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Comité consultatif
P. Borwein
R. Kane
S. Shen



Roberto Lucchetti

Convexity and
Well-Posed Problems

With 46 Figures



Roberto Lucchetti
Dipto. Matematica
Politecnico di Milano
Milano, 20133
Italy
rel@como.polimi.it

Editors-in-Chief
Rédacteurs-en-chef
Jonathan Borwein
Karl Dilcher
Department of Mathematics and Statistics
Dalhousie University
Halifax, Nova Scotia B3H 3J5
Canada
cbs-editors@cms.math.ca

Mathematics Subject Classification (2000): 49-01, 46N10, 26B25, 90-01

Library of Congress Control Number: 2005932085

ISBN 978-0387-28719-5

Printed on acid-free paper.

© 2006 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New
York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis.
Use in connection with any form of information storage and retrieval, electronic adaptation, com-
puter software, or by similar or dissimilar methodology now known or hereafter developed is for-
bidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

9 8 7 6 5 4 3 2 1

springeronline.com



Dedicated to my family, pets included.



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Convex sets and convex functions: the fundamentals . . . . . . . 1
1.1 Convex sets: basic definitions and properties . . . . . . . . . . . . . . . . 1
1.2 Convex functions: basic definitions and properties . . . . . . . . . . . 11

2 Continuity and Γ (X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1 Continuity and Lipschitz behavior . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Lower semicontinuity and Γ (X) . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 The derivatives and the subdifferential . . . . . . . . . . . . . . . . . . . . 31
3.1 Properties of the directional derivatives . . . . . . . . . . . . . . . . . . . . 32
3.2 The subgradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
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Preface

This book deals mainly with the study of convex functions and their behavior
from the point of view of stability with respect to perturbations. We shall
consider convex functions from the most modern point of view: a function is
defined to be convex whenever its epigraph, the set of the points lying above
the graph, is a convex set. Thus many of its properties can be seen also as
properties of a certain convex set related to it. Moreover, we shall consider
extended real valued functions, i.e., functions taking possibly the values −∞
and +∞. The reason for considering the value +∞ is the powerful device
of including the constraint set of a constrained minimum problem into the
objective function itself (by redefining it as +∞ outside the constraint set).
Except for trivial cases, the minimum value must be taken at a point where
the function is not +∞, hence at a point in the constraint set. And the value
−∞ is allowed because useful operations, such as the inf-convolution, can give
rise to functions valued −∞ even when the primitive objects are real valued.

Observe that defining the objective function to be +∞ outside the closed
constraint set preserves lower semicontinuity, which is the pivotal and mini-
mal continuity assumption one needs when dealing with minimum problems.
Variational calculus is usually based on derivatives. In the convex case too, of
course, the study of the derivative is of the utmost importance in the analysis
of the problems. But another concept naturally arises, which is a very impor-
tant tool for the analysis. This is the subdifferential of a function at a given
point x, which, as opposed to the derivative, does not require the function to
be finite on a whole ball around x. It also exists when the graph of the function
has angles, and preserves many important properties of the derivatives. Thus
a chapter is dedicated to the study of some properties of the subdifferential:
its connections with the directional derivatives and the Gâteaux and Fréchet
differentials whenever they exist, and its behavior as a multifunction. The
following chapter, after introducing the most fundamental existence theorem
in minimum problems, the Weierstrass theorem, is dedicated to the Ekeland
variational principle which, among other things, establishes, for a very gen-
eral class F of functions (lower semicontinuous, lower bounded) defined on
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a complete metric space X, an existence theorem on a dense (for a natural
topology on F) set. This gives a way around lack of a topology on X, and
allows for application of the Weierstrass theorem. We also analyze in some
detail some of the very interesting consequences of the principle, mainly in
the convex setting.

Next, we introduce the fundamental operation of Fenchel conjugation. This
is the basis of all the duality theory which we develop, essentially following
the approach of Ekeland–Temam (see [ET]). We then give a representative
number of examples of its applications, including zero sum games, including
the beautiful proof of the famous von Neumann theorem on the existence of
an equilibrium in mixed strategies for finite games. This also allows us to
get interesting results for linear programming. I want to stress at this point
that, notwithstanding that the minimization of a scalar convex function is
the primary subject of study of this book, the basic underlying concept that
motivated me to write it is “optimization”. For this reason, I include in it some
game theory, one of the most modern and challenging aspects of optimization,
with a glance as well to vector optimization. My hope is that readers will be
stimulated and encouraged to bring the ideas, developed here for the convex,
extended real valued functions, (mainly stability and well-posedness) to these
domains too. To this end I must however say that some research is already in
progress in this direction, although it is not so well established as to have a
place in this book.

Coming back to the content of the book, I have to mention that my pri-
mary goal is to illustrate the ideas of stability and well-posedness, mainly
in the convex case. Stability means that the basic parameters of a minimum
problem, the infimal value and the set of the minimizers, do not vary much if
we slightly change the initial data, the objective function and the constraint
set. On the other hand, well-posedness means that points with values close to
the value of the problem must be close to actual solutions. In studying this,
one is naturally led to consider perturbations of functions and of sets. But it
turns out that neither traditional convergences of functions, pointwise con-
vergence, compact-open topology, nor classical convergence of sets, Hausdorff
and Vietoris, are well suited to our setting. The stability issue explains why
scholars of optimization have devoted so much time to defining and study-
ing various convergence structures on the space of closed subsets of a metric
space. Moreover, this approach perfectly fits with the idea of regarding func-
tions as sets. Thus beginning with Chapter 8, the second part of the book
starts with an introduction to the basic material concerning convergence of
the closed subsets of a metric space X, and the topological nature of these
convergences. These topologies are usually called hypertopologies, in the sense
that the space X can be embedded in the hyperspace (whose points are closed
sets), and the topology in the hyperspace respects the topology of X. A se-
quence {xn} in X converges in X if and only if the sequence of sets {{xn}}
converges in the hyperspace. Since this topic appears to be interesting in it-
self, Appendix B is dedicated to exploring in more detail some basic ideas
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underlying the construction and study of these topologies/convergences, but
it is not necessary to the comprehension of the rest of the book.

Using these topologies requires also knowing the continuity of basic op-
erations involving them. For instance, when identifying functions with sets,
it is not clear (nor even true) whether the sum of two convergent (in some
particular sense) sequences converges to the sum of the limits. Yet having
this property is very fundamental, for instance to ensure a good Lagrange
multipliers rule in constrained problems. Thus, Chapter 9 is dedicated to this
issue.

We then turn our attention to the study of well-posed problems, and the
connection between stability and well-posedness. In doing this, we give some
emphasis to a very recent and fruitful new well-posedness concept, which in
some sense contains at the same time the two classical notions of stability and
Tykhonov well-posedness.

Since there are many important classes of minimization problems for which
existence cannot be guaranteed universally for all elements of the class, it is
interesting to know “how many” of these problems will have solutions and
also enjoy the property of being well-posed. This is the subject of Chapter 11.
We consider here the idea of “many” from the point of view of the Baire
category, and in the sense of σ-porosity, a recent and interesting notion which
provides more refined results than the Baire approach. This part contains the
most recent results in the book, and is mainly based on some papers by Ioffe,
Revalski and myself.

The book ends with some appendices, entitled “Functional analysis” (a
quick review of the Hahn–Banach theorem and the Banach–Dieudonné–Krein–
Smulian theorem), “Topology” (the theorem of Baire, and a deeper insight to
hypertopologies) and “More game theory”.

A few words on the structure of the book. The part on convexity is stan-
dard, and much of the inspiration is taken from the classical and beautiful
books cited in the References, such as those by Ekeland–Temam, Rockafellar,
Phelps, and Lemaréchal–Hiriart-Urruty. I also quote more recent and equally
interesting books, such as those of Borwein–Lewis and of Zalinescu. The study
of hypertopologies is instead a less classical issue, the only book available is the
one by G. Beer [Be]. However my point of view here is different from his and
I hope that, though very condensed, this section will help people unfamiliar
with hypertopologies to learn how to use them in the context of optimization
problems. Finally, the sections related to stability have roots in the book by
Dontchev–Zolezzi, but here we focus mainly on convexity.

About the (short) bibliography, I should emphasize that, as far as the first
part is concerned, I do not quote references to original papers, since most of
the results which are presented are now classical; thus I only mention the most
important books in the area, and I refer the reader to them for a more complete
bibliography. The references for hypertopologies and classical notions of well-
posedness are the books by [Be],[DZ] respectively. When dealing with more
recent results, which are not yet available in a book, I quote the original
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papers. Finally, the section concerning game theory developed in the duality
chapter is inspired by [Ow].

The book contains more than 120 exercises, and some 45 figures. The
exercises, which are an essential part of this work, are not all of the same level
of difficulty. Some are suitable for students, while others are statements one
can find in recent papers. This does not mean that I consider these results
to be straightforward. I have merely used the exercise form to establish some
interesting facts worth mentioning but whose proof was inessential to a reading
of the book. I have chosen to start each chapter with one of my favorite
quotations, with no attempt to tie the quote directly to the chapter.

Since this is my first and last book of this type, I would like to make
several acknowledgements. First of all, I want to thank all my coauthors. I
have learned much from all of them, in particular, A. Ioffe and J. Revalski.
Most of the material concerning the genericity results is taken from some of
their most recent papers with me. More importantly, I am very happy to
share with them a friendship going far beyond the pleasure of writing papers
together. For several years these notes were used to teach a class at the De-
partment of Mathematics and Physics at the Catholic University of Brescia,
and a graduate class held at the Faculty of Economics at the University of
Pavia. I would like to thank my colleagues M. Degiovanni and A. Guerraggio
for inviting me to teach these classes, and all students (in particular I want to
mention Alessandro Giacomini) who patiently helped me in greatly improving
the material, and correcting misprints. I also wish to thank some colleagues
whom I asked to comment on parts of the book, in particular G. Beer, who
provided me with some excellent remarks on the chapters dedicated to hyper-
topologies. Also, comments by the series editors J. Borwein and K. Dilcher to
improve the final version of the book were greatly appreciated. I owe thanks
to Mary Peverelli and Elisa Zanellati for undertaking the big task of outlining
figures copied from my horrible and incomprehensible drawings. Last but not
least, I would like to express my appreciation for an invitation from CNRS
to spend three months at the University of Limoges, attached to LACO. The
nice, quiet and friendly atmosphere of the department allowed me to complete
the revision of all material. In particular, I thank my host M. Théra, and the
director of the LACO, A. Movahhedi.

While going over the book for the last time, I learned of the passing away of
my friend and colleague Jan Pelant. A great man and a great mathematician,
his loss hurts me and all who had the good fortune to meet and know him.
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Convex sets and convex functions:
the fundamentals

Nobody realizes that some people expend
a tremendous amount of energy

merely to be normal.
(A. Camus)

In this first chapter we introduce the basic objects of this book: convex sets
and convex functions. For sets, we provide the notions of convex set, convex
cone, the convex, conic and affine hulls of a set, and the recession cone. All
these objects are very useful in highlighting interesting properties of convex
sets. For instance, we see that a closed convex set, in finite dimensions, is the
closure of its relative interior, and we provide a sufficient condition in order
that the sum of two closed convex sets be closed, without using any com-
pactness assumption. To conclude the introduction of these basic geometric
objects of the convex analysis, we take a look at the important theorems by
Carathéodory, Radon and Helly.

We then introduce the idea of extended real valued convex function, mainly
from a geometric point of view. We provide several important examples of
convex functions and see what type of operations between functions preserve
convexity. We also introduce the very important operation of inf-convolution.

In this introductory chapter we mainly focus on the geometry of convexity,
while in the second chapter we shall begin to consider the continuity properties
of the extended real valued convex functions.

1.1 Convex sets: basic definitions and properties

Let X be a linear space and C a subset of X.

Definition 1.1.1 C is said to be convex provided

x, y ∈ C, λ ∈ (0, 1) imply λx + (1− λ)y ∈ C.
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The empty set is assumed to be convex by definition. C is a cone if x ∈ C,
λ ≥ 0 imply λx ∈ C.

Convex set. Nonconvex set. Cone. Convex cone.

Figure 1.1.

Exercise 1.1.2 A cone is convex if and only if x, y ∈ C implies x + y ∈ C.

For sets A, C and for t ∈ R, we set

A + C := {a + c : a ∈ A, c ∈ C}, tA := {ta : a ∈ A, t ∈ R}.

Exercise 1.1.3 Let A, C be convex (cones). Then A + C and tA are convex
(cones). Also, if Cα is an arbitrary family of convex sets (convex cones), then⋂

α Cα is a convex set (convex cone). If X, Y are linear spaces, L : X → Y
a linear operator, and C is a convex set (cone), then L(C) is a convex set
(cone). The same holds for inverse images.

Definition 1.1.4 We shall call a convex combination of elements x1, . . . , xn

any vector x of the form

x = λ1x1 + · · ·+ λnxn,

with λ1 ≥ 0, . . . , λn ≥ 0 and
∑n

i=1 λi = 1.

We now see that a set C is convex if and only if it contains any convex
combination of elements belonging to it.

Proposition 1.1.5 A set C is convex if and only if for every λ1 ≥ 0, . . . , λn ≥
0 such that

∑n
i=1 λi = 1, for every c1, . . . , cn ∈ C, for all n, then

∑n
i=1 λici ∈

C.

Proof. Let

A =
{ n∑

i=1

λici : λi ≥ 0,
∑

i

λi = 1, ci ∈ C ∀i, n ∈ R

}
.
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We must prove that A = C if and only if C is convex. Observe that A contains
C. Next, A is convex. This is very easy to see, and tedious to write, and so we
omit it. Thus the proof will be concluded once we show that A ⊂ C provided
C is convex. Take an element x ∈ A. Then

x =
n∑

i=1

λici,

with λi ≥ 0,
∑

i λi = 1, ci ∈ C. If n = 2, then x ∈ C just by definition of
convexity. Suppose now n > 2 and that the statement is true for any convex
combination of (at most) n− 1 elements. Then

x = λ1c1 + · · ·+ λncn = λ1c1 + (1− λ1)y,

where
y =

λ2

1− λ1
c2 + · · ·+ λn

1− λ1
cn.

Now observe that y is a convex combination of n − 1 elements of C and
thus, by inductive assumption, it belongs to C. Then x ∈ C as it is a convex
combination of two elements. ��

If C is not convex, then there is a smallest convex set (convex cone) con-
taining C: it is the intersection of all convex sets (convex cones) containing
C.

Definition 1.1.6 The convex hull of a set C, denoted by co C, is defined as

co C :=
⋂
{A : C ⊂ A, A is convex}.

The conic hull denoted by coneC, is

cone C :=
⋂
{A : C ⊂ A, A is a convex cone}.

Proposition 1.1.7 Given a set C,

coC =

{
n∑

i=1

λici : λi ≥ 0,
n∑

i=1

λi = 1, ci ∈ C ∀i, n ∈ R

}
.

Proof. It easily follows from Proposition 1.1.5. ��
Definition 1.1.8 Let A be a convex set. A point x ∈ A is said to be an
extreme point of A if it is not the middle point of a segment contained in A.
A simplex S is the convex hull of a finite number of points x1, . . . , xk.

Exercise 1.1.9 Given a simplex S as in the above definition, show that the
extreme points of S are a subset of {x1, . . . , xk}.


