7.79 with perfect foresight. The other
methods, of course, cannot see the future, which is the essence of decision making
under uncertainty. Expected Value (the risk-neutral decision maker) is second,
with 49.7% of the Clairvoyant’s score; Laplace is third, with 43.1%. Surprisingly,
the (pessimist’s) max-min, at 31.2%, is almost twice as good as the (optimist’s)
max-max, at 17.9%. Unsurprisingly, choosing among the eight lotteries randomly
is worst, with effectively a zero mean payoff (of 2.16 cents, or 0.56% of EV).

Table 2 presents the mean results of 10,000 iterations of the CARA method
with different values of the risk-aversion coefficient γ: the results show that the
best decisions are made when γ ≈ 0, that is when the method is risk neutral and
approximates the Expected Value method.

Table 3 present the mean results of 10,000 iterations of the CRRA method
with different values of the RRA parameter ρ and reveals that with a CRRA
decision maker, again the best profile (the value of ρ that results in the highest
expected payoff) is close to zero. That is, as with the CARA method, there is in
this set-up no advantage to being risk averse or risk preferring (even a little): the
best profile is risk neutrality, as reflected in the Expected Value method. Note
that the logarithmic utility method (with ρ = 1.0) performs at only 98.88% of
the Expected Value method.

Table 4 presents the mean results of 10,000 iterations of twelve DRP func-
tions, combinations of three values of δ and four values of β. The results are
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Table 2. CARA mean payoffs, varying γ.

gamma γ Payoff ($) % Clairvoyant % EV

−0.2 3.471413 44.57387 89.66004

−0.16 3.611061 46.367 93.2669

−0.12 3.700547 47.51602 95.57816

−0.08 3.819605 49.04476 98.65321

−0.04 3.858212 49.54048 99.65034

1 × 10−4 3.871811 49.7151 100.0016

0.04 3.832964 49.2163 98.99824

0.08 3.783976 48.58727 97.73297

0.12 3.72903 47.88175 96.31381

0.16 3.653434 46.91108 94.36131

0.20 3.561462 45.73013 91.98584

Table 3. CRRA, mean payoffs, varying ρ.

rho ρ Payoff ($) % Clairvoyant % EV

−2.5 3.756992 48.24079 97.03601

−2.0 3.811378 48.93912 98.4407

−1.5 3.835013 49.2426 99.05116

−1.0 3.848999 49.42218 99.41239

−0.5 3.866546 49.64749 99.8656

1 × 10−4 3.87175 49.71431 100

0.5 3.85773 49.5343 99.6379

1.0 3.828434 49.15812 98.88123

1.5 3.805642 48.86547 98.29256

2.0 3.777273 48.5012 97.55984

2.5 3.752105 48.17804 96.90979

Table 4. DRP, % of EV, varying δ and β.

beta β δ = 1.001 δ = 1.2 δ = 1.4

0.001 100 99.80686 99.44209

0.1 99.59886 98.58363 98.60167

0.2 98.23075 97.98895 97.22377

0.4 96.98482 95.91222 95.2202
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the percentages of the EV method. From the mean result for Random in Table 1
(which is +0.56% of EV), we can conclude that the errors in Table 4 are about
1.12% (±0.56%) of EV. Again we see that risk-neutral behaviour, here with
δ → 1 and β → 0, is the best method for choosing among risky lotteries.

6 Discussion

Whereas there has been much research into reconciling actual human decision
making with theory [5], we are interested in seeing what is the best (i.e. most
profitable) risk profile for agents faced with risky choices. Rabin [6] argues that
loss aversion [2] rather than risk aversion, is a more realistic explanation of how
people actually behave when faced with risky decisions. This is captured in our
DRP function, which nonetheless favours risk neutrality as a method.

An analytical study of Prospect Theory DRP Value Functions [7] posits an
adaptive process for decision-making under risk such that, despite people being
seen to be risk averse over gains and risk seekers over losses with respect to
the current reference point [2], the agent eventually learns to make risk-neutral
choices. Their result is consistent with our results.

A simulation study [8] examines the survival dynamics of investors with dif-
ferent risk preferences in an agent-based, multi-asset, artificial stock market and
finds that investors’survival is closely related to their risk preferences. Examin-
ing eight possible risk profiles, the paper finds that only CRRA investors with
relative risk aversion coefficients close to unity (log-utility agents) survive in the
long run (up to 500 simulations). This is not what we found (see Table 3 with ρ
= 1).

Our results here are consistent with earlier work on this topic [3,9] in which
we used machine learning (the Genetic Algorithm) to search for agents’ best risk
profiles in decision making under uncertainty. Our earlier work was in response
to [10], which also used machine learning in this search, and which wrongly
concluded that risk aversion was the best profile.

7 Conclusion

As economists strive to obtain answers to questions that are not always amenable
to calculus-based results, the use of simulation is growing, and answers are being
obtained. This paper exemplifies this: the question of which decision-making
method gives the highest payoff in cases of uncertainty (where the possible pay-
offs and their probabilities are known) is not, in general, amenable to closed-
form solution. The answer is strongly that risk-neutral methods are best, as
exemplified by the Expected Value method. We believe that exploration of other
experiments in decision making under uncertainty (with complete information)
will confirm the generality of this conclusion. Will relaxing our assumptions of
complete information about possible outcomes and their probabilities result in
different conclusions? This awaits further research.
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Abstract. Boundary systems, setting constraints for managerial decisi-
on-makers, incorporate a tension between granting flexibility to decision-
makers for finding new options as well as aligning managerial choices
with respect to overall objectives. This study employs a computational
approach to examine configurations of search strategy and coordination
mechanisms in boundary systems for their effects on organizational per-
formance. The results suggest that the complexity of the organizational
decision-problem subtly shapes the effectiveness of the configurations –
suggesting to employ search strategies providing flexibility to managerial
decision-makers when complexity is low and to emphasize tight coordi-
nation and exploitative or ambidextrous strategies for higher levels of
complexity.

Keywords: Agent-based simulation · Complexity · Coordination ·
Management control systems · NK fitness landscapes · Search strategy

1 Introduction

According to the prominent “Levers of control” (LOC) framework [1], organiza-
tions employ boundary systems to constrain the behavior of managerial decision-
makers and, by this, to affect decision-making in the direction of the overall
objective. It is well recognized that the boundary system incorporates a certain
tension: shaping – or even enforcing – decision-makers’ search for novel solutions
via exploitation or exploration on the one hand and restricting decision-makers
in favor of coordination towards superior solutions to the overall firm’s objective
on the other [1–3]. This tension, in particular, occurs under behavioral assump-
tions on decision-makers in the spirit of Simon [4,5].

Several, mostly empirical studies were conducted in order to figure out the
interrelations of the boundary system with other control systems of the LOC-
framework or to identify contingent factors which may affect the effectiveness
of the boundary system (e.g., task complexity) (for overviews see [2,3]). This

c© Springer Nature Switzerland AG 2020
E. Bucciarelli et al. (Eds.): DECON 2019, AISC 1009, pp. 10–17, 2020.
https://doi.org/10.1007/978-3-030-38227-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38227-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-38227-8_2


Coordination and Search for New Solutions 11

study seeks to contribute to this body of research – though focusing on the bal-
ance of components within the boundary system – and in particular relates to
the growing research emphasizing the internal fit of components of management
controls [6]. In particular, the study addresses the following research question:
Which effects on overall organizational performance result from certain combi-
nations of search strategy and coordination mechanisms taking complexity of the
decision problem to be solved as contingent factor into account?

For investigating the research question, the paper makes use of an agent-
based simulation. A simulation-based research method appears appropriate to
capture search processes and an agent-based simulation allows to consider the
collaboration of various interacting parties (e.g., units) within an organization
(with further references [7]). In the model, the task environment of the organi-
zations is represented according to the framework of NK fitness landscapes [8,9]
which was originally introduced in the domain of evolutionary biology and, since
then, broadly employed in managerial science [7]. A key feature of the NK frame-
work is that it allows to easily control for the complexity of the decision problem
[10,11]. The model captures different search strategies (exploitative, explorative
or ambidextrous, [12,13]) and two mechanisms of coordination.

2 Outline of the Simulation Model

Organizational Decision Problem: In the simulations, artificial organiza-
tions are observed while searching for superior solutions for a decision-problem
which is modeled according to the framework of NK-fitness landscapes: At time
step t, the organizations face an N -dimensional binary decision problem, i.e.,
dt = (d1t, ..., dNt) with dit ∈ {0, 1}, i = 1, ..., N , out of 2N different binary vec-
tors possible. Each of the two states dit ∈ {0, 1} provides a contribution Cit to
the overall performance V (dt) where the Cit are randomly drawn from a uni-
form distribution with 0 ≤ Cit ≤ 1. The parameter K (with 0 ≤ K ≤ N − 1)
reflects the number of those choices djt, j �= i which also affect the performance
contribution Cit of choice dit and, thus, captures the complexity of the decision
problem in terms of the interactions among decisions. Hence, contribution Cit

may not only depend on the single choice dit but also on K other choices:

Cit = fi(dit; di1t, ...diKt), (1)

with {i1, ..., iK} ⊂ {1, ..., i − 1, i + 1, ..., N}. In case of no interactions among
choices, K equals 0, and K is N − 1 for the maximum level of complexity where
each single choice i affects the performance contribution of each other binary
choice j �= i. The overall performance Vt achieved in period t results as normal-
ized sum of contributions Cit from

Vt = V (dt) =
1
N

N∑

i=1

Cit. (2)
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Departmental Preferences and Boundaries by Search Strategy: The N -
dimensional decision problem is partitioned into M disjoint partial problems of,
for the sake of simplicity, equal size Nr. Each of these sub-problems is delegated
to one department r – with the particular competencies of department r’s head
being subject to the boundary system. Department heads seek to maximize
compensation which is merit-based and, for the sake of simplicity, results from
linear compensation functions based on the contribution P r

t (dr
t) of department

r’s contribution to overall performance Vt (see Eq. 2) as given by

P r
t (dr

t) =
1
N

Nr∑

i=1+w

Cit (3)

with w =
∑r−1

p=1 Np for r > 1 and w = 0 for r = 1. In every time step t, each
manager r seeks to identify the best – in terms of compensation – configuration
for the “own” choices dr

t out of the currently available options which are shaped
according to the search strategy as part of the boundary system:

Search Strategies: In line with Simon’s [4,5] behavioral assumptions, our
decision-makers are not able to survey the entire search space and, hence, they
cannot “locate” the optimal solution of their decision problem “at once”. Rather,
they search stepwise for superior solutions. In each time step t, each manager r
discovers two alternative solutions dr,a1

t and dr,a2
t for the partial decision prob-

lem compared to the status quo dr∗
t−1. For these alternatives, boundaries are set

by the headquarter in terms of the – required as well as allowed – distance to the
status quo. In particular, a prescribed search strategy may be exploitative, explo-
rative or ambidextrous. In the former case, the Hamming distances of the alterna-
tive options to the status quo equal 1 (i.e., h(dr,a1) =

∑Nr

i=1

∣∣∣dr∗
t−1 − dr,a1

t

∣∣∣ = 1;

h(dr,a2) = 1); in a purely explorative strategy Hamming distances of the two
alternatives are higher than 1, i.e., h(dr,a1), h(dr,a2) ≥ 2 allowing for more or
less “long jumps”. Moreover, the simulations are run for ambidextrous strategies
capturing cases of h(dr,a1) = 1 and h(dr,a2) ≥ 2.

Formation of Expectations: The decision-makers show some further cognitive
limitations: (1) The head of department r cannot anticipate the other depart-
ments’ q �= r choices and assumes that they will stay with the status quo, i.e., opt
for dq∗

t−1. (2) The department heads are not able to perfectly ex-ante evaluate
their newly discovered options’ dr,a1

t and dr,a2
t effects on their actual value base

for compensation P r
t (dr

t) (see Eq. 3). Rather, ex ante evaluations are afflicted
with noise which is, for the sake of simplicity, a relative error imputed to the
true performance [14]. The error terms follow a Gaussian distribution N(0;σ)
with expected value 0 and standard deviations σr for each r; errors are indepen-
dent from each other. Hence, the perceived performance P̃ r

t (dt) of manager r –
i.e., the perceived value base for compensation – is given by:

P̃ r
t (dr

t) = P r
t (dr

t) + er,own(dr
t) (4)
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With this, each manager r has a distinct partial and imperfect “view” of the
true fitness landscape. However, for the status quo option, we assume that
department head r remembers the compensation from the last period and, with
this, knows the actual performance P r

t of status quo if implemented again.
Based on the evaluation of options, each department head r compiles a list
Lr
t =

{
dr,p1
t ,dr,p2

t ,dr,p3
t

}
of preferences where dr,p1

t indicates the most pre-

ferred option out of dr∗
t−1,d

r,a1
t and dr,a2

t (and so forth).

Boundaries Set by the Coordination Mechanism: The next step within
each period t is to determine the solution for the organization’s overall decision
problem dt. For this, as a part of the boundary system, the model captures two,
in a way, extreme modes of coordination in the spirit of Sah and Stiglitz [15]:

Decentralized Mode: The highest level of autonomy is granted to the M depart-
ments if each of them is allowed to choose its most preferred option. Then,
the overall configuration dt results from dt = (d1,p1

t , ...,dr,p1
t , ...,dMs,p1

t ). The
headquarter does not intervene in decision-making directly and its role is limited
to registering the achieved performances P r

t (dr
t) in the end of each period t and

to compensate the department heads accordingly.

Hierarchical Mode: Each department transfers its list Lr
t of preferences to the

headquarter which compiles a composite vector dC = (d1,p1
t , ...dr,p1

t , ...dM,p1
t )

from the first preferences and then seeks to evaluate the overall performance
V (dC) (see Eq. 2) this solution promises. However, also the headquarter is not
capable to perfectly ex ante evaluate new options, i.e., other solutions than the
status quo: the headquarter’s evaluations also are afflicted with a relative error
following a Gaussian distribution with expected value 0 and standard devia-
tions σcent resulting in a perceived overall performance Ṽ (dC). The headquarter
decides in favor of the composite vector, i.e., dt = dC, if dC promises the same
or a higher performance than the status quo dt−1, i.e., if Ṽ (dC) ≥ V (d∗

t−1). If
this condition is not satisfied, the headquarter evaluates a vector composed from
the departments’ second preferences. If this also does not, at least, promise the
performance of the status quo, then the status quo is kept, i.e., then dt = dt−1.

3 Simulation Experiments

The simulation experiments (Table 1) are intended to provide some findings on
the configuration of the boundary system as given by the search strategy and the
mode of coordination employed. The simulation experiments are conducted for
six search strategies where, for example, a search strategy named “1–1” briefly
denotes the “exploitation only” case with h(dr,a1) = h(dr,a2) = 1; for the other
strategies see Table 1.

Since the complexity of the underlying search problem shapes the need for
coordination, the experiments distinguish four levels of complexity of the decision
problem as well as of the interactions among the M = 3 departments. For
this, two parameters are employed: Parameter K depicts the complexity of the
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Table 1. Parameter settings

Parameter Values/types

Observation period T = 250

Number of choices N = 12

Number of departments M = 3 with d1 = (d1, d2, d3, d4),
d2 = (d5, d6, d7, d8), d

3 = (d9, d10, d11, d12)

Interaction structures Decomposable: K = 2; Kex = 0;
Near-decomposable: K = 3; Kex = 1;
Non-decomposable, intermediate: K = 5; Kex = 3;
Non-decomposable, high: K = 8; Kex = 5

Search strategy “exploitation only”: “1–1”;
“exploration only”: “2–2”; “2–3”; “3–3”;
“ambidextrous”: “1–2”; “1–3”

Modes of coordination Decentralized; hierarchical

Precision of ex-ante evaluation σr = 0.05∀r ∈ {1...M}; σcent = 0.1 (headquarter)

Simulation runs Per scenario 2,500 runs with 10 runs on 250
distinct fitness landscapes

entire problem according to the NK framework, and Kex denotes the level of
interactions across sub-problems and, with that, also across departments. The
experiments distinguish four different interaction structures (Table 1): (1) In the
perfectly decomposable structure the overall search problem is decomposed into
M = 3 disjoint parts with maximal intense intra-sub-problem interactions, but
no cross-sub-problem interactions (i.e., Kex = 0). (2) In the nearly decomposable
structure with K∗ = 1 only slight cross-sub-problem interactions occur in that
every performance contribution Ci in primary control of unit r is affected by
only one choice made by another unit q �= r. In the non-decomposable cases
with (3) intermediate or (4) high interactions, a single option di affects the
performance contributions of Kex = 3 or Kex = 5 choices, respectively, which are
in the primary control of other departments. For each combination of interaction
structure, search strategy and coordination mode 2,500 simulations are run.

4 Results and Discussion

Figure 1 displays condensed results for the simulation experiments: For each
interaction structure, configuration of search strategy and coordination mode,
the final performance Vt=250 averaged over 2,500 simulation runs is displayed1

1 Confidence intervals at a 99.9 level of Vt=250 show the following ranges: decom-
posable: ±0.002 to ±0.004 in decentralized and hierarchical coordination; near-
decomposable: dec. ±0.004 to ±0.005; hierar. ±0.003 to ±0.004; non-decomposable
intermediate: dec. ±0.005 to ±0.01; hierar. ±0.004 to ±0.005; non-decomposable
high: dec. ±0.005 to ±0.01; hierar. ±0.004 to ±0.005.


