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depend upon coming to grips with complex systems. Such systems are complex in
both their composition – typically many different kinds of components interacting
simultaneously and nonlinearly with each other and their environments on multiple
levels – and in the rich diversity of behavior of which they are capable.
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Preface

This is the fourth volume of the collection of essays entitled Applications of Chaos
and Nonlinear Dynamics in Science and Engineering, which has been addressed to
Master and Ph.D. Students, as well as to specialists of disciplines other than the hard
sciences, in order to help them familiarize with the theory and the applications of
nonlinearity, and its use in describing complex phenomena.

As illustrated in the previous volumes, terms such as nonlinear dynamics,
chaos and complexity have pervaded the vocabulary of almost all fields of sci-
ence and technology. As a matter of fact, current mathematical descriptions of
evolving phenomena consist of nonlinear ordinary or partial differential equations,
of various kinds of stochastic processes and of nonlinear space and time discrete
iterative schemes. In the deterministic cases, a typical situation is that in which
the propagation of uncertainties is exponential in time, a phenomenon known as
sensitive dependence on initial conditions, and concisely and suggestively called
deterministic chaos.

To understand the reasons why certain terms have become common in many
different fields, it suffices to observe that nonlinearities appear in feedback phenom-
ena, which are ubiquitous in nature, and generically in the evolution equations of
systems consisting of interacting parts or interacting with an external environment.
Furthermore, any measurement one may perform, like any estimate of the initial
state of any material object, is bound to be affected by uncertainties, which
propagate in time leading to the conclusion that a degree of unpredictability is
intrinsic, in practice as well as in principle, to all time dependent phenomena. For
this reason, the study of nonlinear evolutions is commonly associated with statistical
concepts, and relies on measures such as the Lyapunov exponents and various kinds
of dynamical entropies.

In the previous volumes, we have presented a vast collection of examples,
treated explicitly and in moderately technical terms. Indeed, these concepts have
in the past decades turned useful in countless practical applications—beyond the
mathematical and physical literature in which they have been mostly developed—
ranging from engineering to biology, medicine, computer and telecommunication
sciences, etc. We have thus followed an approach which we deem suitable to a vast
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vi Preface

readership, proposing essays written in the form of tutorials. In this last volume, we
complete our survey and introduction to nonlinear, chaotic and complex phenomena,
considering some issues of higher theoretical content than in the previous volumes,
but preserving the mildly technical style of the previous volumes.

Part I concerns nonlinearities in transport of energy and matter, with one
contribution by L. Stricker and L. Rondoni on models of heat transport and their
mechanical properties, one contribution on the general theory of diffusion, by G.
Boffetta, G. Lacorata and A. Vulpiani, and one contribution by M. Colangeli on the
relation between the Boltzmann equation and hydrodynamics.

In Part II, we have three contributions on chaos and synchronization in complex
networks: one by J. Stroud, M. Barahona and T. Pereira on modular networks, one
by P. Carl on the evolution of climate, and one by A. Tai and S. Jalan on the use of
random matrices. The chapters are well illustrated with recent developments on the
subject area and possible practical applications.

Part III has two contributions on phase space reconstruction and on biological
patterns, respectively, by S. K. Palit, S. Mukherjee, S. Banerjee, M.R.K. Ariffin
and D. K. Bhattacharya, and by M. Banerjee. The theories are well illustrated and
supported with analytical and numerical results.

Part IV concerns the use of chaos in field programmable gate arrays. This chapter
is very useful as an introduction to the subject area.

We hope that this collection of examples, combined with those reported in the
previous three volumes have covered a sufficiently wide spectrum of subjects, in
terms suitable to a wide audience, interested in importing dynamical concepts in
their disciplines, without recourse to sophisticated mathematical tools. The concepts
of nonlinear dynamics are indeed proving more and more useful in all fields of
research.

Serdang, Malaysia S. Banerjee
Torino, Italy L. Rondoni
26 January 2015
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Chapter 1
Microscopic Models for Vibrations
in Mechanical Systems Under Equilibrium
and Non-equilibrium Conditions

Laura Stricker and Lamberto Rondoni

Abstract Equilibrium Thermodynamics studies states of macroscopic objects that
do not change in time when isolated from their environment. This requires chemical,
mechanical and thermal equilibrium which together amount to thermodynamic
equilibrium. A non-equilibrium state can be established putting the system in
contact with more than one reservoir of heat, mass, or other physical quantities. The
dynamical evolution of a system of particles representing a macroscopic bar in both
equilibrium and non-equilibrium conditions is illustrated by means of a simple one-
dimensional molecular dynamics model, illustrating how macroscopic phenomena
may be qualitatively understood with microscopic toy models. In particular, a
system of hard point-particles undergoing only binary collisions is considered. A
conservative force is applied on one of the end particles to reproduce the cohesion
of the bar. Non-equilibrium conditions are obtained by adding two deterministic
thermostats acting on the first and on the last particle of the bar. In the equilibrium
case, we determine the values of macroscopic and microscopic proprieties of the
system, such as length, linear density, specific kinetic energy, average energy per
particle, and position of the centre of mass of control groups located in different
parts of the bar. In the non-equilibrium case, we focus on length oscillations, and we
demonstrate their dependence on the characteristic parameters of the thermostats.
Although highly idealized, this model reproduces an important qualitative aspect of
metal bars: hardening.
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Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
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4 L. Stricker and L. Rondoni

1.1 Introduction: Thermal Baths

Chains of oscillators constitute a very popular kind of models, used to understand
the behaviour of macroscopic objects from the point of view of their microscopic
constituents. The first of these models is the Fermi–Pasta–Ulam model [9], which
consists of a linear chain of interacting particles providing a minimal framework
for studies of ergodicity, dynamical relaxation and diffusion laws, with given
interparticle interaction potentials, initial and boundary conditions [3, 10, 13]. In this
tutorial, we demonstrate that the conceptually simple framework of one-dimensional
N-particle systems can be consistently used to model the qualitative thermo-
mechanical behaviour of solids. In particular, we consider a chain of particles, with
one fixed and one free end, to study the variations of length, in response to external
forces or to temperature changes. We provide both theoretical considerations and
numerical results from molecular dynamics simulations, which allow direct access
to any quantity of interest. These kinds of chains have been considered mostly to
study heat conduction, cf. [3, 10, 13] for recent reviews on the subject, and [4–6]
for some of the few works on thermo-mechanical properties.

In the theoretical study of statistical mechanics, a proper modelling of the
interaction with thermal reservoirs has a crucial role. At equilibrium, this is
usually done by means of well-established methods, such as the micro-canonical
molecular dynamics and Monte Carlo simulations. Out of equilibrium, the lack of a
general theoretical framework enforces the definition of the interaction with thermal
baths. From a conceptual point of view, the procedure requires considering non-
equilibrium states in the infinite system limit. For example, one could imagine to
have an infinite chain of particles, with initial conditions such that all the atoms on
the right and those on the left of a certain finite subset are in equilibrium at different
temperatures. The subset defines the system that we want to study. However, the
only case in which the above mentioned approach can be fully worked out is the case
of harmonic chains [14–17]. In such a system, it is possible to derive the degrees
of freedom corresponding to the reservoirs’ dynamics. Therefore the existence of
stationary non-equilibrium states of the system can be proved at the cost of dealing,
however, with arbitrarily large energy fluctuations. In general, when non-linear
effects appear, the evolution of the heat baths cannot be described anymore by means
of standard techniques. However, non-linear chains can still be studied, by assuming
that the non-linearity is restrained to the system of interest, while the semi-infinite
particle chains (i.e. the two reservoirs) can undergo only linear interactions [1].

Following this approach, the existence of an invariant measure (not explicitly
know) has been proved for non-equilibrium systems, in chains of highly non linear
coupled oscillators undergoing large temperature gradients [8]. This is analogous to
energy conservation in equilibrium systems.
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1.1.1 Stochastic Baths

A traditional way to implement the interaction with reservoirs is the introduction
of simultaneous random forces and dissipation, in agreement with the fluctuation-
dissipation theorem. Hence, the reservoirs are not influenced by the dynamics of
the system. For instance, in the case of a chain of particles with equal mass m, the
following system of Langevin equations is derived:

m Rqi D F
�
qi � qi�q

� � F.qiC1 � qi /C .�C � �C Pqi/ ıi1 C .�� � �� Pqi/ ıiN
(1.1)

where .�C � �C Pqi / ıi1; .�� � �� Pqi / ıiN are the forces acting respectively on the
first and the Nth particle.
�� and �C are the dissipation coefficients producing the slowing down forces

��C Pqi ıi1, ��� Pqi ıiN . �� and �C are the independent Wiener processes (stochastic
forces) with vanishing average, and variance 2�˙kBT˙, with T the absolute
temperature and kB the Boltzmann constant. For non-linear forces, this model can
be treated only numerically.

Once the non-equilibrium steady state condition is reached, the average heat flux
can be derived from the temperature profile. The average energy exchanged between
the first particle and the adjacent reservoir is the heat flux j

j .�;N / D �C
m1

.TC � T1/

Similarly at the other extreme of the system of interest. Then, at the microscopic
level one commonly considers each reservoir as an ideal one-dimensional gas of
particles with massM˙, interacting with the chain through elastic collisions [18]. A
simple strategy consists in selecting a random sequence of instants ti, in which every
thermostated atom collides with a particle of the corresponding reservoir. A natural
choice for the distribution W(�) of the intervals � among consecutive collisions is
the Poissonian distribution

W .�/ D 1

�
e� �

�

with � the average collision time. If we consider the reservoir positioned on the left
of the system of interest, the velocity of the first particle changes due to collisions
from Pq1B (before collision) to Pq1A (after collision)

Pq1A D Pq1B C 2MC
mCMC

.v � Pq1B/
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where the gas particles velocity v is a random variable with a Maxwellian probability
distribution P(v)

PC.v/ D
s

MC
2�kBTC

� e� MCv2

2kB TC

When M˙ D m, the procedure simplifies and it amounts to equating the particle
velocity after collision to the random variable v, so that the colliding particles
merely exchange their velocities. In the limit case M˙ << m, the interaction
with the heat baths become of Langevin kind, as in (1.1), with �˙ D 2M˙=� .
This method is computationally easier, because it does not imply dealing with
stochastic differential equations and integration can be performed with conventional
algorithms. Moreover, it is physically consistent, because damping is not imposed
a priori in the model, but is intrinsically generated by the dynamics. A similar
approach, consists in determining the collision times for the interaction with
“thermal walls” located at the two extremes of the particle chain. This method has
the advantage of allowing the inclusion of pressure effects. In this case, the velocity
of the thermostated particles is randomized at every collision with the wall. The
sign of the component of the velocity normal to the wall has be inverted, while its
absolute value must be distributed following a Maxwellian distribution centered on
the wall temperature [19].

1.1.2 Deterministic Baths

Different kinds of deterministic heat baths are commonly used [7, 11] in order to
give a self-consistent description of non-equilibrium processes and to overcome the
difficulties related to stochastic processes. Two possible modelling strategies are the
application of the thermostating forces only to the extremes of the particles chain or
to the whole chain.

1.1.2.1 Application of Forces to the Extremes of the Particle Chain

Non-equilibrium conditions are reached by applying two forces at the extremes of
the particles chain. The most popular scheme in the molecular dynamics community
is the Nosè–Hoover thermostat [7]. With this thermostat, the evolution of the
particles in contact with the thermal bath ˛ is governed by the equation:

m Rqi D F.qi � qi�1/� F.qiC1 � qi/ �
8
<

:

�C Pqi if i 2 SC

�� Pqi if i 2 S�
(1.2)


