STOCHISTIC MSOELLISG AND AFPLITD plobabiufy

Stochastic Simulation

Algorithms and Analysis

Sisren Asmussen
Peter W: Glynn

Q Springer

STOCHASTIC
MODELLING AND APPLIED PROBABILITY

Søren Asmussen

Peter W. Glynn

Stochastic Simulation

Algorithms and Analysis
Stochastic Mechanics Stochastic Modelling Random Media and Applied Probability
Signal Processing and Image Synthesis (Formerly:Mathematical Economics and Finance Applications of Mathematics)
Stochastic OptimizationStochastic ControlStochastic Models in Life Sciences57
Edited by B. RozovskiiG. Grimmett
Advisory Board D. Dawson
D. GemanI. KaratzasF. KellyY. Le JanB. ØksendalG. PapanicolaouE. Pardoux

Stochastic Modelling and Applied Probability formerly: Applications of Mathematics

1 Fleming/Rishel, Deterministic and Stochastic Optimal Control (1975)
2 Marchuk, Methods of Numerical Mathematics (1975, 2nd. ed. 1982)
3 Balakrishnan, Applied Functional Analysis (1976, 2nd. ed. 1981)
4 Borovkov, Stochastic Processes in Queueing Theory (1976)
5 Liptser/Shiryaev, Statistics of Random Processes I: General Theory (1977, 2nd. ed. 2001)
6 Liptser/Shiryaev, Statistics of Random Processes II: Applications (1978, 2nd. ed. 2001)
7 Vorob'ev, Game Theory: Lectures for Economists and Systems Scientists (1977)
8 Shiryaev, Optimal Stopping Rules (1978)
9 Ibragimov/Rozanov, Gaussian Random Processes (1978)
10 Wonham, Linear Multivariable Control: A Geometric Approach (1979, 2nd. ed. 1985)
1 Hida, Brownian Motion (1980)
12 Hestenes, Conjugate Direction Methods in Optimization (1980)
13 Kallianpur, Stochastic Filtering Theory (1980)
14 Krylov, Controlled Diffusion Processes (1980)
15 Prabhu, Stochastic Storage Processes: Queues, Insurance Risk, and Dams (1980)
16 Ibragimov/Has'minskii, Statistical Estimation: Asymptotic Theory (1981)
17 Cesari, Optimization: Theory and Applications (1982)
18 Elliott, Stochastic Calculus and Applications (1982)
19 Marchuk/Shaidourov, Difference Methods and Their Extrapolations (1983)
20 Hijab, Stabilization of Control Systems (1986)
21 Protter, Stochastic Integration and Differential Equations (1990)
Benveniste/Métivier/Priouret, Adaptive Algorithms and Stochastic Approximations (1990)
Kloeden/Platen, Numerical Solution of Stochastic Differential Equations (1992, corr. 3rd printing 1999)

24 Kushner/Dupuis, Numerical Methods for Stochastic Control Problems in Continuous Time (1992)

Fleming/Soner, Controlled Markov Processes and Viscosity Solutions (1993)
Baccelli/Brémaud, Elements of Queueing Theory (1994, 2nd. ed. 2003)
Winkler, Image Analysis, Random Fields and Dynamic Monte Carlo Methods (1995, 2nd. ed. 2003)

Kalpazidou, Cycle Representations of Markov Processes (1995)
Elliott/Aggoun/Moore, Hidden Markov Models: Estimation and Control (1995)
Hernández-Lerma/Lasserre, Discrete-Time Markov Control Processes (1995)
Devroye/Györfi/Lugosi, A Probabilistic Theory of Pattern Recognition (1996)
Maitra/Sudderth, Discrete Gambling and Stochastic Games (1996)
Embrechts/Klüppelberg/Mikosch, Modelling Extremal Events for Insurance and Finance (1997, corr. 4th printing 2003)
Duflo, Random Iterative Models (1997)
Kushner/Yin, Stochastic Approximation Algorithms and Applications (1997)
Musiela/Rutkowski, Martingale Methods in Financial Modelling (1997, 2nd. ed. 2005)
Yin, Continuous-Time Markov Chains and Applications (1998)
Dembo/Zeitouni, Large Deviations Techniques and Applications (1998)
Karatzas, Methods of Mathematical Finance (1998)
Fayolle/Iasnogorodski/Malyshev, Random Walks in the Quarter-Plane (1999)
Aven/Jensen, Stochastic Models in Reliability (1999)
Hernandez-Lerma/Lasserre, Further Topics on Discrete-Time Markov Control Processes (1999)
Yong/Zhou, Stochastic Controls. Hamiltonian Systems and HJB Equations (1999)
Serfozo, Introduction to Stochastic Networks (1999)
Steele, Stochastic Calculus and Financial Applications (2001)
Chen/Yao, Fundamentals of Queuing Networks: Performance, Asymptotics, and Optimization (2001)

Kushner, Heavy Traffic Analysis of Controlled Queueing and Communications Networks (2001)
Fernholz, Stochastic Portfolio Theory (2002)
Kabanov/Pergamenshchikov, Two-Scale Stochastic Systems (2003)
Han, Information-Spectrum Methods in Information Theory (2003)

Søren Asmussen Peter W. Glynn

Stochastic Simulation: Algorithms and Analysis

Authors

Søren Asmussen
Department of Theoretical Statistics
Department of Mathematical Sciences
Aarhus University
Ny Munkegade
DK-8000 Aarhus C, Denmark
asmus@imf.au.dk

Peter W. Glynn
Department of Management Science and Engineering
Institute for Computational and
Mathematical Engineering
Stanford University
Stanford, CA 94305-4026
glynn@stanford.edu

Managing Editors

B. Rozovskii

Division of Applied Mathematics
182 George St.
Providence, RI 02912
USA
rozovski@dam.brown.edu

G. Grimmett
Centre for Mathematical Sciences
Wilberforce Road, Cambridge CB3 0WB, UK
G.R.Grimmett@statslab.cam.ac.uk

Mathematics Subject Classification (2000): 65C05, 60-08, 62-01, 68-01
Library of Congress Control Number: 2007926471
ISSN: 0172-4568
ISBN-13: 978-0-387-30679-7
e-ISBN-13: 978-0-387-69033-9
© 2007 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

Preface

Sampling-based computational methods have become a fundamental part of the numerical toolset of practitioners and researchers across an enormous number of different applied domains and academic disciplines. This book is intended to provide a broad treatment of the basic ideas and algorithms associated with sampling-based methods, often also referred to as Monte Carlo algorithms or as stochastic simulation. The reach of these ideas is illustrated here by discussing a wide range of different applications. Our goal is to provide coverage that reflects the richness of both the applications and the models that have found wide usage.

Of course, the models that are used differ widely from one discipline to another. Some methods apply across the entire simulation spectrum, whereas certain models raise particular computational challenges specific to those model formulations. As a consequence, the first part of the book focuses on general methods, whereas the second half discusses modelspecific algorithms. The mathematical level is intended to accommodate the reader, so that for models for which even the model formulation demands some sophistication on the part of the reader (e.g., stochastic differential equations), the mathematical discussion will be at a different level from that presented elsewhere. While we deliver an honest discussion of the basic mathematical issues that arise in both describing and analyzing algorithms, we have chosen not to be too fussy with regard to providing precise conditions and assumptions guaranteeing validity of the stated results. For example, some theorem statements may omit conditions (such as moment hypotheses) that, while necessary mathematically, are not key to
understanding the practical domain of applicability of the result. Likewise, in some arguments, we have provided an outline of the key mathematical steps necessary to understand (for example) a rate of convergence issue, without giving all the mathematical details that would serve to provide a complete and rigorous proof.

As a result, we believe that this book can be a useful simulation resource to readers with backgrounds ranging from an exposure to introductory probability to a much more advanced knowledge of the area. Given the wide range of examples and application areas addressed, our expectation is that students, practitioners, and researchers in statistics, probability, operations research, economics, finance, engineering, biology, chemistry, and physics will find the book to be of value. In addition to providing a development of the area pertinent to each reader's specific interests, our hope is that the book also serves to broaden our audience's view of both Monte Carlo and stochastic modeling, in general.

There exists an extensive number of texts on simulation and Monte Carlo methods. Classical general references in the areas covered by this book are (in chronological order) Hammersley \& Handscombe [173], Rubinstein [313], Ripley [300], and Fishman [118]. A number of further ones can be found in the list of references; many of them contain much practically oriented discussion not at all covered by this book. There are further a number of books dealing with special subareas, for example Gilks et al. [129] on Markov chain Monte Carlo methods, Newman \& Barkema [276] on applications to statistical physics, Glasserman [133] on applications to mathematical finance, and Rubinstein \& Kroese [318] on the cross-entropy method.

In addition to standard journals in statistics and applied probability, the reader interested in pursuing the literature should be aware of journals like ACM TOMACS (ACM Transactions of Modeling and Computer Simulation), Management Science, and the IEEE journals. Of course, today systematic scans of journals are to a large extent replaced by searches on the web. At the end of the book after the References section, we give some selected web links, being fully aware that such a list is likely to be outdated soon. These links also point to some important recurrent conferences on simulation, see in particular [$\left.\mathrm{w}^{3} .14\right]$, $\left[\mathrm{w}^{3} .16\right],\left[\mathrm{w}^{3} .17\right],\left[\mathrm{w}^{3} .20\right]$.

The book is designed as a potential teaching and learning vehicle for use in a wide variety of courses. Our expectation is that the appropriate selection of material will be highly discipline-dependent, typically covering a large portion of the material in Part A on general methods and using those special topics chapters in Part B that reflect the models most widely used within that discipline. In teaching this material, we view some assignment of computer exercises as being essential to gaining an understanding and intuition for the material. In teaching graduate students from this book, one of us (SA) assigns a computer lab of three hours per week to complement lectures of two hours per week. Exercises labeled (A) are designed for such
a computer lab (although whether three hours is sufficient will depend on the students, and certainly some home preparation is needed). We have also deliberately chosen to not focus the book on a specific simulation language or software environment. Given the broad range of models covered, no single programming environment would provide a good universal fit. We prefer to let the user or teacher make the software choice herself. Finally, as a matter of teaching philosophy, we do not believe that programming should take a central role in a course taught from this book. Rather, the focus should be on understanding the intuition underlying the algorithms described here, as well as their strengths and weaknesses. In fact, to avoid a focus on the programming per se, we often hand out pieces of code for parts that are tedious to program but do not involve advanced ideas. Exercises marked (TP) are theoretical problems, highly varying in difficulty.

Since the first slow start of the writing of this book in 1999, we have received a large number of useful comments, suggestions, and corrections on earlier version of the manuscript. Thanks go first of all to the large number of students who have endured coping with these early versions. It would go too far to mention all the colleagues who have helped in one way or another. However, for a detailed reading of larger parts it is a pleasure to thank Hansjörg Albrecher, Morten Fenger-Grøn, Pierre L'Ecuyer, Thomas Mikosch, Leonardo Rojas-Nandayapa, and Jan Rosiński. At the technical level, Lars Madsen helped with many problems that were beyond our $\mathrm{AA}_{\mathrm{E}} \mathrm{X}$ ability.

A list of typos will be kept at [$\left.\mathrm{w}^{3} .1\right]$, and we are greatful to be informed of misprints as well as of more serious mistakes and omissions.

Aarhus and Stanford
Søren Asmussen
February 2007
Peter W. Glynn

Contents

Preface v
Notation xii
I What This Book Is About 1
1 An Illustrative Example: The Single-Server Queue 1
2 The Monte Carlo Method 5
3 Second Example: Option Pricing 6
4 Issues Arising in the Monte Carlo Context 9
5 Further Examples 13
6 Introductory Exercises 25
Part A: General Methods and Algorithms 29
II Generating Random Objects 30
1 Uniform Random Variables 30
2 Nonuniform Random Variables 36
3 Multivariate Random Variables 49
4 Simple Stochastic Processes 59
5 Further Selected Random Objects 62
6 Discrete-Event Systems and GSMPs 65
III Output Analysis 68
1 Normal Confidence Intervals 68
2 Two-Stage and Sequential Procedures 71
3 Computing Smooth Functions of Expectations 73
4 Computing Roots of Equations Defined by Expectations 77
5 Sectioning, Jackknifing, and Bootstrapping 80
6 Variance/Bias Trade-Off Issues 86
7 Multivariate Output Analysis 88
8 Small-Sample Theory 90
$9 \quad$ Simulations Driven by Empirical Distributions 91
10 The Simulation Budget 93
IV Steady-State Simulation 96
1 Introduction 96
2 Formulas for the Bias and Variance 102
3 Variance Estimation for Stationary Processes 104
4 The Regenerative Method 105
5 The Method of Batch Means 109
6 Further Refinements 110
7 Duality Representations 118
8 Perfect Sampling 120
V Variance-Reduction Methods 126
1 Importance Sampling 127
2 Control Variates 138
3 Antithetic Sampling 144
4 Conditional Monte Carlo 145
5 Splitting 147
6 Common Random Numbers 149
7 Stratification 150
8 Indirect Estimation 155
VI Rare-Event Simulation 158
1 Efficiency Issues 158
2 Examples of Efficient Algorithms: Light Tails 163
3 Examples of Efficient Algorithms: Heavy Tails 173
4 Tail Estimation 178
5 Conditioned Limit Theorems 183
6 Large-Deviations or Optimal-Path Approach 187
7 Markov Chains and the h-Transform 190
8 Adaptive Importance Sampling via the Cross-Entropy Method 195
9 Multilevel Splitting 201
VII Derivative Estimation 206
1 Finite Differences 209
2 Infinitesimal Perturbation Analysis 214
3 The Likelihood Ratio Method: Basic Theory 220
4 The Likelihood Ratio Method: Stochastic Processes 224
5 Examples and Special Methods 231
VIII Stochastic Optimization 242
1 Introduction 242
2 Stochastic Approximation Algorithms 243
3 Convergence Analysis 245
4 Polyak-Ruppert Averaging 250
5 Examples 253
Part B: Algorithms for Special Models 259
IX Numerical Integration 260
1 Numerical Integration in One Dimension 260
2 Numerical Integration in Higher Dimensions 263
3 Quasi-Monte Carlo Integration 265
X Stochastic Differential Equations 274
1 Generalities about Stochastic Process Simulation 274
2 Brownian Motion 276
3 The Euler Scheme for SDEs 280
4 The Milstein and Other Higher-Order Schemes 287
5 Convergence Orders for SDEs: Proofs 292
6 Approximate Error Distributions for SDEs 298
7 Multidimensional SDEs 300
8 Reflected Diffusions 301
XI Gaussian Processes 306
1 Introduction 306
2 Cholesky Factorization. Prediction 311
3 Circulant-Embeddings 314
4 Spectral Simulation. FFT 316
5 Further Algorithms 320
6 Fractional Brownian Motion 321
XII Lévy Processes 325
1 Introduction 325
2 First Remarks on Simulation 331
3 Dealing with the Small Jumps 334
4 Series Representations 338
5 Subordination 343
6 Variance Reduction 344
7 The Multidimensional Case 346
8 Lévy-Driven SDEs 348
XIII Markov Chain Monte Carlo Methods 350
1 Introduction 350
2 Application Areas 352
3 The Metropolis-Hastings Algorithm 361
4 Special Samplers 367
5 The Gibbs Sampler 375
XIV Selected Topics and Extended Examples 381
1 Randomized Algorithms for Deterministic Optimization 381
2 Resampling and Particle Filtering 385
3 Counting and Measuring 391
4 MCMC for the Ising Model and Square Ice 395
5 Exponential Change of Measure in Markov-Modulated Models 403
6 Further Examples of Change of Measure 407
7 Black-Box Algorithms 416
8 Perfect Sampling of Regenerative Processes 420
9 Parallel Simulation 424
10 Branching Processes 426
11 Importance Sampling for Portfolio VaR 432
12 Importance Sampling for Dependability Models 435
13 Special Algorithms for the GI/G/1 Queue 437
Appendix 442
A1 Standard Distributions 442
A2 Some Central Limit Theory 444
A3 FFT 444
A4 The EM Algorithm 445
A5 Filtering 447
A6 Itô's Formula 448
A7 Inequalities 450
A8 Integral Formulas 450
Bibliography 452
Web Links 469
Index 471

Notation

Internal Reference System

The chapter number is specified only if it is not the current one. As examples, Proposition 1.3, formula (5.7) or Section 5 of Chapter IV are referred to as IV.1.3, IV.(5.7) and IV.5, respectively, in all chapters other than IV where we write Proposition 1.3, formula (5.7) (or just (5.7)) and Section 5.

Special Typeface

d differential like in $\mathrm{d} x, \mathrm{~d} t, F(\mathrm{~d} x)$; to be distinguished from a variable or constant d, a function $d(x)$ etc.
e the base $2.71 \ldots$ of the natural logarithm; to be distinguished from e which can be a variable or a different constant.
the imaginary unit $\sqrt{-1}$; to be distinguished from a variable i (typically an index).
$\mathbb{1}$ the indicator function, for example $\mathbb{1}_{A}, \mathbb{1}_{x \in A}, \mathbb{1}\{x \in A\}$, $\mathbb{1}\{X(t)>0$ for some $t \in[0,1]\}$.

O, о
the Landau symbols. That is, $f(x) .=\mathrm{O}(g(x))$ means that $f(x) / g(x)$ stays bounded in some limit, say $x \rightarrow \infty$ or $x \rightarrow 0$, whereas $f(x)=\mathrm{o}(g(x))$ means $f(x) / g(x) \rightarrow 0$.
$3.1416 \ldots$; to be distinguished from π which is often used for a stationary distribution or other.
$\mathscr{N}\left(\mu, \sigma^{2}\right)$ the normal distribution with mean μ and variance σ^{2}.

Probability, expectation, variance, covariance are denoted $\mathbb{P}, \mathbb{E}, \mathbb{V}$ ar, \mathbb{C} ov. The standard sets are \mathbb{R} (the real line $(-\infty, \infty)$), the complex numbers \mathbb{C}, the natural numbers $\mathbb{N}=\{0,1,2, \ldots\}$, the integers $\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$.
Matrices and vectors are most often denoted by bold typeface, $\boldsymbol{C}, \boldsymbol{\Sigma}, \boldsymbol{x}, \boldsymbol{\alpha}$ etc., though exceptions occur. The transpose of \boldsymbol{A} is denoted \boldsymbol{A}^{\top}.

Miscellaneous Mathematical Notation

$\stackrel{\text { def }}{=}$	a defining equality.
$\xrightarrow{\text { a.s. }}$	a.s. convergence
$\xrightarrow{\mathbb{P}}$	convergence in probability
$\xrightarrow{\text { Q }}$	convergence in distribution
Q	equality in distribution
\longleftarrow	an assignment in an algorithm (not used throughout)
$\|\cdot\|$	in addition to absolute value, also used for the number of elements (cardinality) $\|S\|$ of a set S, or its Lebesgue measure $\|S\|$.
$\mathbb{E}[X ; A]$	$\mathbb{E}\left[X \mathbb{1}_{A}\right]$.
\sim	usually, $a(x) \sim b(x)$ means $a(x) / b(x) \rightarrow 1$ in some limit like $x \rightarrow 0$ or $x \rightarrow \infty$, but occassionally, other posssibilities occur. E.g. $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right)$ specifies X to have a $\mathscr{N}\left(\mu, \sigma^{2}\right)$ distribution.
\approx	a different type of asymptotics, often just at the heuristical level.
$\underset{\sim}{\text { ® }}$	approximate equality in distribution.
\propto	proportional to.
$\widehat{F}[\cdot]$	the m.g.f. of a distribution F. Thus $\widehat{F}[i s]$ is the characteristic function at s. Sometimes $\widehat{F}[\cdot]$ is also used for the probability generating function of a discrete r.v.

The letter U is usually reserved for a uniform $(0,1)$ r.v., and the letter z for a quantity to be estimated by simulation, Z for a r.v. with $\mathbb{E} Z=z$. As is standard, Φ is used for the c.d.f. of $\mathscr{N}(0,1)$ and $\varphi(x) \stackrel{\text { def }}{=} \mathrm{e}^{-x^{2} / 2} / \sqrt{2 \pi}$ for the density.. z_{α} often denotes the α-quantile of $\mathscr{N}(0,1)$. A standard Brownian motion is denoted B and one with possibly drift $\mu \neq 0$ and/or variance σ^{2} by W. Exceptions to all of this occur occasionally.

