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Preface

Sampling-based computational methods have become a fundamental part
of the numerical toolset of practitioners and researchers across an enormous
number of different applied domains and academic disciplines. This book
is intended to provide a broad treatment of the basic ideas and algorithms
associated with sampling-based methods, often also referred to as Monte
Carlo algorithms or as stochastic simulation. The reach of these ideas is
illustrated here by discussing a wide range of different applications. Our
goal is to provide coverage that reflects the richness of both the applications
and the models that have found wide usage.

Of course, the models that are used differ widely from one discipline
to another. Some methods apply across the entire simulation spectrum,
whereas certain models raise particular computational challenges specific
to those model formulations. As a consequence, the first part of the book
focuses on general methods, whereas the second half discusses model-
specific algorithms. The mathematical level is intended to accommodate the
reader, so that for models for which even the model formulation demands
some sophistication on the part of the reader (e.g., stochastic differential
equations), the mathematical discussion will be at a different level from
that presented elsewhere. While we deliver an honest discussion of the
basic mathematical issues that arise in both describing and analyzing al-
gorithms, we have chosen not to be too fussy with regard to providing
precise conditions and assumptions guaranteeing validity of the stated re-
sults. For example, some theorem statements may omit conditions (such as
moment hypotheses) that, while necessary mathematically, are not key to
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understanding the practical domain of applicability of the result. Likewise,
in some arguments, we have provided an outline of the key mathematical
steps necessary to understand (for example) a rate of convergence issue,
without giving all the mathematical details that would serve to provide a
complete and rigorous proof.

As a result, we believe that this book can be a useful simulation resource
to readers with backgrounds ranging from an exposure to introductory
probability to a much more advanced knowledge of the area. Given the wide
range of examples and application areas addressed, our expectation is that
students, practitioners, and researchers in statistics, probability, operations
research, economics, finance, engineering, biology, chemistry, and physics
will find the book to be of value. In addition to providing a development of
the area pertinent to each reader’s specific interests, our hope is that the
book also serves to broaden our audience’s view of both Monte Carlo and
stochastic modeling, in general.

There exists an extensive number of texts on simulation and Monte
Carlo methods. Classical general references in the areas covered by this
book are (in chronological order) Hammersley & Handscombe [173], Ru-
binstein [313], Ripley [300], and Fishman [118]. A number of further ones
can be found in the list of references; many of them contain much practi-
cally oriented discussion not at all covered by this book. There are further
a number of books dealing with special subareas, for example Gilks et
al. [129] on Markov chain Monte Carlo methods, Newman & Barkema [276]
on applications to statistical physics, Glasserman [133] on applications to
mathematical finance, and Rubinstein & Kroese [318] on the cross-entropy
method.

In addition to standard journals in statistics and applied probability,
the reader interested in pursuing the literature should be aware of journals
like ACM TOMACS (ACM Transactions of Modeling and Computer Sim-
ulation), Management Science, and the IEEE journals. Of course, today
systematic scans of journals are to a large extent replaced by searches on
the web. At the end of the book after the References section, we give some
selected web links, being fully aware that such a list is likely to be out-
dated soon. These links also point to some important recurrent conferences
on simulation, see in particular [w3.14], [w3.16], [w3.17], [w3.20].

The book is designed as a potential teaching and learning vehicle for
use in a wide variety of courses. Our expectation is that the appropriate
selection of material will be highly discipline-dependent, typically covering
a large portion of the material in Part A on general methods and using those
special topics chapters in Part B that reflect the models most widely used
within that discipline. In teaching this material, we view some assignment
of computer exercises as being essential to gaining an understanding and
intuition for the material. In teaching graduate students from this book, one
of us (SA) assigns a computer lab of three hours per week to complement
lectures of two hours per week. Exercises labeled (A) are designed for such
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a computer lab (although whether three hours is sufficient will depend on
the students, and certainly some home preparation is needed). We have also
deliberately chosen to not focus the book on a specific simulation language
or software environment. Given the broad range of models covered, no single
programming environment would provide a good universal fit. We prefer to
let the user or teacher make the software choice herself. Finally, as a matter
of teaching philosophy, we do not believe that programming should take a
central role in a course taught from this book. Rather, the focus should be
on understanding the intuition underlying the algorithms described here,
as well as their strengths and weaknesses. In fact, to avoid a focus on the
programming per se, we often hand out pieces of code for parts that are
tedious to program but do not involve advanced ideas. Exercises marked
(TP) are theoretical problems, highly varying in difficulty.

Since the first slow start of the writing of this book in 1999, we have
received a large number of useful comments, suggestions, and corrections
on earlier version of the manuscript. Thanks go first of all to the large
number of students who have endured coping with these early versions. It
would go too far to mention all the colleagues who have helped in one way
or another. However, for a detailed reading of larger parts it is a pleasure to
thank Hansjörg Albrecher, Morten Fenger-Grøn, Pierre L’Ecuyer, Thomas
Mikosch, Leonardo Rojas-Nandayapa, and Jan Rosiński. At the technical
level, Lars Madsen helped with many problems that were beyond our LATEX
ability.

A list of typos will be kept at [w3.1], and we are greatful to be informed
of misprints as well as of more serious mistakes and omissions.

Aarhus and Stanford Søren Asmussen
February 2007 Peter W. Glynn
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Notation

Internal Reference System
The chapter number is specified only if it is not the current one. As exam-
ples, Proposition 1.3, formula (5.7) or Section 5 of Chapter IV are referred
to as IV.1.3, IV.(5.7) and IV.5, respectively, in all chapters other than IV
where we write Proposition 1.3, formula (5.7) (or just (5.7)) and Section 5.

Special Typeface
d differential like in dx, dt, F (dx); to be distinguished from a

variable or constant d, a function d(x) etc.

e the base 2.71 . . . of the natural logarithm; to be distinguished
from e which can be a variable or a different constant.

i the imaginary unit
√−1; to be distinguished from a variable i

(typically an index).

1 the indicator function, for example 1A, 1x∈A, 1{x ∈ A},
1{X(t) > 0 for some t ∈ [0, 1]}.

O, o the Landau symbols. That is, f(x) . = O
(
g(x)

)
means that

f(x)/g(x) stays bounded in some limit, say x→∞ or x→ 0,
whereas f(x) = o

(
g(x)

)
means f(x)/g(x) → 0.

π 3.1416 . . .; to be distinguished from π which is often used for a
stationary distribution or other.



Notation xiii

N
(
μ, σ2

)
the normal distribution with mean μ and variance σ2.

Probability, expectation, variance, covariance are denoted P, E, Var, Cov.
The standard sets are R (the real line (−∞,∞)), the complex numbers C,
the natural numbers N = {0, 1, 2, . . .}, the integers Z = {0,±1,±2, . . .}.
Matrices and vectors are most often denoted by bold typeface, C, Σ, x, α
etc., though exceptions occur. The transpose of A is denoted AT.

Miscellaneous Mathematical Notation
def= a defining equality.
a.s.→ a.s. convergence
P→ convergence in probability
D→ convergence in distribution
D= equality in distribution

←− an assignment in an algorithm (not used throughout)

| · | in addition to absolute value, also used for the number of
elements (cardinality) |S| of a set S, or its Lebesgue measure
|S|.

E[X ; A] E[X1A].

∼ usually, a(x) ∼ b(x) means a(x)/b(x) → 1 in some limit
like x → 0 or x → ∞, but occassionally, other posssibilities
occur. E.g. X ∼ N

(
μ, σ2

)
specifies X to have a N

(
μ, σ2

)

distribution.
≈ a different type of asymptotics, often just at the heuristical

level.
D≈ approximate equality in distribution.

∝ proportional to.

F̂ [·] the m.g.f. of a distribution F . Thus F̂ [is] is the characteristic
function at s. Sometimes F̂ [·] is also used for the probability
generating function of a discrete r.v.

The letter U is usually reserved for a uniform(0, 1) r.v., and the letter z
for a quantity to be estimated by simulation, Z for a r.v. with EZ = z. As
is standard, Φ is used for the c.d.f. of N (0, 1) and ϕ(x) def= e−x

2/2/
√

2π

for the density.. zα often denotes the α-quantile of N (0, 1). A standard
Brownian motion is denoted B and one with possibly drift μ 
= 0 and/or
variance σ2 by W. Exceptions to all of this occur occasionally.


