

[image: cover.eps]

[image: Title page image]

Web Coding & Development All-in-One For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2018 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2018935649

ISBN: 978-1-119-47392-3; ISBN: 978-1-119-47383-1 (ePDF); ISBN: 978-1-119-47379-4 (ePub)

Web Coding & Development All-in-One For Dummies®

To view this book's Cheat Sheet, simply go to www.dummies.com and search for “Web Coding & Development All-in-One For Dummies Cheat Sheet” in the Search box.

Table of Contents

	Cover

	Introduction

	About This Book

	Foolish Assumptions

	Icons Used in This Book

	Beyond the Book

	Book 1: Getting Ready to Code for the Web

	Chapter 1: How Web Coding and Development Work

	The Nuts and Bolts of Web Coding and Development

	Understanding the Front End: HTML and CSS

	Understanding the Back End: PHP and MySQL

	How It All Fits Together: JavaScript and jQuery

	How Dynamic Web Pages Work

	What Is a Web App?

	What Is a Mobile Web App?

	What’s the Difference between Web Coding and Web Development?

	Chapter 2: Setting Up Your Web Development Home

	What Is a Local Web Development Environment?

	Do You Need a Local Web Development Environment?

	Setting Up the XAMPP for Windows Development Environment

	Setting Up the XAMPP for OS X Development Environment

	Choosing Your Text Editor

	Chapter 3: Finding and Setting Up a Web Host

	Understanding Web Hosting Providers

	A Buyer’s Guide to Web Hosting

	Finding a Web Host

	Finding Your Way around Your New Web Home

	Book 2: Coding the Front End, Part 1: HTML & CSS

	Chapter 1: Structuring the Page with HTML

	Getting the Hang of HTML

	Understanding Tag Attributes

	Learning the Fundamental Structure of an HTML5 Web Page

	Some Notes on Structure versus Style

	Applying the Basic Text Tags

	Creating Links

	Building Bulleted and Numbered Lists

	Inserting Special Characters

	Inserting Images

	Carving Up the Page

	Chapter 2: Styling the Page with CSS

	Figuring Out Cascading Style Sheets

	Getting the Hang of CSS Rules and Declarations

	Adding Styles to a Page

	Styling Page Text

	Working with Colors

	Getting to Know the Web Page Family

	Using CSS Selectors

	Revisiting the Cascade

	Chapter 3: Sizing and Positioning Page Elements

	Learning about the CSS Box Model

	Styling Sizes

	Adding Padding

	Building Borders

	Making Margins

	Getting a Grip on Page Flow

	Floating Elements

	Positioning Elements

	Chapter 4: Creating the Page Layout

	What Is Page Layout?

	Laying Out Page Elements with Floats

	Laying Out Page Elements with Inline Blocks

	Making Flexible Layouts with Flexbox

	Shaping the Overall Page Layout with CSS Grid

	Providing Fallbacks for Page Layouts

	Book 3: Coding the Front End, Part 2: JavaScript

	Chapter 1: An Overview of JavaScript

	JavaScript: Controlling the Machine

	What Is a Programming Language?

	Is JavaScript Hard to Learn?

	What Can You Do with JavaScript?

	What Can’t You Do with JavaScript?

	What Do You Need to Get Started?

	Basic Script Construction

	Adding Comments to Your Code

	Creating External JavaScript Files

	Chapter 2: Understanding Variables

	What Is a Variable?

	Naming Variables: Rules and Best Practices

	Understanding Literal Data Types

	JavaScript Reserved Words

	JavaScript Keywords

	Chapter 3: Building Expressions

	Understanding Expression Structure

	Building Numeric Expressions

	Building String Expressions

	Building Comparison Expressions

	Building Logical Expressions

	Understanding Operator Precedence

	Chapter 4: Controlling the Flow of JavaScript

	Understanding JavaScript’s Control Structures

	Making True/False Decisions with if() Statements

	Branching with if()…else Statements

	Making Multiple Decisions

	Understanding Code Looping

	Using while() Loops

	Using for() Loops

	Using do…while() Loops

	Controlling Loop Execution

	Avoiding Infinite Loops

	Chapter 5: Harnessing the Power of Functions

	What Is a Function?

	The Structure of a Function

	Where Do You Put a Function?

	Calling a Function

	Passing Values to Functions

	Returning a Value from a Function

	Understanding Local versus Global Variables

	Using Recursive Functions

	Chapter 6: Working with Objects

	What Is an Object?

	The JavaScript Object Hierarchy

	Manipulating Object Properties

	Working with Object Methods

	Playing Around with the window Object

	Programming the document Object

	Chapter 7: Working with Arrays

	What Is an Array?

	Declaring an Array

	Populating an Array with Data

	Creating Multidimensional Arrays

	Using the Array Object

	Chapter 8: Manipulating Strings, Dates, and Numbers

	Manipulating Text with the String Object

	Dealing with Dates and Times

	Working with Numbers: The Math Object

	Chapter 9: Debugging Your Code

	Understanding JavaScript’s Error Types

	Getting to Know Your Debugging Tools

	Debugging with the Console

	Pausing Your Code

	Stepping through Your Code

	Monitoring Script Values

	More Debugging Strategies

	Top Ten Most Common JavaScript Errors

	Top Ten Most Common JavaScript Error Messages

	Book 4: Coding the Front End, Part 3: jQuery

	Chapter 1: Developing Pages Faster with jQuery

	Getting Started with jQuery

	Selecting Elements with jQuery

	Manipulating Page Elements with jQuery

	Modifying CSS with jQuery

	Tweaking HTML Attributes with jQuery

	Chapter 2: Livening Up Your Page with Events and Animation

	Building Reactive Pages with Events

	Building Lively Pages with Animation

	Chapter 3: Getting to Know jQuery UI

	What’s the Deal with jQuery UI?

	Getting Started with jQuery UI

	Working with the jQuery UI Widgets

	Introducing jQuery UI Effects

	Taking a Look at jQuery UI Interactions

	Book 5: Coding the Back End: PHP and MySQL

	Chapter 1: Learning PHP Coding Basics

	Understanding How PHP Scripts Work

	Learning the Basic Syntax of PHP Scripts

	Declaring PHP Variables

	Building PHP Expressions

	Outputting Text and Tags

	Working with PHP Arrays

	Controlling the Flow of Your PHP Code

	Working with PHP Functions

	Working with PHP Objects

	Debugging PHP

	Chapter 2: Building and Querying MySQL Databases

	What Is MySQL?

	Introducing phpMyAdmin

	Creating a MySQL Database and Its Tables

	Querying MySQL Data

	Chapter 3: Using PHP to Access MySQL Data

	Understanding the Role of PHP and MySQL in Your Web App

	Using PHP to Access MySQL Data

	Creating and Running Insert, Update, and Delete Queries

	Separating Your MySQL Login Credentials

	Book 6: Coding Dynamic Web Pages

	Chapter 1: Melding PHP and JavaScript with Ajax and JSON

	What Is Ajax?

	Making Ajax Calls with jQuery

	Introducing JSON

	Returning Ajax Data as JSON Text

	Chapter 2: Building and Processing Web Forms

	What Is a Web Form?

	Understanding How Web Forms Work

	Building an HTML5 Web Form

	Handling and Triggering Form Events

	Submitting the Form

	Chapter 3: Validating Form Data

	Validating Form Data in the Browser

	Validating Form Data on the Server

	Regular Expressions Reference

	Book 7: Coding Web Apps

	Chapter 1: Planning a Web App

	What Is a Web App?

	Planning Your Web App: The Basics

	Planning Your Web App: Responsiveness

	Planning Your Web App: Accessibility

	Planning Your Web App: Security

	Chapter 2: Laying the Foundation

	Setting Up the Directory Structure

	Creating the Database and Tables

	Getting Some Back-End Code Ready

	Creating the App Startup Files

	Chapter 3: Managing Data

	Handling Data the CRUD Way

	Creating New Data

	Reading and Displaying Data

	Updating and Editing Data

	Deleting Data

	Chapter 4: Managing App Users

	Configuring the Home Page

	Setting Up the Back End to Handle Users

	Signing Up a New User

	Signing a User In and Out

	Resetting a Forgotten Password

	Deleting a User

	Book 8: Coding Mobile Web Apps

	Chapter 1: Exploring Mobile-First Web Development

	What Is Mobile-First Web Development?

	Learning the Principles of Mobile-First Development

	Going Mobile Faster with jQuery Mobile

	Working with Images in a Mobile App

	Storing User Data in the Browser

	Chapter 2: Building a Mobile Web App

	Building the Button Builder App

	Getting Some Help from the Web

	Building the App: HTML

	Building the App: CSS

	Building the App: JavaScript and jQuery

	About the Author

	Connect with Dummies

	Index

	End User License Agreement

Guide

	Cover

	Table of Contents

	Begin Reading

Pages

	iii

	iv

	1

	2

	3

	4

	5

	6

	7

	8

	9

	10

	11

	12

	13

	14

	15

	16

	17

	18

	19

	20

	21

	22

	23

	24

	25

	26

	27

	28

	29

	30

	31

	32

	33

	34

	35

	36

	37

	38

	39

	40

	41

	42

	43

	44

	45

	47

	48

	49

	50

	51

	52

	53

	54

	55

	56

	57

	58

	59

	60

	61

	62

	63

	64

	65

	66

	67

	68

	69

	70

	71

	72

	73

	74

	75

	76

	77

	78

	79

	80

	81

	82

	83

	84

	85

	86

	87

	88

	89

	90

	91

	92

	93

	94

	95

	96

	97

	98

	99

	100

	101

	103

	104

	105

	106

	107

	108

	109

	110

	111

	112

	113

	114

	115

	116

	117

	118

	119

	120

	121

	122

	123

	124

	125

	126

	127

	128

	129

	130

	131

	132

	133

	134

	135

	136

	137

	138

	139

	140

	141

	142

	143

	144

	145

	146

	147

	148

	149

	150

	151

	152

	153

	154

	155

	156

	157

	158

	159

	160

	161

	162

	163

	164

	165

	167

	168

	169

	170

	171

	172

	173

	174

	175

	176

	177

	178

	179

	180

	181

	182

	183

	184

	185

	186

	187

	188

	189

	190

	191

	192

	193

	194

	195

	197

	198

	199

	200

	201

	202

	203

	204

	205

	206

	207

	208

	209

	210

	211

	212

	213

	214

	215

	216

	217

	218

	219

	220

	221

	222

	223

	225

	226

	227

	228

	229

	230

	231

	232

	233

	234

	235

	236

	237

	238

	239

	240

	241

	242

	243

	244

	245

	246

	247

	249

	250

	251

	252

	253

	254

	255

	256

	257

	258

	259

	260

	261

	262

	263

	264

	265

	266

	267

	268

	269

	270

	271

	272

	273

	274

	275

	276

	277

	278

	279

	280

	281

	282

	283

	284

	285

	286

	287

	288

	289

	290

	291

	292

	293

	294

	295

	296

	297

	298

	299

	300

	301

	302

	303

	304

	305

	306

	307

	308

	309

	310

	311

	312

	313

	314

	315

	316

	317

	318

	319

	320

	321

	322

	323

	324

	325

	326

	327

	328

	329

	330

	331

	332

	333

	334

	335

	336

	337

	338

	339

	341

	342

	343

	344

	345

	346

	347

	348

	349

	350

	351

	352

	353

	354

	355

	356

	357

	358

	359

	360

	361

	363

	364

	365

	366

	367

	368

	369

	370

	371

	372

	373

	374

	375

	376

	377

	378

	379

	380

	381

	382

	383

	384

	385

	386

	387

	388

	389

	390

	391

	392

	393

	394

	395

	396

	397

	398

	399

	400

	401

	402

	403

	404

	405

	406

	407

	408

	409

	410

	411

	412

	413

	414

	415

	416

	417

	418

	419

	420

	421

	422

	423

	424

	425

	426

	427

	428

	429

	430

	431

	433

	434

	435

	436

	437

	438

	439

	440

	441

	442

	443

	444

	445

	446

	447

	448

	449

	450

	451

	452

	453

	454

	455

	456

	457

	458

	459

	460

	461

	462

	463

	464

	465

	466

	467

	468

	469

	470

	471

	472

	473

	474

	475

	476

	477

	478

	479

	480

	481

	482

	483

	484

	485

	486

	487

	488

	489

	490

	491

	492

	493

	494

	495

	496

	497

	498

	499

	500

	501

	502

	503

	504

	505

	506

	507

	508

	509

	510

	511

	512

	513

	514

	515

	516

	517

	518

	519

	520

	521

	522

	523

	524

	525

	526

	527

	528

	529

	530

	531

	532

	533

	534

	535

	536

	537

	538

	539

	540

	541

	542

	543

	544

	545

	546

	547

	548

	549

	550

	551

	552

	553

	554

	555

	556

	557

	558

	559

	560

	561

	562

	563

	564

	565

	566

	567

	568

	569

	570

	571

	572

	573

	574

	575

	576

	577

	578

	579

	580

	581

	582

	583

	584

	585

	586

	587

	588

	589

	591

	592

	593

	594

	595

	596

	597

	598

	599

	600

	601

	602

	603

	604

	605

	606

	607

	608

	609

	610

	611

	612

	613

	614

	615

	616

	617

	618

	619

	620

	621

	622

	623

	624

	625

	626

	627

	628

	629

	630

	631

	632

	633

	634

	635

	637

	638

	639

	640

	641

	642

	643

	644

	645

	646

	647

	648

	649

	650

	651

	652

	653

	654

	655

	656

	657

	658

	659

	660

	661

	662

	663

	664

	665

	666

	667

	668

	669

	670

	671

	672

	673

	674

	675

	676

	677

	678

	679

	680

	681

	682

	683

	684

	685

	686

	687

	688

	689

	690

	691

	692

	693

	694

	695

	696

	697

	698

	699

	700

	701

	702

	703

	704

	705

	706

	707

	708

	709

	710

	711

	712

	713

	714

	715

	716

	717

	718

	719

	721

	722

	723

	724

	725

	726

	727

	728

	729

	730

	731

	732

	733

	734

	735

	736

	737

	739

	740

	741

	742

	743

	744

	745

	746

	747

	748

	749

	750

	751

	752

	753

	754

	755

	756

	757

	758

	759

	760

	761

	762

	763

	764

	765

	766

	767

	769

	770

	771

	772

	773

	774

	775

	776

	777

	778

	779

	780

	781

	782

	783

	784

	785

	786

	787

	788

	789

	790

	791

	792

	793

	794

	795

	796

	797

	798

	799

	800

	801

	802

	803

	804

	805

	806

	807

	808

	809

	810

	811

	813

	814

	815

	816

	817

	818

Introduction

When the web first came to the attention of the world’s non-geeks back in the mid-1990s, the vastness and variety of its treasures were a wonder to behold. However, it didn’t take long before a few courageous and intrepid souls dug a little deeper into this phenomenon and discovered something truly phenomenal: They could make web pages, too!

Why was that so amazing? Well, think back to those old days and think, in particular, of what it meant to create what we now call content. Think about television shows, radio programs, magazines, newspapers, books, and the other media of the time. The one thing they all had in common was that their creation was a decidedly uncommon thing. It required a team of professionals, a massive distribution system, and a lot of money. In short, it wasn’t something that your average Okie from Muskogee would have any hope of duplicating.

The web appeared to change all of that because learning HTML was within the grasp of anybody who could feed himself, it had a built-in massive distribution system (the Internet, natch), and it required little or no money. For the first time in history, content was democratized and was no longer defined as the sole province of governments and mega-corporations.

Then reality set in.

People soon realized that merely building a website wasn’t enough to attract “eyeballs,” as the marketers say. A site had to have interesting, useful, or fun content, or people would stay away in droves. Not only that, but this good content had to be combined with a solid site design, which meant that web designers needed a thorough knowledge of HTML and CSS.

But, alas, eventually even all of that was not enough. To make their websites dynamic and interesting, to make their sites easy to navigate, and to give their sites those extra bells and whistles that surfers had come to expect, something more than content, HTML, and CSS was needed.

That missing link was code.

What we’ve all learned the hard way over the past few years is that you simply can’t put together a world-class website unless you have some coding prowess in your site design toolkit. You need to know how to program your way out of the basic problems that afflict most sites; how to use scripting to go beyond the inherent limitations of HTML and CSS; and how to use code to send and receive data from a web server. And it isn’t enough just to copy the generic scripts that are available on the web and paste them into your pages. First of all, most of those scripts are very poorly written, and second of all, they invariably need some customization to work properly on your site.

About This Book

My goal in this book is to give you a complete education on web coding and development. You learn how to set up the tools you need, how to use HTML and CSS to design and build your site, how to use JavaScript and jQuery to program your pages, and how to use PHP and MySQL to program your web server. My aim is to show you that these technologies aren’t hard to learn, and that even the greenest rookie programmers can learn how to put together web pages that will amaze their family and friends (and themselves).

If you’re looking for lots of programming history, computer science theory, and long-winded explanations of concepts, I’m sorry but you won’t find it here. My philosophy throughout this book comes from Linus Torvalds, the creator of the Linux operating system: “Talk is cheap. Show me the code.” I explain what needs to be explained and then I move on without further ado (or, most of the time, without any ado at all) to examples and scripts that do more to illuminate a concept that any verbose explanations I could muster (and believe me, I can muster verbosity with the best of them).

How you approach this book depends on your current level of web coding expertise (or lack thereof):

	If you’re just starting out, begin at the beginning with Book 1 and work at your own pace sequentially through to Books 2 and 3. This will give you all the knowledge you need to pick and choose what you want to learn throughout the rest of the book.

	If you know HTML and CSS, you can probably get away with taking a fast look at Book 2, then settle in with Book 3 and beyond.

	If you’ve done some JavaScript coding already, I suggest working quickly through the material in Book 3, then dig into Book 4 a little slower if you don’t already know jQuery. You’ll then be ready to branch out and explore the rest of the book as you see fit.

	If you’re a relatively experienced JavaScript programmer, use Books 3 and 4 as a refresher, then tackle Book 5 to learn how to code the back end. I’ve got a few tricks in there that you might find interesting. After that, feel free to consider the rest of the book a kind of coding smorgasbord that you can sample as your web development taste buds dictate.

Foolish Assumptions

This book is not a primer on the Internet or on using the World Wide Web. This is a coding and development book, pure and simple. This means I assume the following:

	You know how to operate a basic text editor, and how to get around the operating system and file system on your computer.

	You have an Internet connection.

	You know how to use your web browser.

Yep, that’s it.

“I’ve never coded before!”

If you’ve never done a stitch of computer programming before, even if you’re not quite sure what programming really is, don’t worry about it for a second because I had you in mind when I wrote this book. For too many years programming has been the property of “hackers” and other technowizards. That made some sense because the programming languages they were using — with bizarre names such as C++ and Perl — were exceedingly difficult to learn, and even harder to master.

This book’s main coding technologies — HTML, CSS, JavaScript, jQuery, PHP, and MySQL — are different. They’re nowhere near as hard to learn as those for-nerds-only languages. I honestly believe that anyone can become a savvy and successful web coder, and this book is, I hope, the proof of that assertion. Just follow along, examine my code carefully (particularly in the first few chapters), and practice what you learn, and you will master web coding and development.

“I have coded before!”

What if you’ve done some programming in the past? For example, you might have dipped a toe or two in the JavaScript waters already, or you might have dabbled with HTML and CSS. Will this book be too basic for you? No, not at all. My other main goal in this book is to provide you with a ton of truly useful examples that you can customize and incorporate into your own site. The book’s first few chapters start slowly to avoid scaring off those new to this programming business. But once you get past the basics, I introduce you to lots of great techniques and tricks that will take your web coding skills to a higher level.

Icons Used in This Book

[image: remember] This icon points out juicy tidbits that are likely to be repeatedly useful to you — so please don’t forget them.

[image: tip] Think of these icons as the fodder of advice columns. They offer (hopefully) wise advice or a bit more information about a topic under discussion.

[image: warning] Look out! In this book, you see this icon when I’m trying to help you avoid mistakes that can cost you time, money, or embarrassment.

[image: technicalstuff] When you see this icon, you’ve come across material that isn’t critical to understand but will satisfy the curious. Think “inquiring minds want to know” when you see this icon.

Beyond the Book

Some extra content for this book is available on the web. Go online to find the following:

	The examples used in the book: You can find these here:
mcfedries.com/webcodingfordummies

The examples are organized by book and then by chapter within each book. For each example, you can view the code, copy it to your computer’s clipboard, and run the code in the browser.

	The WebDev Workshop: To edit the book’s examples and try your own code and see instant results, fire up the following site:
webdev.mcfedries.com

You won’t break anything, so feel free to use the site run some experiments and play around with HTML, CSS, JavaScript, and jQuery.

Book 1

Getting Ready to Code for the Web

Contents at a Glance

	Chapter 1: How Web Coding and Development Work

	The Nuts and Bolts of Web Coding and Development

	Understanding the Front End: HTML and CSS

	Understanding the Back End: PHP and MySQL

	How It All Fits Together: JavaScript and jQuery

	How Dynamic Web Pages Work

	What Is a Web App?

	What Is a Mobile Web App?

	What’s the Difference between Web Coding and Web Development?

	Chapter 2: Setting Up Your Web Development Home

	What Is a Local Web Development Environment?

	Do You Need a Local Web Development Environment?

	Setting Up the XAMPP for Windows Development Environment

	Setting Up the XAMPP for OS X Development Environment

	Choosing Your Text Editor

	Chapter 3: Finding and Setting Up a Web Host

	Understanding Web Hosting Providers

	A Buyer’s Guide to Web Hosting

	Finding a Web Host

	Finding Your Way around Your New Web Home

Chapter 1

How Web Coding and Development Work

IN THIS CHAPTER

[image: check] Learning how the web works

[image: check] Understanding the front-end technologies of HTML and CSS

[image: check] Understanding the back-end technologies of MySQL and PHP

[image: check] Figuring out how JavaScript fits into all of this

[image: check] Learning about dynamic web pages, web apps, and mobile web apps

More than mere consumers of technology, we are makers, adapting technology to our needs and integrating it into our lives.

— DALE DOUGHERTY

The 1950s were a hobbyist’s paradise with magazines such as Mechanix Illustrated and Popular Science showing the do-it-yourselfer how to build a go-kart for the kids and how to soup up a lawnmower with an actual motor! Sixty years later, we’re now firmly entrenched in the age of do-it-yourself tech, where folks indulge their inner geek to engage in various forms of digital tinkering and hacking. The personification of this high-tech hobbyist renaissance is the maker, a modern artisan who lives to create things, rather than merely consume them. Today’s makers exhibit a wide range of talents, but the skill most sought-after not only by would-be makers themselves, but by the people who hire them, is web coding and development.

Have you ever visited a website and thought, “Hey, I can do better than that!”? Have you found yourself growing tired of merely reading text and viewing images that someone else has put on the web? Is there something creative in you — stories, images, expertise, opinions — that you want to share with the world? If you answered a resounding “Yes!” to any of these questions, then congratulations: You have everything you need to get started with web coding and development. You have, in short, the makings of a maker.

The Nuts and Bolts of Web Coding and Development

If, as the King said very gravely in Lewis Carroll’s Alice in Wonderland, it’s best to “begin at the beginning,” then you’ve come to the right place. My goal here is to get you off on the right foot by showing you what web coding and web development are.

How the web works

Before you can understand web coding and development, you need to take a step back and understand a bit about how the web itself works. In particular, you need to know what happens behind the scenes when you click a link or type a web page address into your browser. Fortunately, you don’t need to be a network engineer to understand this stuff, because I can explain the basics without much in the way of jargon. Here’s a high-level blow-by-blow of what happens:

	
You tell the web browser the web page you want to visit.

You do that either by clicking a link to the page or by typing the location — known as the uniform resource locator or URL (usually pronounced “you-are-ell,” but also sometimes “earl”) — into the browser’s address bar (see Figure 1-1).

	
The browser decodes the URL.

Decoding the URL means two things: First, it checks the prefix of the URL to see what type of resource you’re requesting; this is usually http:// or https://, both of which indicate that the resource is a web page. Second, it gets the URL's domain name — the something.com or whatever.org part — and asks the domain name system (DNS) to translate this into a unique location — called the IP (Internet Protocol) address — for the web server that hosts the page (see Figure 1-2).

	
The browser contacts the web server and requests the web page.

With the web server's unique IP address in hand, the web browser sets up a communications channel with the server and then uses that channel to send along a request for the web page (see Figure 1-3).

	
The web server decodes the page request.

Decoding the page request involves a number of steps. First, if the web server is shared between multiple user accounts, the server begins by locating the user account that owns the requested page. The server then uses the page address to find the directory that holds the page and the file in which the page code is stored (see Figure 1-4).

	The web server sends the web page file to the web browser (see Figure 1-5).

	
The web browser decodes the web page file.

Decoding the page file means looking for text to display, instructions on how to display that text, and other resources required by the page, such as images and fonts (see Figure 1-6).

	If the web page requires more resources, the web browser asks the server to pass along those resources (see Figure 1-7).

	For each of the requested resources, the web server locates the associated file and sends it to the browser (see Figure 1-8).

	The web browser gathers up all the text, images, and other resources and displays the page in all its digital splendor in the browser’s content window (see Figure 1-9).

 [image: image]

FIGURE 1-1: One way to get to a web page is to type the URL in the browser’s address bar.

 [image: image]

FIGURE 1-2: The browser extracts the prefix, domain, and the server address from the URL.

 [image: image]

FIGURE 1-3: The browser asks the web server for the web page.

 [image: image]

FIGURE 1-4: The server uses the page request to get the account, directory, and filename.

 [image: image]

FIGURE 1-5: The web server sends the requested web page file to the browser.

 [image: image]

FIGURE 1-6: The web browser scours the page file to see if it needs anything else from the server.

 [image: image]

FIGURE 1-7: The web browser goes back to the server to ask for the other data needed to display the web page.

 [image: image]

FIGURE 1-8: The web server sends the browser the rest of the requested files.

 [image: image]

FIGURE 1-9: At long last, the web browser displays the web page.

How the web works, take two

Another way to look at this process is to think of the web as a giant mall or shopping center, where each website is a storefront in that mall. When you request a web page from a particular site, the browser takes you into that site’s store and asks the clerk for the web page. The clerk goes into the back of the store, locates the page, and hands it to the browser. The browser checks the page and asks for any other needed files, which the clerk retrieves from the back. This process is repeated until the browser has everything it needs, and it then puts all the page pieces together for you, right there in the front of the store.

This metaphor might seem a bit silly, but it serves to introduce yet another metaphor, which itself illustrates one of the most important concepts in web development. In the same way that our website store has a front and a back, so, too, is web development separated into a front end and a back end:

	Front end: That part of the web page that the web browser displays in the browser window. That is, it’s the page stuff you see and interact with.

	Back end: That part of the web page that resides on the web server. That is, it’s the page stuff that the server gathers based on the requests it receives from the browser.

As a consumer of web pages, you only ever deal with the front end, and even then you only passively engage with the page by reading its content, looking at its images, or clicking its links or buttons.

However, as a maker of web pages — that is, as a web developer — your job entails dealing with both the front end and the back end. Moreover, that job includes coding what others see on the front end, coding how the server gathers its data on the back end, and coding the intermediate tasks that tie the two together.

Understanding the Front End: HTML and CSS

As I mention in the previous section, the front end of the web development process involves what users see and interact with in the web browser window. It’s the job of the web developer to take a page design — which you might come up with yourself, but is more often something cooked up by a creative type who specializes in web design — and make it web-ready. Getting a design ready for the web means translating the design into the code required for the browser to display the page somewhat faithfully. (I added the hedge word “somewhat” there because it’s not always easy to take a design that looks great in Photoshop or Illustrator and make it look just as good on the web. However, with the techniques you learn in this book, you’ll almost always be able to come pretty close.)

You need code to create the front end of a web page because without it your page will be quite dull. For example, consider the following text:

COPENHAGEN—Researchers from Aalborg University announced today that they have finally discovered the long sought-after Soup-Nuts Continuum. Scientists around the world have been searching for this elusive item ever since Albert Einstein's mother-in-law proposed its existence in 1922.

"Today is an incredible day for the physics community and for humanity as a whole," said senior researcher Lars Grüntwerk. "Today, for the first time in history, we are on the verge of knowing everything from soup to, well, you know, nuts."

If you plop that text onto the web, you get the result shown in Figure 1-10. As you can see, the text is very plain, and the browser didn’t even bother to include the paragraph break.

 [image: image]

FIGURE 1-10: Text-only web pages are dishwater-dull.

So, if you can’t just throw naked text onto the web, what’s a would-be web developer to do? Ah, that’s where you start earning your web scout merit badges by adding code that tells the browser how you want the text displayed. That code comes in two flavors: structure and formatting.

Adding structure: HTML

The first thing you usually do to code a web page is give it some structure. This means breaking up the text into paragraphs, adding special sections such as a header and footer, organizing text into bulleted or numbered lists, dividing the page into columns, and much more. The web coding technology that governs these and other web page structures is called (deep breath) Hypertext Markup Language, or HTML, for short.

HTML consists of a few dozen special symbols called tags that you sprinkle strategically throughout the page. For example, if you want to tell the web browser that a particular chunk of text is a separate paragraph, you place the <p> tag (the p here is short for paragraph) before the text and the </p> tag after the text.

In the code that follows, I've added these paragraph tags to the plain text that I show earlier. As you can see in Figure 1-11, the web browser displays the text as two separate paragraphs, no questions asked.

<p>

COPENHAGEN—Researchers from Aalborg University announced today that they have finally discovered the long sought-after Soup-Nuts Continuum. Scientists around the world have been searching for this elusive item ever since Albert Einstein's mother-in-law proposed its existence in 1922.

</p>

<p>

"Today is an incredible day for the physics community and for humanity as a whole," said senior researcher Lars Grüntwerk. "Today, for the first time in history, we are on the verge of knowing everything from soup to, well, you know, nuts."

</p>

 [image: image]

FIGURE 1-11: Adding paragraph tags to the text separates the text into two paragraphs.

[image: remember] HTML is one of the fundamental topics of web development, and you learn all about it in Book 2, Chapter 1.

Adding style: CSS

HTML takes care of the structure of the page, but if you want to change the formatting of the page, then you need to turn to a second front-end technology: cascading style sheets, known almost universally as just CSS. With CSS in hand, you can play around with the page colors and fonts, you can add margins and borders around things, and you can mess with the position and dimensions of page elements.

CSS consists of a large number of properties that enable you to customize many aspects of the page to make it look the way you want. For example, the width property lets you specify how wide a page element should be; the font-family property enables you to specify a typeface for an element; and the font-size property lets you dictate the type size of an element. Here's some CSS code that applies all three of these properties to every p element (that is, every <p> tag) that appears in a page (note that px is short for pixels):

p {

 width: 700px;

 font-family: sans-serif;

 font-size: 24px;

}

When used with the sample text from the previous two sections, you get the much nicer-looking text shown in Figure 1-12.

 [image: image]

FIGURE 1-12: With the judicious use of a few CSS properties, you can greatly improve the look of a page.

[image: remember] CSS is a cornerstone of web development. You learn much more about it in Book 2, Chapters 2, 3, and 4.

Understanding the Back End: PHP and MySQL

Many web pages are all about the front end. That is, they consist of nothing but text that has been structured by HTML tags and styled by CSS properties, plus a few extra files such as images and fonts. Sure, all these files are transferred from the web server to the browser, but that’s the extent of the back end’s involvement.

These simple pages are ideal when you have content that doesn’t change very often, if ever. With these so-called static pages, you plop in your text, add some HTML and CSS, perhaps point to an image or two, and you’re done.

But there’s another class of page that has content that changes frequently. It could be posts added once or twice a day, or sports or weather updates added once or twice an hour. With these so-called dynamic pages, you might have some text, HTML, CSS, and other content that’s static, but you almost certainly don’t want to be updating the changing content by hand.

Rather than making constant manual changes to such pages, you can convince the back end to do it for you. You do that by taking advantage of two popular back-end technologies: MySQL and PHP.

Storing data on the server: MySQL

MySQL is a relational database management system that runs on the server. You use it to store the data you want to use as the source for some (or perhaps even all) of the data you want to display on your web page. Using a tool called Structured Query Language (SQL, pronounced “ess-kew-ell,” or sometimes “sequel”), you can specify which subset of your data you want to use.

[image: remember] If phrases such as “relational database management system” and “Structured Query Language” have you furrowing your brow, don’t sweat it: I explain all in Book 5, Chapter 2.

Accessing data on the server: PHP

PHP is a programming language used on the server. It’s a very powerful and full-featured language, but for the purposes of this book, you use PHP mostly to interact with MySQL databases. You can use PHP to extract from MySQL the subset of data you want to display, manipulate that data into a form that’s readable by the front end, and then send the data to the browser.

[image: remember] You learn about the PHP language in Book 5, Chapter 1, and you learn how to use PHP to access MySQL data in Book 5, Chapter 3.

How It All Fits Together: JavaScript and jQuery

Okay, so now you have a front end consisting of HTML structure and CSS styling, and a back end consisting of MySQL data and PHP code. How do these two seemingly disparate worlds meet to create a full web page experience?

In the website-as-store metaphor that I introduce earlier in this chapter, I use the image of a store clerk taking an order from the web browser and then going into the back of the store to fulfill that order. That clerk is the obvious link between the front end and the back end, so what technology does that clerk represent? She actually represents two technologies that I use in this book: JavaScript and jQuery.

Front end, meet back end: JavaScript

The secret sauce that brings the front end and the back end together to create the vast majority of the web pages you see today, is JavaScript. JavaScript is a programming language and is the default language used for coding websites today. JavaScript is, first and foremost, a front-end web development language. That is, JavaScript runs inside the web browser and it has access to everything on the page: the text, the images, the HTML tags, the CSS properties, and more. Having access to all the page stuff means that you can use code to manipulate, modify, even add and delete web page elements.

But although JavaScript runs in the browser, it’s also capable of reaching out to the server to access back-end stuff. For example, with JavaScript you can send data to the server to store that data in a MySQL database. Similarly, with JavaScript you can request data from the server and then use code to display that data on the web page.

[image: remember] JavaScript is very powerful, very useful, and very cool, so Book 3 takes nine full chapters to help you learn it well. Also, you learn how JavaScript acts as a bridge between the front end and the back end in Book 6, Chapter 1.

Making your web coding life easier: jQuery

JavaScript is extremely powerful, but sometimes using certain JavaScript statements and structures can be a bit unwieldly. For example, here’s a bit of JavaScript code:

var subheads = document.getElementsByClassName('subheadings');

This will no doubt look like gibberish to you now, but my purpose here is only to have you remark the length of that statement. Now compare the following:

var subheads = $('.subheadings');

Believe it or not, these statements do exactly the same thing, except the second one is written using a JavaScript package called jQuery. jQuery is a collection — called a library — of JavaScript code that makes it easier and faster to code for the web. Not only does jQuery give you shorter ways to reference web page elements, but it also incorporates routines that make it easier for you to manipulate HTML tags and CSS properties, navigate and manipulate web page elements, add animation effects, and much more.

[image: remember] jQuery is extremely powerful and useful stuff, and you’ll be thankful you’ve got it in your web development toolkit. You learn just enough jQuery to be dangerous in Book 4.

How Dynamic Web Pages Work

It’s one thing to know about HTML and CSS and PHP and all the rest, but it’s quite another to actually do something useful with these technologies. That, really, is the goal of this book, and to that end the book spends several chapters later covering how to create wonderful things called dynamic web pages. A dynamic web page is one that includes content that, rather than being hard-wired into the page, is generated on-the-fly from the web server. This means the page content can change based on a request by the user, by data being added to or modified on the server, or in response to some event, such as the clicking of a button or link.

It likely sounds a bit like voodoo to you now, so perhaps a bit more detail is in order. For example, suppose you want to use a web page to display some data that resides on the server. Here’s a general look at the steps involved in that process:

	
JavaScript determines the data that it needs from the server.

JavaScript has various ways it can do this, such as extracting the information from the URL, reading an item the user has selected from a list, or responding to a click from the user.

	
JavaScript sends a request for that data to the server.

In most cases, and certainly in every case you see in this book, JavaScript sends this request by calling a PHP script on the server.

	
The PHP script receives the request and passes it along to MySQL.

The PHP script uses the information obtained from JavaScript to create an SQL command that MySQL can understand.

	MySQL uses the SQL command to extract the required information from the database and then return that data to the PHP script.

	
The PHP script manipulates the returned MySQL data into a form that JavaScript can use.

JavaScript can’t read raw MySQL data, so one of PHP’s most important tasks is to convert that data into a format called JavaScript Object Notation (JSON, for short, and pronounced like the name Jason) that JavaScript is on friendly terms with (see Book 6, Chapter 1 for more about this process).

	PHP sends the JSON data back to JavaScript.

	
JavaScript displays the data on the web page.

One of the joys of JavaScript is that you get tremendous control over how you display the data to the user. Through existing HTML and CSS, and by manipulating these and other web page elements using JavaScript, you can show your data in the best possible light.

[image: remember] To expand on these steps and learn how to create your own dynamic web pages, check out the three chapters in Book 6.

What Is a Web App?

You no doubt have a bunch of apps residing on your smartphone. If you use Windows 10 on your PC, then you have not only the pre-installed apps such as Mail and Calendar, but you might also have one or more apps downloaded from the Windows Store. If the Mac is more your style, then you’re probably quite familiar with apps such as Music and Messages, and you might have installed a few others from the App Store. We live, in other words, in a world full of apps which, in the context of your phone or computer, are software programs dedicated to a single topic or task.

So what then is a web app? It’s actually something very similar to an app on a device or PC. That is, it’s a website, built using web technologies such as HTML, CSS, and JavaScript, that has two main characteristics:

	The web app is focused on a single topic or task.

	The web app offers some sort of interface that enables the user to operate the app in one or more ways.

In short, a web app is a website that looks and acts like an app on a device or computer. This is opposed to a regular website, which usually tackles several topics or tasks and has an interface that for the most part only enables users to navigate the site.

[image: remember] To get the scoop on building your very own web apps, head on over to the four chapters in Book 7.

What Is a Mobile Web App?

In late 2016, the world reached a milestone of sorts when the percentage of people accessing the web via mobile devices such as smartphones and tablets surpassed the percentage of people doing the web thing using desktops and notebooks. The gap between mobile web users and everyone else has only widened since then, so it’s safe to say that we live in a mobile web world now.

What does that mean for you as a web developer? It means you can’t afford to ignore mobile users when you build your web pages. It means you can’t code your web pages using a gigantic desktop monitor and assume that everything will look great on a relatively tiny smartphone screen. It means that you’d do well to embrace the mobile web in a big old bear hug by creating not just web apps, but mobile web apps. What’s the difference? A mobile web app is the same as a web app — that is, it has content and an interface dedicated to a single topic or task — but with a design built from the ground up to look good and work well in a mobile device. This is known as the mobile-first approach to web development, and it’s one of the hottest topics in the web coding world.

[image: remember] To learn how to create your own mobile web apps, look no farther than the two chapters in Book 8.

What’s the Difference between Web Coding and Web Development?

After all this talk of HTML, CSS, MySQL, JavaScript, and jQuery, after the bird’s-eye view of dynamic sites, web apps, and mobile web apps, you might be wondering when the heck I’m going to answer the most pressing question of the all: What in the name of Sir Tim Berners-Lee (inventor of the web) is the difference between web coding and web development?

I’m glad you asked! Some people would probably answer that question by saying that there’s no real difference at all, because “web coding” and “web development” are two ways of referring to the same thing: Creating web pages using programming tools.

Hey, it’s a free country, but to my mind I think there’s a useful distinction to be made between web coding and web development:

	Web coding is the pure programming part of creating a web page, particularly using JavaScript/jQuery on the front end and PHP on the back end.

	Web development is the complete web page creation package, from building a page with HTML tags, to formatting the page with CSS, to storing data on the back end with MySQL, to accessing that data with PHP, to bridging the front and back ends using JavaScript and jQuery.

However you look at it, this book teaches you everything you need to know to become both a web coder and a web developer.

Chapter 2

Setting Up Your Web Development Home

IN THIS CHAPTER

[image: check] Understanding the need for a web development environment

[image: check] Gathering the tools you need for a local development setup

[image: check] Installing a local web development environment on a Windows PC

[image: check] Installing a local web development environment on a Mac

[image: check] Learning what to look for in a good text editor

He is happiest, be he king or peasant, who finds peace in his home.

— JOHANN WOLFGANG VON GOETHE

One of the truly amazing things about web development is that, with the exception of the databases on the server, all you ever work with are basic text files. But surely all the structure you add with HTML tags requires some obscure and complex file type? No way, José: It’s text all the way down. What about all that formatting stuff associated with CSS? Nope: nothing but text. PHP? Text. JavaScript and jQuery? Text and, again, text.

What this text-only landscape means is that you don’t need any highfalutin, high-priced software to develop for the web. A humble text editor is all you require to dip a toe or two in the web coding waters.

But what if you want to get more than your feet wet in web coding? What if you want to dive in, swim around, perhaps do a little snorkeling? Ah, then you need to take things up a notch or three and set up a proper web development environment on your computer. This will give you everything you need to build, test, and refine your web development projects. In this chapter, you get your web coding adventure off to a rousing start by exploring how to set up a complete web development environment on your Windows PC or Mac.

What Is a Local Web Development Environment?

In programming circles, an integrated development environment (IDE) is a collection of software programs that make it easy and efficient to write code. Most development environments are tailored to a particular programming language and come with tools for editing, testing, and compiling code (that is, converting the code to its final form as an application).

In the web coding game, we don’t have IDEs, per se, but we do have a similar beast called a local web development environment, which is also a collection of software. It usually includes the following:

	A web server

	A relational database management system (RDBMS) to run on the web server

	A server-side programming language

	An interface for controlling (starting, stopping, and so on) the web server

	An interface for accessing and manipulating the RDBMS

The key point to grok here is that this is a “local” web development environment, which means that it gets installed on your PC or Mac. This enables you to build and test your web development projects right on your computer. You don’t need a web hosting service or even an Internet connection, for that matter. Everything runs conveniently on your computer, so you can concentrate on coding and leave the deployment of the site until you’re ready.

Do You Need a Local Web Development Environment?

Okay, if it’s possible to use a simple text editor to develop web pages, why not do just that? After all, every Windows PC and Mac in existence comes with a pre-installed text editor, and there are lots of free third-party text editors ripe for downloading, so why bother installing the software for a local web development environment?

To be perfectly honest, I’m not going to stand here and tell you that a local web development setup is a must. Certainly if all you’re doing for now is getting started with a few static web pages built using HTML, CSS, and JavaScript, then you don’t yet need access to the back end. Similarly, if you’re building websites and web apps for your own use and you already have a web host that gives you access to MySQL and PHP, then you can definitely get away with using just your trusty text editor.

However, there are two major exceptions that pretty much require you to build your web stuff locally:

	If you’re building a website or app for someone else and you don’t have access to their web server.

	If you’re building a new version of an existing website or app, which means that you don’t want to mess with the production code while tinkering (and therefore making mistakes) with the new code.

That said, there’s also something undeniably cool about having a big-time web server purring away in the background of your computer. So, even if you don’t think you’ll need a full-blown web development environment in the short term, think about installing one anyway, if only so you can say you’re “running Apache 2.4 locally” at your next cocktail party.

Setting Up the XAMPP for Windows Development Environment

If you’re running Windows, then I highly recommend the web development environment XAMPP for Windows, which in its most recent version (at least as I write this in early 2018) requires Windows Vista or later. XAMPP for Windows is loaded with dozens of features, but for our needs the following are the most important:

	Apache: This is an open-source web server that runs about half of all the websites on Earth.

	MariaDB: This is an open-source server database that is fully compatible with MySQL (discussed in Book 1, Chapter 1).

	PHP: This is the server-side programming language that I talk about briefly in Book 1, Chapter 1.

	phpMyAdmin: This is an interface that enables you to access and manipulate MariaDB databases.

So all of this requires big bucks, right? Nope. XAMPP for Windows is completely free.

To get started, head for the Apache Friends website at www.apachefriends.org, and then download XAMPP for Windows. Be sure to get the most recent version.

Installing XAMPP for Windows

Once the download is complete, follow these steps to install XAMPP for Windows:

	
Open the installation file that you downloaded.

The download is an executable file, so you can double-click it to get the installation off the ground.

	
Enter your User Account Control (UAC) credentials to allow the install.

If you’re the administrator of your PC, click Yes. Otherwise, you need to enter the username and password of the PC’s administrator account.

	
When XAMPP displays a warning about installing with UAC activated, click OK.

This oddly worded warning means that if you install XAMPP in the default folder (usually C:\Program Files), then it might have problems running normally because UAC imposes restrictions on that folder. You can ignore this because later (see Step 6) I show you how to install XAMPP in a different folder that doesn't suffer from this problem.

	When the XAMPP Setup Wizard appears, click Next.

	
In the Select Components dialog box (see Figure 2-1), deselect the check box beside any component you don’t want installed, and then click Next.

For a basic install, you only need Apache, MySQL, PHP, and phpMyAdmin. If your PC is running low on disk space, consider not installing the other components. If you’re rich in disk space, go ahead and install everything because, hey, after all of this you might be inspired to learn Perl (which is another server-side programming language).

	
In the Installation Folder dialog box, type the location where you want XAMPP installed, then click Next.

Be sure to avoid the folders C:\Program Files and C:\Program Files (x86), for the reason I described back in Step 3. Most folks create a xampp folder in C:\ and install everything there (see Figure 2-2).

	
The Setup Wizard lets you know that Bitnami for XAMPP can install content management systems such as WordPress and Drupal. Click OK.

If you don't care about any of this, be sure to deselect the Learn More About Bitnami for XAMPP check box before you click OK.

	Click Next to begin the installation.

	
If you see a Windows Security Alert similar to the one shown in Figure 2-3, select the Private Networks check box, deselect the Public Networks check box, and then click Allow Access.

[image: remember] However, just because you select the Private Networks check box, it doesn’t mean that people on your network can access (much less mess with) your local web server. XAMPP for Windows is configured out of the box to be accessible only from the computer on which it’s installed.

	
When the install is complete, click Finish.

Be sure to deselect the Do You Want to Start the Control Panel Now check box. I talk about the correct way to start the Control Panel in the next section.

 [image: image]

FIGURE 2-1: Use this Setup Wizard dialog box to deselect the check box beside any component you don’t want installed.

 [image: image]

FIGURE 2-2: To install XAMPP, use a subfolder in the main C:\ folder (such as C:\xampp).

 [image: image]

FIGURE 2-3: If the Windows Security Alert dialog box shows up, be sure to allow Apache to communicate on your private network, but not on any public networks.

Running the XAMPP for Windows Control Panel

The XAMPP Control Panel enables you to start, stop, and configure the XAMPP apps, particularly the Apache web server and the MySQL database system. For best results, you should start the program with administrator privileges, which you can do by following these steps:

	Click Start.

	
Find and open the XAMPP folder in the All Apps list.

Depending on your version of Windows, you might have to click All Apps to get to the All Apps list.

	
Right-click XAMPP Control Panel, click More, and then click Run as Administrator.

Depending on your version of Windows, you might not have to click More to get to the Run as Administrator command.

	If you’re the administrator of your PC, click Yes. Otherwise, you need to enter the username and password of the PC’s administrator account.

	The first time you run the Control Panel, you’re asked to choose a language. Select the radio button for the language you prefer, then click Save.

The XAMPP Control Panel appears, as shown in Figure 2-4.

 [image: image]

FIGURE 2-4: You use the XAMPP Control Panel to control and configure apps such as Apache and MySQL.

To start an app, click the corresponding Start button. That button name changes to Stop, meaning you can later stop the service by clicking its Stop button.

[image: tip] You’ll always want the Apache and MySQL apps running, so you can save a bit of time by having the XAMPP Control Panel launch these two apps automatically when you open the program. Click Config, select the Apache and MySQL check boxes, and then click Save.

[image: remember] If when you start an app you see a Windows Security Alert dialog box similar to the one shown earlier in Figure 2-3. Select the Private Networks check box, deselect the Public Networks check box, and then click Allow Access.

Accessing your local web server

With XAMPP for Windows installed and Apache up and running, congratulations are in order: You’ve got a web server running on your PC! That’s great, but how do you access your shiny, new web server? There are two ways, depending on what you’re doing:

	Adding files and folders to the web server: Place the files and folders in the htdocs subfolder of your main XAMPP install folder. For example, if you installed XAMPP to C:\xampp, then your web server's root folder will be C:\xampp\htdocs.

	Viewing the files and folders on the server: Open your favorite web browser and navigate to the localhost address (or to 127.0.0.1, which gets you to the same place). If you have the XAMPP Control Panel open, you can also click the Apache app's Admin button.

By default, your local website is configured to automatically redirect localhost to localhost/dashboard/, shown in Figure 2-5, which gives you access to several XAMPP tools.

 [image: image]

FIGURE 2-5: The localhost/dashboard/ address gives you access to a few XAMPP tools.

In the page header, you can use the following links:

	Apache Friends: Returns you to the main Dashboard page.

	Applications: Provides information about installing Bitnami applications on the server.

	FAQs: Displays a list of XAMPP frequently asked questions.

	How-To Guides: Displays a list of links to step-by-step guides for a number of XAMPP for Windows tasks.

	PHPInfo: Displays a for-geeks-only page of information about the version of PHP that you have installed.

	phpMyAdmin: Opens the phpMyAdmin tool, which lets you create and manipulate MariaDB/MySQL databases. You can also open phpMyAdmin by navigating directly to localhost/phpmyadmin/, or in the XAMPP Control Panel, by clicking the MySQL app's Admin button. However you get there, just be sure to have the MySQL app running before you open phpMyAdmin.

Setting Up the XAMPP for OS X Development Environment

If you’ll be doing your web work on a Mac, then I recommend the web development environment XAMPP for OS X, which in its most recent version (at least as I write this in early 2018) requires OS X Snow Leopard (10.6) or later. XAMPP for OS X is packed with programs and features, but you’ll probably only concern yourself with the following:

	Apache: This is an open-source web server that runs about half of all the websites on Earth.

	MariaDB: This is an open-source server database that is fully compatible with MySQL (discussed in Book 1, Chapter 1).

	PHP: This is the server-side programming language that I mention in Book 1, Chapter 1.

	phpMyAdmin: This is an interface that enables you to access and work with MariaDB databases.

The best news of all is XAMPP for OS X is completely, utterly, and forever free. Nice! To get the show on the road, surf to the Apache Friends website at www.apachefriends.org, and then download the most recent version of XAMPP for OS X.

Installing XAMPP for OS X

Once the download is done, follow these steps to install XAMPP for OS X:

	Double-click the installation file that you downloaded.

	Double-click the XAMPP icon.

	If macOS warns you about opening an application downloaded from the Internet, say “It’s cool, bro” and click Open.

	Enter your macOS administrator password and then click OK.

	When the XAMPP Setup Wizard appears, click Next.

	
In the Select Components dialog, deselect the XAMPP Developer Files check box, as shown in Figure 2-6, and then click Next.

The developer files might sound like they’re right up your alley, but they’re actually for people who want to add to or modify the code for XAMPP itself.

	In the Installation Directory dialog, click Next.

	
The Setup Wizard lets you know that Bitnami for XAMPP can install content management systems such as WordPress and Drupal. Click Next.

If you don’t care about any of this, be sure to deselect the Learn More About Bitnami for XAMPP check box before you click Next.

	Click Next to launch the installation.

	
When the install is complete, click Finish.

If you want to head right into the XAMPP Manager, leave the Launch XAMPP check box selected.

[image: remember] What about the security of your local web server? Fortunately, that’s not an issue because people on your network can’t access your web server. XAMPP is configured by default to be accessible only from the Mac on which it’s installed.

 [image: image]

FIGURE 2-6: Use this Setup Wizard dialog to deselect the check box beside XAMPP Developer Files.

Running the XAMPP Application Manager

The XAMPP Application Manager enables you to start, stop, and configure the XAMPP servers, particularly the Apache web server and the MySQL database system. To launch the XAMPP Application Manager, you have two choices:

	If you still have the final Setup Wizard dialog onscreen, leave the Launch XAMPP check box selected and click Finish.

	In Finder, open the Applications folder, open the XAMPP folder, and then double-click Manager-OSX.

The XAMPP Application Manager appears. To work with the XAMPP servers, click the Manage Servers tab, shown in Figure 2-7.

 [image: image]

FIGURE 2-7: You use the XAMPP Control Panel to control and configure services such as Apache and MySQL.

In the Manage Servers tab, you can perform the following actions:

	Start a server. Click the server and then click Start.

	Start all the servers. Click Start All.

	Restart a server. Click the server and then click Restart.

	Restart all the servers. Click Restart All.

	Stop a server. Click the server and then click Stop.

	Stop all the servers. Click Stop All.

Accessing your local web server

With XAMPP for OS X installed and Apache up and running, it’s time for high-fives all around because you’ve got a web server running on your Mac! That’s awesome, but how do you access your web server? There are two ways, depending on what you’re doing:

	Adding files and folders to the web server: Place the files and folders in the htdocs subfolder of your main XAMPP install folder. To get there, open Applications, then XAMPP, then double-click htdocs. If you have the XAMPP Application Manager open, click the Welcome tab, click Open Application Folder, then open htdocs.

	Viewing the files and folders on the server: Open your favorite web browser and navigate to the localhost address (or to 127.0.0.1, which gets you to the same place). If you have the XAMPP Application Manager running, click the Welcome tab and then click Go To Application.

By default, your local website is configured to automatically redirect localhost to localhost/dashboard/, shown in Figure 2-8, which gives you access to several XAMPP tools.

 [image: image]

FIGURE 2-8: The localhost/dashboard/ address gives you access to a few XAMPP for OS X features.

In the page header, you can use the following links:

	Apache Friends: Returns you to the main Dashboard page.

	Applications: Provides information about installing Bitnami applications on the server.

	FAQs: Displays a list of XAMPP frequently asked questions.

	How-To Guides: Displays a list of links to step-by-step guides for a number of XAMPP for OS X tasks.

	PHPInfo: Displays a for-geeks-only page of information about the version of PHP that you have installed.

	phpMyAdmin: Opens the phpMyAdmin tool, which lets you create and manipulate MariaDB/MySQL databases. You can also open phpMyAdmin by navigating directly to localhost/phpmyadmin/. Either way, make sure you have the MySQL Database server running before you open phpMyAdmin.

Choosing Your Text Editor

I mention at the beginning of this chapter that all you need to develop web pages is a text editor. However, saying that all you need to code is a text editor is like saying that all you need to live is food: It's certainly true, but more than a little short on specifics. After all, to a large extent the quality of your life depends on the food you eat. If you survive on nothing but bread and water, well “surviving” is all you’re doing. What you really need is a balanced diet that supplies all the nutrients your body needs. And pie.

The bread-and-water version of a text editor is the barebones program that came with your computer: Notepad if you run Windows, or TextEdit if you have a Mac. You can survive as a web developer using these programs, but that’s not living, if you ask me. You need the editing equivalent of vitamins and minerals (and, yes, pie) if you want to flourish as a web coder. These nutrients are the features and tools that are crucial to being an efficient and organized developer:

	Syntax highlighting: Syntax refers to the arrangement of characters and symbols that create correct programming code, and syntax highlighting is an editing feature that color-codes certain syntax elements for easier reading. For example, while regular text might appear black, all the HTML tags might be shown in blue and the CSS properties might appear red. The best text editors let you choose the syntax colors, either by offering prefab themes, or by letting you apply custom colors.

	Line numbers: It might seem like a small thing, but having a text editor that numbers each line, as shown in Figure 2-9, can be a major timesaver. When the web browser alerts you to an error in your code (see Book 3, Chapter 9), it gives you an error message and, crucially, the line number of the error. This enables you to quickly locate the culprit and (fingers crossed) fix the problem pronto.

	Code previews: A good text editor will let you see a preview of how your code will look in a web browser. The preview might appear in the same window as your code, or in a separate window, and it should update automatically as you modify and save your code.

	Code completion: This is a handy feature that, when you start typing something, displays a list of possible code items that complete your typing. You can then select the one you want and press Tab or Enter to add it to your code without having to type the whole thing.

	Text processing: The best text editors offer a selection of text processing features, such as automatic indentation of code blocks, converting tabs to spaces and vice versa, shifting chunks of code right or left, removing unneeded spaces at the end of lines, hiding blocks of code, and more.

 [image: image]

FIGURE 2-9: Line numbers, as seen here down the left side of the window, are a crucial text editor feature.

The good news is that there’s no shortage of text editors that support all these features and many more. That’s also the bad news, because it means you have a huge range of programs to choose from. To help you get started, here, in alphabetical order, are a few editors to take for test drives:

	Atom: Available for Windows and Mac. Free!  http://atom.io

	Brackets: Available for Windows and Mac. Also free!  http://brackets.io/

	Coda: Available for Mac only. $99, but a free trial is available. www.panic.com/coda

	Notepad++: Available for Windows only. Another freebie. https://notepad-plus-plus.org/

	Sublime Text: Available for both Windows and Mac. $80, but a free trial is available. www.sublimetext.com

	TextMate: Available for Mac only. $60, but a free trial is available. http://macromates.com/

Chapter 3

Finding and Setting Up a Web Host

IN THIS CHAPTER

[image: check] Understanding web hosting providers

[image: check] Examining the various choices for hosting your site

[image: check] Choosing the host that’s right for you

[image: check] Looking around your new web home

[image: check] Getting your site files to your web host

You will end up with better software by releasing as early as practically possible, and then spending the rest of your time iterating rapidly based on real-world feedback. So trust me on this one: Even if version 1 sucks, ship it anyway.

— JEFF ATTWOOD

You build your web pages from the comfort of your Mac or PC, and if you’ve chosen your text editor well (as I describe in Book 1, Chapter 2), then you can even use your computer to preview how your web pages will look in a browser.

That’s fine and dandy, but I think you’ll agree that the whole point of building a web page is to, you know, put it on the web! First, you need to subject your code to the wilds of the wider web to make sure it works out there. Even if it seems to be running like a champ on your local server, you can’t give it the seal of approval until you’ve proven that it runs champlike on a remote server. Second, once your code is ready, then the only way the public can appreciate your handiwork is to get it out where they can see it.

Whether you’re testing or shipping your code, you need somewhere to put it, and that’s what this chapter is about. Here you explore the wide and sometimes wacky world of web hosts. You delve into what they offer, investigate ways to choose a good one, and then take a tour of your web home away from home.

Understanding Web Hosting Providers

A common question posed by web development newcomers is “Where the heck do I put my web page when it’s done?” If you’ve asked that question, you’re doing okay because it means you’re clued in to something crucial: Just because you’ve created a web page and you have an Internet connection doesn’t mean your site is automatically a part of the web.

After all, people on the web have no way of getting to your computer. Even if you’re working with a local web development environment (which I discuss in Book 1, Chapter 2), you’re working in splendid isolation because no one either on your network or on the Internet can access that environment.

In other words, your computer isn’t set up to hand out documents (such as web pages) to remote visitors who ask for them. Computers that can do this are called servers (because they “serve” stuff out to the web), and computers that specialize in distributing web pages are called web servers. So your web page isn’t on the web until you store it on a remote web server. Because this computer is, in effect, playing “host” to your pages, such machines are also called web hosts. Companies that run these web hosts are called web hosting providers.

Now, just how do you go about finding a web host? Well, the answer to that depends on a bunch of factors, including the type of site you have, how you get connected to the Internet in the first place, and how much money (if any) you’re willing to fork out for the privilege. In the end, you have three choices:

	Your existing Internet provider

	A free hosting provider

	A commercial hosting provider

Using your existing Internet provider

If you access the Internet via a corporate or educational network, your institution might have its own web server you can use. If you get online via an Internet service provider (ISP), phone or email its customer service department to ask whether the company has a web server available. Almost all ISPs provide space so their customers can put up personal pages free of charge.

Finding a free hosting provider

If cash is in short supply, a few hosting providers will bring your website in from the cold out of the goodness of their hearts. In some cases, these services are open only to specific groups such as students, artists, nonprofit organizations, and so on. However, plenty of providers put up personal sites free of charge.

What’s the catch? Well, there are almost always restrictions both on how much data you can store and on the type of data you can store (no ads, no dirty pictures, and so on). You might also be required to display some kind of “banner” advertisement for the hosting provider on your pages.

Signing up with a commercial hosting provider

For personal and business-related websites, many web artisans end up renting a chunk of a web server from a commercial hosting provider. You normally hand over a setup fee to get your account going and then you’re looking at a monthly fee.

Why shell out all that dough when there are so many free sites lying around? Because, as with most things in life, you get what you pay for. By paying for your host, you generally get more features, better service, and fewer annoyances (such as the ads that some free sites have to display).

A Buyer’s Guide to Web Hosting

Unfortunately, choosing a web host isn’t as straightforward as you might like it to be. For one thing, hundreds of hosts are out there clamoring for your business; for another, the pitches and come-ons your average web host employs are strewn with jargon and technical terms. I can’t help reduce the number of web hosts, but I can help you understand what those hosts are yammering on about. Here’s a list of the terms you’re most likely to come across when researching web hosts:

	Storage space: Refers to the amount of room allotted to you on the host’s web server to store your files. The amount of acreage you get determines the amount of data you can store. For example, if you get a 1MB (1 megabyte) limit, you can’t store more than 1MB worth of files on the server. HTML files don’t take up much real estate, but large graphics sure do, so you need to watch your limit. For example, you could probably store about 200 pages in 1MB of storage (assuming about 5KB per page), but only about 20 images (assuming about 50KB per image). Generally speaking, the more you pay for a host, the more storage space you get.

	
Bandwidth: A measure of how much of your data the server serves. For example, suppose the HTML file for your page is 1KB (1 kilobyte) and the graphics associated with the page consume 9KB. If someone accesses your page, the server ships out a total of 10KB; if ten people access the page (either at the same time or over a period of time), the total bandwidth is 100KB. Most hosts give you a bandwidth limit (or “cap”), which is most often a certain number of megabytes or gigabytes per month. (A gigabyte is equal to about 1,000 megabytes.) Again, the more you pay, the greater the bandwidth you get.

[image: warning] If you exceed your bandwidth limit, users will usually still be able to get to your pages (although some hosts shut down access to an offending site). However, almost all web hosts charge you an extra fee for exceeding your bandwidth, so check this out before signing up. The usual penalty is a set fee per every megabyte or gigabyte over your cap.

	
Domain name: A general Internet address, such as wiley.com or whitehouse.gov. They tend to be easier to remember than the long-winded addresses most web hosts supply you by default, so they’re a popular feature. Two types of domain names are available:

	A regular domain name (such as yourdomain.com or yourdomain.org)

	A subdomain name (such as yourdomain.webhostdomain.com)

To get a regular domain, you either need to use one of the many domain registration services such as GoDaddy or Register.com. A more convenient route is to choose a web hosting provider that will do this for you. Either way, it will usually cost you $35 per year (although some hosts offer cheap domains as a “loss leader” and recoup their costs with hosting fees; also, discount domain registrars such as GoDaddy offer domains for as little as $9.99 per year). If you go the direct route, almost all web hosts will host your domain, which means that people who use your domain name will get directed to your website on the host’s web server. For this to work, you must tweak the domain settings on the registrar. This usually involves changing the DNS servers associated with the domain so that they point at the web host’s domain name servers. Your web host will give you instructions on how to do this.

With a subdomain name, “webhostdomain.com” is the domain name of the web hosting company, and it simply tacks on whatever name you want to the beginning. Many web hosts will provide you with this type of domain, often for free.

	Email addresses: Most hosts offer you one or more email addresses along with your web space. The more you pay, the more mailboxes you get. Some hosts offer email forwarding, which enables you to have messages that are sent to your web host address rerouted to some other email address.

	Shared server: If the host offers a shared server (or virtual server), it means that you’ll be sharing the server with other websites — dozens or even hundreds of them. The web host takes care of all the highly technical server management chores, so all you have to do is maintain your site. This is by far the best (and cheapest) choice for individuals or small business types.

	Dedicated server: You get your very own server computer on the host. That may sound like a good thing, but it’s usually up to you to manage the server, which can be a dauntingly technical task. Also, dedicated servers are much more expensive than shared servers.

	Operating system: The operating system on the web server. You usually have two choices: Unix (or Linux) and Windows Server. Unix systems have the reputation of being very reliable and fast, even under heavy traffic loads, so they’re usually the best choice for a shared server. Windows systems are a better choice for dedicated servers because they’re easier to administer than their Unix brethren. Note, too, that Unix servers are case sensitive in terms of file and directory names, while Windows servers are not.

	Databases: The number of databases you get to create with your account. Unix systems usually offer MySQL databases, whereas Windows servers offer SQL Server databases.

	Administration interface: This is the host app that you use to perform tasks on the server, such as uploading files or creating users. Many hosts offer the excellent cPanel interface, and most Unix-based systems offer the phpMyAdmin app for managing your MySQL data.

	Ad requirements: A few free web hosts require you to display some type of advertising on your pages. This could be a banner ad across the top of the page, a “pop-up” ad that appears each time a person accesses your pages, or a “watermark” ad, usually a semitransparent logo that hovers over your page. Fortunately, free hosts that insist on ads are rare these days.

	Uptime: The percentage of time the host’s server is up and serving. There’s no such thing as 100 percent uptime because all servers require maintenance and upgrades at some point. However, the best hosts have uptime numbers over 99 percent. (If a host doesn’t advertise its uptime, it’s probably because it’s very low. Be sure to ask before committing yourself.)

	Tech support: If you have problems setting up or accessing your site, you want to know that help — in the form of tech support — is just around the corner. The best hosts offer 24/7 tech support, which means you can contact the company — either by phone or email — 24 hours a day, 7 days a week.

	FTP support: You usually use the Internet’s FTP service to transfer your files from your computer to the web host. If a host offers FTP access (some hosts have their own method for transferring files), be sure you can use it any time you want and there are no restrictions on the amount of data you can transfer at one time.

	Website statistics: Tell you things such as how many people have visited your site, which pages are the most popular, how much bandwidth you’re consuming, which browsers and browser versions surfers are using, and more. Most decent hosts offer a ready-made stats package, but the best ones also give you access to the “raw” log files so you can play with the data yourself.

	Ecommerce: Some hosts offer a service that lets you set up a web “store” so you can sell stuff on your site. That service usually includes a “shopping script,” access to credit card authorization and other payment systems, and the ability to set up a secure connection. You usually get this only in the more expensive hosting packages, and you’ll most often have to pay a setup fee to get your store built.

	Scalability: The host is able to modify your site’s features as required. For example, if your site becomes very popular, you might need to increase your bandwidth limit. If the host is scalable, it can easily change your limit (or any other feature of your site).

Finding a Web Host

Okay, you’re ready to start researching the hosts to find one that suits your web style. As I mention earlier, there are hundreds, perhaps even thousands, of hosts, so how is a body supposed to whittle them down to some kind of short list? Here are some ideas:

	Ask your friends and colleagues. The best way to find a good host is that old standby, word of mouth. If someone you trust says a host is good, chances are you won’t be disappointed. This is assuming you and your pal have similar hosting needs. If you want a full-blown ecommerce site, don’t solicit recommendations from someone who has only a humble home page.

	Solicit host reviews from experts. Ask existing webmasters and other people “in the know” about which hosts they recommend or have heard good things about. A good place to find such experts is Web Hosting Talk (www.webhostingtalk.com), a collection of forums related to web hosting.

	Contact web host customers. Visit sites that use a particular web host, and send an email message to the webmaster asking what she thinks of the host’s service.

	Peruse the lists of web hosts. A number of sites track and compare web hosts, so they’re an easy way to get in a lot of research. Careful, though, because there are a lot of sketchy lists out there that are only trying to make a buck by getting you to click ads. Here are some reputable places to start:
	CNET Web Hosting Solutions: www.cnet.com/web-hosting

	PC Magazine Web Site Hosting Services Reviews: www.pcmag.com/reviews/web-hosting-services

	Review Hell: www.reviewhell.com

	Review Signal Web Hosting Reviews: http://reviewsignal.com/webhosting

Finding Your Way around Your New Web Home

After you sign up with a web hosting provider and your account is established, the web administrator creates two things for you: a directory on the server you can use to store your website files, and your very own web address. (This is also true if you’re using a web server associated with your corporate or school network.) The directory — which is known in the biz as your root directory — usually takes one of the following forms:

/yourname/

/home/yourname/

/yourname/public_html/

In each case, yourname is the login name (or username) the provider assigns to you, or it may be your domain name (with or without the .com part). Remember, your root directory is a slice of the host's web server, and this slice is yours to monkey around with as you see fit. This usually means you can do all or most of the following to the root:

	Add files to the directory.

	Add subdirectories to the directory.

	Move or copy files from one directory to another.

	Rename files or directories.

	Delete files from the directory.

Your web address normally takes one of the following shapes:

http://provider/yourname/

http://yourname.provider/

http://www.yourname.com/

Here, provider is the host name of your provider (for example, www.hostcompany.com or just hostcompany.com), and yourname is your login name or domain name. Here are some examples:

http://www.hostcompany.com/mywebsite/

http://mywebsite.hostcompany.com/

http://www.mywebsite.com/

Your directory and your web address

There's a direct and important relationship between your server directory and your address. That is, your address actually “points to” your directory and enables other people to view the files you store in that directory. For example, suppose I decide to store a file named thingamajig.html in my directory and my main address is http://mywebsite.hostcompany.com/. This means someone else can view that page by typing the following URL into a web browser:

http://mywebsite.hostcompany.com/thingamajig.html

Similarly, suppose I create a subdirectory named stuff and use it to store a file named index.html. A surfer can view that file by convincing a web browser to head for the following URL:

http://mywebsite.hostcompany.com/stuff/index.html

In other words, folks can surf to your files and directories by strategically tacking on the appropriate filenames and directory names after your main web address.

Making your hard disk mirror your web home

As a web developer, one of the key ways to keep your projects organized is to set up your directories on your computer, and then mirror those directories on your web host. Believe me, this will make your uploading duties immeasurably easier.

[image: remember] Moving a file from your computer to a remote location (such as your web host's server) is known in the file transfer trade as uploading.

This process begins at the root. On the web host, you already have a root directory assigned to you by the hosting provider, so now you need to designate a folder on your computer to be the root mirror. If you’re using the XAMPP web development environment (see Book 1, Chapter 2), then the XAMPP installation’s htdocs subfolder is perfect as your local root. Otherwise, choose or create a folder on your computer to use as the local root.

What you do from here depends on the number of web development projects you’re going to build, and the number of files in each project:

	A single web development project consisting of just a few files: In this case, just put all the files into the root directory.

	A single web development project consisting of many files: The more likely scenario for a typical web development project is to have multiple HTML, CSS, JavaScript, and PHP files, plus lots of ancillary files such as images and fonts. Although it’s okay to place all your HTML files in the root directory, do yourself a favor and organize all your other files into subfolders by file type: a css subfolder for CSS files, a js subfolder for JavaScript files, and so on.

	Multiple web development projects: As a web developer, you'll almost certainly create tons of web projects, so it’s crucial to organize them. The ideal way to do that is to create a separate root subdirectory for each project. Then within each of these subdirectories, you can create sub-subdirectories for file types such as CSS, JavaScript, images, and so on.

To help you see why mirroring your local and remote directory structures is so useful, suppose you set up a subfolder on your computer named graphics that you use to store your image files. To insert into your page a file named mydog.jpg from that folder, you'd use the following reference:

graphics/mydog.jpg

When you send your HTML file to the server and you then display the file in a browser, it looks for mydog.jpg in the graphics subdirectory. If you don't have such a subdirectory — either you didn’t create it or you used a different name, such as images — the browser won’t find mydog.jpg and your image won't show. In other words, if you match the subdirectories on your web server with the subfolders on your computer, your page will work properly without modifications both at home and on the web.

[image: warning] One common faux pas beginning web developers make is to include the local drive and all the folder names when referencing a file. Here’s an example:

C:\xampp\htdocs\graphics\mydog.jpg

This image will show up just fine when it’s viewed from your computer, but it will fail miserably when you upload it to the server and view it on the web. That’s because the C:\xampp\htdocs\ part exists only on your computer.

[image: warning] The Unix (or Linux) computers that play host to the vast majority of web servers are downright finicky when it comes to the uppercase and lowercase letters used in file and directory names. It’s crucial that you check the file references in your code to be sure the file and directory names you use match the combination of uppercase and lowercase letters used on your server. For example, suppose you have a CSS file on your server that’s named styles.css. If your HTML references that file as, say, STYLES.CSS, the server won't find the file and your styles won’t get applied.

Uploading your site files

Once your web page or site is ready for its debut, it’s time to get your files to your host’s web server. If the server is on your company or school network, you send the files over the network to the directory set up by your system administrator. Otherwise, you upload the files to the root directory created for you on the hosting provider’s web server.

How you go about uploading your site files depends on the web host, but here are the four most common scenarios:

	Use an FTP program. It’s a rare web host that doesn’t offer support for the File Transfer Protocol (FTP, for short), which is the Internet’s most popular method for transfer files from here to there. To use FTP, you usually need to get a piece of software called an FTP client, which enables you to connect to your web host’s FTP server (your host can provide you with instructions for this) and offers an interface for standard file tasks, such as navigating and creating folders, uploading the files, deleting and renaming files, and so on. Popular Windows clients are CuteFTP (www.globalscape.com/cuteftp) and Cyberduck (https://cyberduck.io). For the Mac, try Transmit (https://panic.com/transmit) or FileZilla (https://filezilla-project.org).

	Use your text editor’s file upload feature. Some text editors come with an FTP client built-in, so you can edit a file and then immediately upload it with a single command. The Coda text editor (https://panic.com/coda) supports this too-handy-for-words feature.

	Use the File Manager feature of cPanel. I mention earlier that lots of web hosts offer an administration tool called cPanel that offers an interface for hosting tasks such as email and domain management. cPanel also offers a File Manager feature that you can use to upload files and perform other file management chores.

	Use the web host’s proprietary upload tool. For some reason, a few web hosts only offer their own proprietary interface for uploading and messing around with files and directories. See your host’s Help or Support page for instructions.

Making changes to your web files

What happens if you send a web development file to your web host and then realize you’ve made a typing gaffe or you spy a coding mistake? Or what if you have more information to add to one of your web pages? How do you make changes to the files you’ve already sent?

Well, here’s the short answer: You don’t. That’s right, after you’ve sent your files, you never have to bother with them again. That doesn’t mean you can never update your site, however. Instead, you make your changes to the files that reside on your computer and then send these revised files to your web host. These files replace the old files, and your site is updated just like that.

[image: warning] Be sure you send the updated file to the correct directory on the server. Otherwise, you may overwrite a file that happens to have the same name in some other directory.

Book 2

Coding the Front End, Part 1: HTML & CSS

Contents at a Glance

	Chapter 1: Structuring the Page with HTML

	Getting the Hang of HTML

	Understanding Tag Attributes

	Learning the Fundamental Structure of an HTML5 Web Page

	Some Notes on Structure versus Style

	Applying the Basic Text Tags

	Creating Links

	Building Bulleted and Numbered Lists

	Inserting Special Characters

	Inserting Images

	Carving Up the Page

	Chapter 2: Styling the Page with CSS

	Figuring Out Cascading Style Sheets

	Getting the Hang of CSS Rules and Declarations

	Adding Styles to a Page

	Styling Page Text

	Working with Colors

	Getting to Know the Web Page Family

	Using CSS Selectors

	Revisiting the Cascade

	Chapter 3: Sizing and Positioning Page Elements

	Learning about the CSS Box Model

	Styling Sizes

	Adding Padding

	Building Borders

	Making Margins

	Getting a Grip on Page Flow

	Floating Elements

	Positioning Elements

	Chapter 4: Creating the Page Layout

	What Is Page Layout?

	Laying Out Page Elements with Floats

	Laying Out Page Elements with Inline Blocks

	Making Flexible Layouts with Flexbox

	Shaping the Overall Page Layout with CSS Grid

	Providing Fallbacks for Page Layouts

Chapter 1

Structuring the Page with HTML

IN THIS CHAPTER

[image: check] Getting comfy with HTML

[image: check] Figuring out HTML tags and attributes

[image: check] Understanding the basic blueprint for all web pages

[image: check] Adding text, images, and links to your page

[image: check] Building bulleted and numbered lists

I am always fascinated by the structure of things; why do things work this way and not that way.

— URSUS WEHRLI

When it comes to web development, it’s no exaggeration to say that the one indispensable thing, the sine qua non for those of you who studied Latin in school, is HTML. That’s because absolutely everything else you make as a web developer — your CSS rules, your JavaScript code, even your PHP scripts — can’t hang its hat anywhere but on some HTML. These other web development technologies don’t even make sense outside of an HTML context.

So, in a sense, this chapter is the most important for you as a web coder because all the rest of the book depends to a greater or lesser degree on the HTML know-how found in the following pages. If that sounds intimidating, not to worry: One of the great things about HTML is that it’s not a huge topic, so you can get up to full HTML speed without a massive investment of time and effort.

Because HTML is so important, you’ll be happy to know that I don’t rush things. You’ll get a thorough grounding in all things HTML, and when you’re done you’ll be more than ready to tackle the rest of your web development education.

Getting the Hang of HTML

Building a web page from scratch using your bare hands may seem like a daunting task. It doesn’t help that the codes you use to set up, configure, and format a web page are called the Hypertext Markup Language (HTML for short), a name that could only warm the cockles of a geek’s heart. I take a mercifully brief look at each term:

	Hypertext: In prehistoric times — that is, the 1980s — tall-forehead types referred to any text that, when selected, takes you to a different document, as hypertext. So this is just an oblique reference to the links that are the defining characteristic of web pages.

	Markup: Instructions that specify how the content of a web page should be displayed in the web browser.

	Language: The set of codes that comprise all the markup possibilities for a page.

But even though the name HTML is intimidating, the codes used by HTML aren’t even close to being hard to learn. There are only a few of them, and in many cases they even make sense!

At its most basic, HTML is nothing more than a collection of markup codes — called tags — that specify the structure of your web page. In HTML, “structure” is a rubbery concept that can refer to anything from the overall layout of the page all the way down to a single word or even just a character or two.

You can think of a tag as a kind of container. What types of things can it contain? Mostly text, although lots of tags contain things like chunks of the web page and even other tags.

Most tags use the following generic format:

<tag>content</tag>

What you have here are a couple codes that define a container. Most of these codes are one- or two-letter abbreviations, but sometimes they’re entire words. You always surround these codes with angle brackets <>; the brackets tell the web browser that it's dealing with a chunk of HTML and not just some random text.

The first of these codes — <tag> — is called the start tag and it marks the opening of the container; the second of the codes — </tag> — is called the end tag and it marks the closing of the container. (Note the extra slash (/) that appears in the end tag.)

In between you have the content, which refers to whatever is contained in the tag. For example, I start with a simple sentence that might appear in a web page:

Okay, listen up people because this is important!

Figure 1-1 shows how this might look in a web browser.

 [image: image]

FIGURE 1-1: The sample sentence as it appears in a web browser.

Ho hum, right? Suppose you want to punch this up a bit by emphasizing “important.” In HTML, the tag for emphasis is , so you'd modify your sentence like so:

Okay, listen up people because this is important!

See how I’ve surrounded the word important with and ? The first is the start tag and it says to the browser, “Yo, Browser Boy! You know the text that comes after this? Be a good fellow and treat it as emphasized text.” This continues until the browser reaches the end tag , which lets the browser know it's supposed to stop what it’s doing. So the tells the browser, “Okay, okay, that’s enough with the emphasis already!”

All web browsers display emphasized text in italics, so that’s how the word now appears, as you can eyeball in Figure 1-2.

 [image: image]

FIGURE 1-2: The sentence revised to italicize the word important.

There are tags for lots of other structures, including important text, paragraphs, headings, page titles, links, and lists. HTML is just the sum total of all these tags.

[image: warning] One of the most common mistakes rookie web weavers make is to forget the slash (/) that identifies an end tag. If your page looks wrong when you view it in a browser, look for a missing slash. Also look for a backslash (\) instead of a slash, which is another common error.

Understanding Tag Attributes

You'll often use tags straight up, but all tags are capable of being modified in various ways. This might be as simple as supplying a unique identifier to the tag for use in a script or a style, or it might be a way to change how the tag operates. Either way, you modify a tag by adding one or more attributes to the start tag. Most attributes use the following generic syntax:

<tag attribute="value">

Here, you replace attribute with the name of the attribute you want to apply to the tag, and you replace value with the value you want to assign the attribute.

For example, the <hr> tag adds a horizontal line across the web page (hr stands for horizontal rule). You use only the start tag in this case (as a simple line, it can't “contain” anything, so no end tag is needed), as demonstrated in the following example:

Okay, listen up people because this is important!

<hr>

As you can see in Figure 1-3, the web browser draws a line right across the page.

 [image: image]

FIGURE 1-3: When you add the <hr> tag, a horizontal line appears across the page.

You can also add the width attribute to the <hr> tag and specify the width you prefer. For example, if you only want the line to traverse half the page width, set the width attribute to "50%", as shown here:

Okay, listen up people because this is important!

<hr width="50%">

As Figure 1-4 shows, the web browser obeys your command and draws a line that takes up only half the width of the page.

 [image: image]

FIGURE 1-4: The <hr width="50%"> tag creates a horizontal line across half the page.

Learning the Fundamental Structure of an HTML5 Web Page

In this section, I show you the tags that serve as the basic blueprint you'll use for all your web pages.

Your HTML files will always lead off with the following tag:

<!DOCTYPE html>

This tag (it has no end tag) is the so-called Doctype declaration, and it lets the web browser know what type of document it’s about to process (an HTML document, in this case).

Next up you add the <html lang="en"> tag. This tag doesn’t do a whole lot except tell any web browser that tries to read the file that it’s dealing with a file that contains HTML doodads. It also uses the lang attribute to specify the document's language, which in this case is English.

Similarly, the last line in your document will always be the corresponding end tag: </html>. You can think of this tag as the HTML equivalent for “The End.” So, each of your web pages will include this on the second line:

<html lang="en">

and this on the last line:

</html>

The next items serve to divide the page into two sections: the head and the body. The head section is like an introduction to the page. Web browsers use the head to glean various types of information about the page. A number of items can appear in the head section, but the only one that makes any real sense at this early stage is the title of the page, which I talk about in the next section.

To define the head, add <head> and </head> tags immediately below the <html> tag you typed in earlier. So your web page should now look like this:

<!DOCTYPE html>

<html lang="en">

<head>

</head>

</html>

[image: remember] Although technically it makes no difference if you enter your tag names in uppercase or lowercase letters, the HTML powers-that-be prefer to see HTML tags in lowercase letters, so that's the style I use in this book, and I encourage you to do the same.

While you’re in the head section, let’s add a head-scratcher:

<meta charset="utf-8">

You place this between the <head> and </head> tags (indented four spaces for easier reading). It tells the web browser that your web page uses the UTF-8 character set, which you can mostly ignore except to know that UTF-8 contains almost every character (domestic and foreign), punctuation mark, and symbol known to humankind.

The body section is where you enter the text and other fun stuff that the browser will actually display. To define the body, place <body> and </body> tags after the head section (that is, below the </head> tag):

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

</head>

<body>

</body>

</html>

[image: warning] A common page error is to include two or more copies of these basic tags, particularly the <body> tag. For best results, be sure you use each of these seven basic structural tags only one time on each page.

Giving your page a title

When you surf the web, you've probably noticed that your browser displays some text in the current tab. That tab text is the web page title, which is a short (or sometimes long) phrase that gives the page a name. You can give your own web page a name by adding the <title> tag to the page’s head section.

To define a title, surround the title text with the <title> and </title> tags. For example, if you want the title of your page to be “My Home Sweet Home Page,” enter it as follows:

<title>My Home Sweet Home Page</title>

Note that you always place the title inside the head section, so your basic HTML document now looks like this:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>My Home Sweet Home Page</title>

</head>

<body>

</body>

</html>

Figure 1-5 shows this HTML file loaded into a web browser. Notice how the title appears in the browser's tab bar.

 [image: image]

FIGURE 1-5: The text you insert into the <title> tag shows up in the browser tab.

Here are a few things to keep in mind when thinking of a title for your page:

	Be sure your title describes what the page is all about.

	Don’t make your title too long. If you do, the browser might chop it off because there’s not enough room to display it in the tab. Fifty or 60 characters are usually the max.

	Use titles that make sense when someone views them out of context. For example, if someone really likes your page, that person might add it to his or her list of favorites or bookmarks. The browser displays the page title in the favorites list, so it’s important that the title makes sense when she looks at the bookmarks later on.

	Don’t use cryptic or vague titles. Titling a page “Link #42” or “My Web Page” might make sense to you, but your readers will almost certainly be scratching their heads.

Adding some text

Now it’s time to put some flesh on your web page’s bones by entering the text you want to appear in the body of the page. For the most part, you can type the text between the <body> and </body> tags, like this:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>My Home Sweet Home Page</title>

</head>

<body>

Hello HTML World!

</body>

</html>

Figure 1-6 shows how a web browser displays this HTML.

 [image: image]

FIGURE 1-6: Text you add to the page body appears in the browser's content window.

Before you start typing willy-nilly, however, there are a few things you should know:

	You might think you can line things up and create some interesting effects by stringing together two or more spaces. Ha! Web browsers chew up all those extra spaces and spit them out into the nether regions of cyberspace. Why? Well, the philosophy of the web is that you can use only HTML tags to lay out a document. So a run of multiple spaces (or white space, as it’s called) is ignored.

	Tabs also fall under the rubric of white space. You can enter tabs all day long, but the browser ignores them completely.

	Browsers also like to ignore the carriage return. It might sound reasonable to the likes of you and me that pressing Enter (or Return on a Mac) starts a new paragraph, but that’s not so in the HTML world.

	If you want to separate two chunks of text, you have multiple ways to go, but here are the two easiest:
	If you want no space between the texts: Place a
 (for line break) tag between the two bits of text.

	If you want some breathing room between the texts: Surround each chunk of text with the <p> and </p> (for paragraph) tags.

	If HTML documents are just plain text, does that mean you're out of luck if you need to use characters such as © and €? Luckily, no. For the most part, you can just add these characters to your file. However, HTML also has special codes for these kinds of characters. I talk about them a bit later in this chapter.

	If, for some reason, you’re using a word processor instead of a text editor, know that it won’t help to format your text using the program’s built-in commands. The browser cheerfully ignores even the most elaborate formatting jobs because browsers understand only HTML (and CSS and JavaScript). And besides, a document with formatting is, by definition, not a pure text file, so a browser might bite the dust trying to load it.

Some Notes on Structure versus Style

One of the key points of front-end web development is to separate the structure of the web page from its styling. This makes the page faster to build, easier to maintain, and more predictable across a range of browsers and operating systems. HTML provides the structure side, while CSS handles the styling.

That’s fine as far as it goes, but HTML performs its structural duties with a couple of quirks you need to understand:

	This isn’t your father’s idea of structure. That is, when you think of the structure of a document, you probably think of larger chunks such as articles, sections, and paragraphs. HTML does all that, but it also deals with structure at the level of sentences, words, and even characters.

	HTML’s structures often come with some styling attached. Or, I should say, all web browsers come with predefined styling that they use when they render some HTML tags. Yes, I know I just said that it’s best to separate structure and style, so this can be a tad confusing. Think of it this way: When you build a new deck using cedar, your completed deck has a natural “cedar” look to it, but you’re free to apply a coat of varnish or paint. HTML is the cedar, whereas CSS is the paint.

I mention these quirks because they can help to answer some questions that might arise as you work with HTML tags.

[image: remember] Another key to understanding why HTML does what it does, is that much of HTML — especially its most recent incarnation, HTML5 — has been set up so that a web page is “understandable” to an extent by software that analyzes the page. One important example is a screen reader used by some visually impaired surfers. If a screen reader can easily figure out the entire structure of the page from its HTML tags, then it can present the page properly to the user. Similarly, software that seeks to index, read, or otherwise analyze the page will only be able to do this successfully if the page’s HTML tags are a faithful representation of the page’s intended structure.

Applying the Basic Text Tags

HTML has a few tags that enable you to add structure to text. Many web developers use these tags only for the built-in browser formatting that comes with them, but you really should try and use the tags semantically, as the geeks say, which means to use them based on the meaning you want the text to convey.

Emphasizing text

One of the most common meanings you can attach to text is emphasis. By putting a little extra oomph on a word or phrase, you tell the reader to add stress to that text, which can subtly alter the meaning of your words. For example, consider the following sentence:

You'll never fit in there with that ridiculous thing on your head!

Now consider the same sentence with emphasis added to one word:

You'll never fit in there with that ridiculous thing on your head!

You emphasize text on a web page by surrounding that text with the and tags:

You'll never fit in there with that ridiculous thing on your head!

All web browsers render the emphasized text in italics, as shown in Figure 1-7.

 [image: image]

FIGURE 1-7: The web browser renders emphasized text using italics.

I should also mention that HTML has a closely related tag: <i>. The <i> tag's job is to mark up alternative text, which refers to any text that you want treated with a different mood or role than regular text. Common examples include book titles, technical terms, foreign words, or a person’s thoughts. All web browsers render text between <i> and </i> in italics.

Marking important text

One common meaning that you'll often want your text to convey is importance. It might be some significant step in a procedure, a vital prerequisite or condition for something, or a crucial passage within a longer text block. In each case, you’re dealing with text that you don’t want your readers to miss, so it needs to stand out from the regular prose that surrounds it.

In HTML, you mark text as important by surrounding it with the and tags, as in this example:

Dear reader: Do you see the red button in the upper-right

corner of this page? Never click the red

button! You have been warned.

All web browsers render text marked up with the tag in bold, as shown in Figure 1-8.

 [image: image]

FIGURE 1-8: The browser renders important text using bold.

Just to keep us all on our web development toes, HTML also offers a close cousin of the tag: the tag. You use the tag to mark up keywords in the text. A keyword is a term that you want to draw attention to because it plays a different role than the regular text. It could be a company name or a person's name (think of those famous “bold-faced names” that are the staple of celebrity gossip columns). The browser renders text between the and tags in a bold font.

Nesting tags

It's perfectly legal — and often necessary — to combine multiple tag types by nesting one inside the other. For example, check out this code:

Dear reader: Do you see the red button in the upper-right

corner of this page? Never, I repeat never,

click the red button! You have been warned.

See what I did there? In the text between the and tags, I marked up a word with the and tags. The result? You got it: bold, italic text, as shown in Figure 1-9.

 [image: image]

FIGURE 1-9: The browser usually combines nested tags, such as the bold, italic text shown here.

Adding headings

Earlier you saw that you can give your web page a title using the aptly named <title> tag. However, that title only appears in the browser's title bar and tab. What if you want to add a title that appears in the body of the page? That’s almost easier done than said because HTML comes with a few tags that enable you to define headings, which are bits of text that appear in a separate paragraph and usually stick out from the surrounding text by being bigger, appearing in a bold typeface, and so on.

There are six heading tags in all, ranging from <h1>, which uses the largest type size, down to <h6>, which uses the smallest size. Here's some web page code that demonstrates the six heading tags, and Figure 1-10 shows how they look in a web browser:

<h1>This is Heading 1</h1>

<h2>This is Heading 2</h2>

<h3>This is Heading 3</h3>

<h4>This is Heading 4</h4>

<h5>This is Heading 5</h5>

<h6>This is Heading 6</h6>

 [image: image]

FIGURE 1-10: The six HTML heading tags.

What’s up with all the different headings? The idea is that you use them to create a kind of outline for your web page. How you do this depends on the page, but here’s one possibility:

	Use <h1> for the overall page title.

	Use <h2> for the page subtitle.

	Use <h3> for the titles of the main sections of your page.

	Use <h4> for the titles of the subsections of your page.

Adding quotations

You might have noticed that each chapter of this book begins with a short, apt quotation because, hey, who doesn't love a good quote, right? The readers of your web pages will be quote-appreciators, too, I’m sure, so why not sprinkle your text with a few words from the wise?

In HTML, you designate a passage of text as a quotation by using the <blockquote> tag. Here’s an example:

Here's what the great jurist Oliver Wendell Holmes, Sr. had to say about puns:

<blockquote>

A pun does not commonly justify a blow in return.

But if a blow were given for such cause, and death

ensued, the jury would be judges both of the facts

and of the pun, and might, if the latter were of an

aggravated character, return a verdict of justifiable

homicide.

</blockquote>

Clearly, the dude was not a pun fan.

The web browser renders the text between <blockquote> and </blockquote> in its own paragraph that it also indents slightly from the left margin, as shown in Figure 1-11.

 [image: image]

FIGURE 1-11: The web browser renders <blockquote> text indented slighted from the left.

Creating Links

When all is said and done (actually, long before that), your website will consist of anywhere from 2 to 102 pages (or even more, if you've got lots to say). Here’s the thing, though: If you manage to cajole someone onto your home page, how do you get that person to your other pages? That really is what the web is all about, isn’t it, getting folks from one page to another? And of course, you already know the answer to the question. You get visitors from your home page to your other pages by creating links that take people from here to there. In this section, you learn how to build your own links and how to finally put the “hypertext” into HTML.

Linking basics

The HTML tags that do the link thing are <a> and . Here's how the <a> tag works:

Here, href stands for hypertext reference, which is just a fancy-schmancy way of saying “address” or “URL.” Your job is to replace address with the actual address of the web page you want to use for the link. And yes, you have to enclose the address in quotation marks. Here's an example:

You’re not done yet, though, not by a long shot (insert groan of disappointment here). What are you missing? Right: You have to give the reader some descriptive link text to click. That’s pretty straightforward because all you do is insert the text between the <a> and tags, like this:

Link text

Need an example? You got it:

For web coding fun, check out the

Web Coding Playground!

Figure 1-12 shows how it looks in a web browser. Notice how the browser colors and underlines the link text, and when I point my mouse at the link, the address I specified in the <a> tag (albeit without the http:// prefix) appears in the browser's status area.

 [image: image]

FIGURE 1-12: How the link appears in the web browser.

Anchors aweigh: Internal links

When a surfer clicks a standard link, the page loads and the browser displays the top part of the page. However, it’s possible to set up a special kind of link that will force the browser to initially display some other part of the page, such as a section in the middle of the page. For these special links, I use the term internal links, because they take the reader directly to some inner part of the page.

When would you ever use an internal link? Most of your HTML pages will probably be short and sweet, and the web surfers who drop by will have no trouble navigating their way around. But if, like me, you suffer from a bad case of terminal verbosity combined with bouts of extreme long windedness, you’ll end up with web pages that are lengthy, to say the least. Rather than force your readers to scroll through your tomelike creations, you can set up links to various sections of the document. You could then assemble these links at the top of the page to form a sort of “hypertable of contents,” as an example.

Internal links actually link to a specially marked section — called an anchor — that you’ve inserted somewhere in the same page. To understand how anchors work, think of how you might mark a spot in a book you’re reading. You might dog-ear the page, attach a note, or place something between the pages, such as a bookmark or your cat’s tail.

An anchor performs the same function: It “marks” a particular spot in a web page, and you can then use a regular <a> tag to link to that spot. Here’s the general format for an anchor tag:

<element id="name">

As you can see, an anchor tag looks a lot like a regular tag, except that it also includes the id attribute, which is set to the name you want to give the anchor. Here's an example:

<section id="section1">

[image: remember] You can use whatever you want for the name, but it must begin with a letter and it can include any combination of letters, numbers, underscores (_), and hyphens (-). Also, id values are case-sensitive, so the browser treats the id value section1 differently than the id value Section1.

To set up the anchor link, you create a regular <a> tag, but the href value becomes the name of the anchor, preceded by a hash symbol (#):

Here's an example that links to the anchor I showed earlier:

Although you’ll mostly use anchors to link to sections of the same web page, there’s no law against using them to link to specific sections of other pages. What you do is add the appropriate anchor to the other page and then link to it by adding the anchor’s name (preceded, as usual, by #) to the end of the page’s filename. Here’s an example:

Building Bulleted and Numbered Lists

For some reason, people love lists: Best (and Worst) Dressed lists, Top Ten lists, My All-Time Favorite X lists, where X is whatever you want it to be: movies, songs, books, I Love Lucy episodes — you name it. People like lists, for whatever reasons.

Okay, so let’s make some lists. Easy, right? Well, sure, any website jockey can just plop a Best Tootsie Roll Flavors Ever list on a page by typing each item, one after the other. Perhaps our list maker even gets a bit clever and inserts the
 tag between each item, which displays them on separate lines. Ooooh.

Yes, you can make a list that way, and it works well enough, I suppose, but there's a better way. HTML has a few tags that are specially designed to give you much more control over your list-building chores. For example, you can create a bulleted list that actually has those little bullets out front of each item. Nice! Want a Top Ten list, instead? HTML has your back by offering special tags for numbered lists, too.

Making your point with bulleted lists

A no-frills,
-separated list isn’t very useful or readable because it doesn’t come with any type of eye candy that helps differentiate one item from the next. An official, HTML-approved bulleted list solves that problem by leading off each item with a bullet — a cute little black dot.

Bulleted lists use two types of tags:

	The entire list is surrounded by the and tags. Why “ul”? Well, what the rest of the world calls a bulleted list, the HTML poohbahs call an unordered list.

	Each item in the list is preceded by the (list item) tag and is closed with the end tag.

The general setup looks like this:

 Bullet text goes here

 And here

 And here

 You get the idea…

Notice that I've indented the list items by four spaces, which makes it easier to see that they’re part of a container. Here’s an example to chew on:

<h3>My All-Time Favorite Oxymorons</h3>

 Pretty ugly

 Military intelligence

 Jumbo shrimp

 Original copy

 Random order

 Act naturally

 Tight slacks

 Freezer burn

 Sight unseen

 Microsoft Works

Figure 1-13 shows how the web browser renders this code, cute little bullets and all.

 [image: image]

FIGURE 1-13: A typical bulleted list.

Numbered lists: Easy as one, two, three

If you want to include a numbered list of items — it could be a Top Ten list, bowling league standings, steps to follow, or any kind of ranking — don’t bother adding in the numbers yourself. Instead, you can use a numbered list to make the web browser generate the numbers for you.

Like bulleted lists, numbered lists use two types of tags:

	The entire list is surrounded by the and tags. The “ol” here is short for ordered list, because those HTML nerds just have to be different, don't they?

	Each item in the list is surrounded by and .

Here's the general structure to use:

 First item

 Second item

 Third item

 You got this…

I’ve indented the list items by four spaces to make it easier to see that they’re inside an container. Here’s an example:

<h3>My Ten Favorite U.S. College Nicknames</h3>

 U.C. Santa Cruz Banana Slugs

 Delta State Fighting Okra

 Kent State Golden Flashes

 Evergreen State College Geoducks

 New Mexico Tech Pygmies

 South Carolina Fighting Gamecocks

 Southern Illinois Salukis

 Whittier Poets

 Western Illinois Leathernecks

 Delaware Fightin' Blue Hens

Notice that I didn’t include any numbers before each list item. However, when I display this document in a browser (see Figure 1-14), the numbers are automatically inserted. Pretty slick, huh?

 [image: image]

FIGURE 1-14: When the web browser renders the ordered list, it’s kind enough to add the numbers for you automatically.

Inserting Special Characters

Earlier in this chapter, I talk briefly about a special <meta> tag that goes into the head section:

<meta charset="utf-8">

It might not look like it, but that tag adds a bit of magic to your web page. The voodoo is that now you can add special characters such as © and ™ directly to your web page text and the web browser will display them without complaint.

The trick is how you add these characters directly to your text, and that depends on your operating system. First, if you're using Windows, you have two choices:

	Hold down the Alt key and then press the character’s four-digit ASCII code using your keyboard’s numeric keypad. For example, you type an em dash (—) by pressing Alt+0151.

	Paste the character from the Character Map application that comes with Windows.

If you’re a Mac user, you also have two choices:

	Type the character’s special keyboard shortcut. For example, you type an em dash (—) by pressing Option+Shift+- (hyphen).

	Paste the character from the Symbols Viewer that comes with macOS.

Having said all of that, I should point out that there’s another way to add special characters to a page. The web wizards who created HTML came up with special codes called character entities (which is surely a name only a true geek would love) that represent these oddball symbols.

These codes come in two flavors: a character reference and an entity name. Character references are basically just numbers, and the entity names are friendlier symbols that describe the character you’re trying to display. For example, you can display the registered trademark symbol (™) by using either the ® character reference or the ® entity name, as shown here:

Print-On-Non-Demand®

or

Print-On-Non-Demand®

Note that both character references and entity names begin with an ampersand (&) and end with a semicolon (;). Don't forget either character when using special characters in your own pages.

[image: remember] One very common use of character references is for displaying HTML tags without the web browser rendering them as tags. To do this, replace the tag’s less-than sign (<) with < (or <) and the tag's greater-than sign (>) with > (or >).

Inserting Images

Whether you want to tell stories, give instructions, pontificate, or just plain rant about something, you can do all of that and more by adding text to your page. But to make it more interesting for your readers, add a bit of eye candy every now and then. To that end, there's an HTML tag you can use to add one or more images to your page.

However, before we get too far into this picture business, I should tell you that, unfortunately, you can’t use just any old image on a web page. Browsers are limited in the types of images they can display. There are, in fact, three main types of image formats you can use:

	GIF: The original web graphics format (it’s short for Graphics Interchange Format). GIF (it’s pronounced “giff” or “jiff”) is limited to 256 colors, so it’s best for simple images like line art, clip art, text, and so on. GIFs are also useful for creating simple animations.

	JPEG: Gets its name from the Joint Photographic Experts Group that invented it. JPEG (it’s pronounced “jay-peg”) supports complex images that have many millions of colors. The main advantage of JPEG files is that, given the same image, they’re smaller than GIFs, so they take less time to download. Careful, though: JPEG uses lossy compression, which means that it makes the image smaller by discarding redundant pixels. The greater the compression, the more pixels that are discarded, and the less sharp the image will appear. That said, if you have a photo or similarly complex image, JPEG is almost always the best choice because it gives the smallest file size.

	PNG: The Portable Network Graphics format supports millions of colors. PNG (and it’s pronounced “p-n-g” or “ping”) is a compressed format, but unlike JPEGs, PNGs use lossless compression. This means images retain sharpness, but the file sizes can get quite big. If you have an illustration or icon that uses solid colors, or a photo that contains large areas of near-solid color, PNG is a good choice. PNG also supports transparency.

Okay, enough of all that. Time to start squeezing some images onto your web page. As I mention earlier, there’s an HTML code that tells a browser to display an image. It’s the tag, and here’s how it works:

Here, src is short for source, filename is the name of the graphics file you want to display, and description is a short description of the image (which is read by screen readers and seen by browsers who aren't displaying images). Note that there’s no end tag to add here.

Look at an example. Suppose you have an image named logo.png. To add it to your page, you use the following line:

In effect, this tag says to the browser, “Excuse me? Would you be so kind as to go out and grab the image file named logo.png and insert it in the page right here where the tag is?” Dutifully, the browser loads the image and displays it in the page.

For this simple example to work, bear in mind that your HTML file and your graphics file need to be sitting in the same directory. Many webmasters create a subdirectory just for images, which keeps things neat and tidy. If you plan on doing this, be sure you study my instructions for using directories and subdirectories in Book 1, Chapter 3.

Here's an example and Figure 1-15 shows how things appear in a web browser:

To see a World in a Grain of Sand

And a Heaven in a Wild Flower

 [image: image]

FIGURE 1-15: A web page with an image thrown in.

Carving Up the Page

Adding a bit of text, some links, and maybe a list or three to the body of the page is a good start, but any web page worth posting will require much more than that. For starters, all your web pages will require a high-level structure. Why? Well, think about the high-level structure of this book, which includes the front and back covers, the table of contents, an index, and eight mini-books, each of which contains several chapters, which, in turn consist of many sections and paragraphs within those sections. It’s all nice and neat and well-organized, if I do say so myself.

Now imagine, instead, that this entire book was just page after page of undifferentiated text: no mini-books, no chapters, no sections, no paragraphs, plus no table of contents or index. I’ve just described a book-reader’s worst nightmare, and I’m sure I couldn’t even pay you to read such a thing.

Your web pages will suffer from the same fate unless you add some structure to the body section, and for that you need to turn to HTML’s high-level structure tags.

The first thing to understand about these tags is that they’re designed to infuse meaning — that is, semantics — into your page structures. You’ll see what this means as I introduce each tag, but for now get a load of the abstract page shown in Figure 1-16.

 [image: image]

FIGURE 1-16: An abstract view of HTML5’s semantic page structure tags.

I next discuss each of the tags shown in Figure 1-16.

The <header> tag

You use the <header> tag to create a page header, which is usually a strip across the top of the page that includes elements such as the site or page title and a logo. (Don’t confuse this with the page’s head section that appears between the <head> and </head> tags.)

Since the header almost always appears at the top of the page, the <header> tag is usually seen right after the <body> tag, as shown in the following example (and Figure 1-17):

<body>

 <header>

 <h1>Welcome to "Isn't it Semantic?"</h1>

 <hr>

 </header>

 …

</body>

 [image: image]

FIGURE 1-17: A page header with a logo, title, and horizontal rule.

The <nav> tag

The <nav> tag defines a page section that includes a few elements that help visitors navigate your site. These elements could be links to the main sections of the site, links to recently posted content, or a search feature. The <nav> section typically appears after the header, as shown here (and in Figure 1-18):

<body>

 <header>

 <h1>Welcome to "Isn't it Semantic?"</h1>

 <hr>

 </header>

 <nav>

 Home

 Semantics

 Contact

 About

 </nav>

 …

</body>

 [image: image]

FIGURE 1-18: The <nav> section usually appears just after the <header> section.

The <main> tag

The <main> tag sets up a section to hold the content that is, in a sense, the point of the page. For example, if you're creating the page to tell everyone all that you know about Siamese Fighting Fish, then your Siamese Fighting Fish text, images, links, and so on would go into the <main> section.

The <main> section usually comes right after the <head> and <nav> sections:

<body>

 <header>

 …

 </header>

 <nav>

 …

 </nav>

 <main>

 Main content goes here

 </main>

 …

</body>

The <article> tag

You use the <article> tag to create a page section that contains a complete composition of some sort: a blog post, an essay, a poem, a review, a diatribe, or a jeremiad.

In most cases, you'll have a single <article> tag nested inside your page’s <main> section:

<body>

 <header>

 …

 </header>

 <nav>

 …

 </nav>

 <main>

 <article>

 Article content goes here

 </article>

 </main>

 …

</body>

However, it isn't a hard and fast rule that your page can have only one <article> tag. In fact, it isn’t a rule at all. If you want to have two compositions in your page — and thus two <article> sections within your <main> tag — be my guest.

The <section> tag

The <section> tag indicates a major part of page: usually a heading tag followed by some text. How do you know whether a chunk of the page is “major” or not? The easiest way is to imagine if your page had a table of contents. If you'd want a particular part of your page to be included in that table of contents, then it’s major enough to merit the <section> tag.

Most of the time, your <section> tags will appear within an <article> tag:

<main>

 <article>

 <section>

 Section 1 heading goes here

 Section 1 text goes here

 </section>

 <section>

 Section 2 heading goes here

 Section 2 text goes here

 </section>

 …

 </article>

</main>

The <aside> tag

You use the <aside> tag to cordon off a bit of the page for content that, although important or relevant for the site as a whole, is at best tangentially related to the page's <main> content. The <aside> is often a sidebar that includes site news or links to recent content, but it might also include links to other site pages that are related to current page.

The <aside> element most often appears within the <main> area, but after the <article> content.

<body>

 <header>

 …

 </header>

 <nav>

 …

 </nav>

 <main>

 <article>

 …

 </article>

 <aside>

 …

 </aside>

 </main>

 …

</body>

The <footer> tag

You use the <footer> tag to create a page footer, which is typically a strip across the bottom of the page that includes elements such as a copyright notice, contact info, and social media links.

Since the footer almost always appears at the bottom of the page, the <footer> tag is usually seen right before the </body> tag, as shown here:

<body>

 <header>

 …

 </header>

 <nav>

 …

 </nav>

 <main>

 <article>

 …

 </article>

 <aside>

 …

 </aside>

 </main>

 <footer>

 …

 </footer>

</body>

Handling non-semantic content with <div>

The <header>, <nav>, <main>, <article>, <section>, <aside>, and <footer> elements create meaningful structures within your page, which is why HTML nerds call these semantic elements. Even the humble <p> tag that I introduced earlier in this chapter is semantic in that it represents a single paragraph, usually within a <section> element.

But what's a would-be web weaver to do when she wants to add a chunk of content that just doesn’t fit any of the standard semantic tags? That happens a lot, and the solution is to slap that content inside a <div> (for “division”) element. The <div> tag is a generic container that doesn't represent anything meaningful, so it’s the perfect place for any non-semantic stuff that needs a home:

<div>

 Non-semantic content goes right here

</div>

Here’s an example:

<div>

 Requisite social media links:

</div>

<div>

 Facebook

 Twitter

 Instagram

 Hooli

</div>

Notice in Figure 1-19 that the browser renders the two <div> elements on separate lines.

 [image: image]

FIGURE 1-19: The browser renders each <div> section on a new line.

Handling words and characters with

If you might want to do something with a small chunk of a larger piece of text, such as a phrase, a word, or even a character or three, then you need to turn to a so-called inline element, which creates a container that exists within some larger element and flows along with the rest of the content in that larger element.

The most common inline element to use is , which creates a container around a bit of text:

<p>

Notice how an

inline element flows right along with the

rest of the text.

</p>

What's happening here is that the tag is applying a style called small caps to the text between and (inline element). As you can see in Figure 1-20, the text flows along with the rest of the paragraph.

 [image: image]

FIGURE 1-20: Using makes the container flow with the surrounding text.

Chapter 2

Styling the Page with CSS

IN THIS CHAPTER

[image: check] Understanding cascading style sheets

[image: check] Learning the three methods you can use to add a style sheet

[image: check] Applying styles to web page elements

[image: check] Working with fonts and colors

[image: check] Taking advantage of classes and other style sheet timesavers

HTML elements enable Web-page designers to mark up a document’s structure, but beyond trust and hope, you don’t have any control over your text’s appearance. CSS changes that. CSS puts the designer in the driver’s seat.

— HÅKON WIUM LIE, THE “FATHER” OF CSS

One of the things that makes web coding with HTML so addictive is that you can slap up a page using a few basic tags and when you look at the result in the browser, it usually works pretty good. A work of art it’s not, but it won’t make your eyes sore. That basic functionality and appearance are baked in courtesy of the default formatting that all web browsers apply to various HTML elements. For example, text appears in a bold font, there's a bit of vertical space between <p> elements, and <h1> text shows up quite a bit larger than regular text.

The browsers' default formatting means that even a basic page looks reasonable, but I’m betting you’re reading this book because you want to shoot for something more than reasonable. In this chapter, you discover that the secret to creating great-looking pages is to override the default browser formatting with your own. You explore custom styling and dig into specific styles for essentials such as fonts, alignment, and colors.

Figuring Out Cascading Style Sheets

If you want to control the look of your web pages, then the royal road to that goal is a web coding technology called cascading style sheets, or CSS. As I mention in Book 2, Chapter 1, your design goal should always be to separate structure and formatting when you build any web project. HTML’s job is to take care of the structure part, but to handle the formatting of the page you must turn to CSS. Before getting to the specifics, I answer three simple questions: What’s a style? What’s a sheet? What’s a cascade?

Styles: Bundles of formatting options

If you’ve ever used a fancy-schmancy word processor such as Microsoft Word, Google Docs, or Apple Pages, you’ve probably stumbled over a style or two in your travels. In a nutshell, a style is a combination of two or more formatting options rolled into one nice, neat package. For example, you might have a “Title” style that combines four formatting options: bold, centered, 24-point type size, and a Verdana typeface. You can then “apply” this style to any text and the program dutifully formats the text with all four options. If you change your mind later and decide your titles should use an 18-point font, all you have to do is redefine the Title style. The program then automatically trudges through the entire document and updates each bit of text that uses the Title style.

In a web page, a style performs a similar function. That is, it enables you to define a series of formatting options for a given page element, such as a tag like <div> or <h1>. Like word processor styles, web page styles offer two main advantages:

	They save time because you create the definition of the style's formatting once, and the browser applies that formatting each time you use the corresponding page element.

	They make your pages easier to modify because all you need to do is edit the style definition and all the places where the style is used within the page get updated automatically.

For example, Figure 2-1 shows some <h1> text as it appears with the web browser’s default formatting. Figure 2-2 shows the same <h1> text, but now I've souped up the text with several styles, including a border, a font size of 72 pixels, the Verdana typeface, and page centering.

 [image: image]

FIGURE 2-1: An <h1> heading that appears with the web browser’s default formatting.

 [image: image]

FIGURE 2-2: The same text from Figure 2-1, except now with added styles.

Sheets: Collections of styles

So far so good, but what the heck is a sheet? The term style sheet harkens back to the days of yore when old-timey publishing firms would keep track of their preferences for things like typefaces, type sizes, margins, and so on. All these so-called “house styles” were stored in a manual known as a style sheet. On the web, a style sheet is similar: It’s a collection styles that you can apply to a web page.

Cascading: How styles propagate

The “cascading” part of the name cascading style sheets is a bit technical, but it refers to a mechanism that’s built into CSS for propagating styles between elements. For example, suppose you want all your page text to be blue instead of the default black. Does that mean you have to create a “display as blue” CSS instruction for every single text-related tag on your page? No, thank goodness! Instead, you apply it just once, to, say, the <body> tag, and CSS makes sure that every text tag in the <body> tag gets displayed as blue. This is called cascading a style.

Getting the Hang of CSS Rules and Declarations

Before I show you how to actually use CSS in your web pages, let's take a second to get a grip on just what a style looks like.

The simplest case is where a single formatting option is applied to an element. Here’s the general syntax for this:

element {

 property: value;

}

Here, element is a reference to the web page doodad to which you want the style applied. This reference is often a tag name (such as h1 or div), but CSS has a powerful toolbox of ways you can reference things, which I discuss later in this chapter.

The property part is the name of the CSS property you want to apply. CSS offers a large collection of properties, each of which is a short, alphabetic keyword, such as font-family for the typeface, color for the text color, and border-width for the thickness of a border. The property name is followed by a colon (:), a space for readability, the value you want to assign to the property, and then a semi-colon (;). This is known in the trade as a CSS declaration (although the description property-value pair is quite common, as well).

[image: remember] Always enter the property name using lowercase letters. If the value includes any characters other than letters or a hyphen, then you need to surround the value with quotation marks.

Notice, too, that the declaration is surrounded by braces ({ and }). All the previous code — from the element name down to the closing brace (}) is called a style rule.

For example, the following rule applies a 72-pixel (indicated by the px unit) font size to the <h1> tag:

h1 {

 font-size: 72px;

}

Your style rules aren't restricted to just a single declaration: You’re free to add as many as you need. The following example shows the rule I used to style the h1 element as shown earlier in Figure 2-2:

h1 {

 border-width: 1px;

 border-style: solid;

 border-color: black;

 font-size: 72px;

 font-family: Verdana;

 text-align: center;

}

[image: remember] Note that the declaration block — that is, the part of the rule within the braces ({ and }) — is most easily read if you indent the declarations with a tab or with either two or four spaces. The order of the declarations isn't crucial; some developers use alphabetical order, whereas others group related properties together.

Besides applying multiple styles to a single element, it’s also possible to apply a single style to multiple elements. You set up the style in the usual way, but instead of a single element at the beginning of the rule, you list all the elements that you want to style, separated by commas. In the following example, a yellow background color is applied to the <header>, <aside>, and <footer> tags:

header,

aside,

footer {

 background-color: yellow;

}

Adding Styles to a Page

With HTML tags, you just plop the tag where you want it to appear on the page, but styles aren't quite so straightforward. In fact, there are three main ways to get your web page styled: inline styles, internal style sheets, and external style sheets.

Inserting inline styles

An inline style is a style rule that you insert directly into whatever tag you want to format. Here’s the general syntax to use:

<element style="property1: value1; property2: value2; …">

That is, you add the style attribute to your tag, and then set it equal to one or more declarations, separated by semicolons.

For example, to apply 72-pixel type to an <h1> heading, you'd add an inline style that uses the font-size CSS property:

<h1 style="font-size: 72px;">

[image: remember] Note that an inline style gets applied only to the tag within which it appears. Consider the following code:

<h1 style="font-size: 72px;">The Big Kahuna</h1>

<h1>Kahunas: Always Big?</h1>

<h1>Wait, What the Heck Is a Kahuna?</h1>

As you can see in Figure 2-3, the larger type size only gets applied to the first <h1> tag, whereas the other two h1 elements appear in the browser's default size.

 [image: image]

FIGURE 2-3: Only the top <h1> tag has the inline style, so only its text is styled at 72 pixels.

Embedding an internal style sheet

Inline styles are a useful tool, but because they get shoehorned inside tags, they tend to be difficult to maintain because they end up scattered all over the page’s HTML code. You’re also more likely to want a particular style rule applied to multiple page elements.

For easier maintenance of your styles, and to take advantage of the many ways that CSS offers to apply a single style rule to multiple page elements, you need to turn to style sheets, which can be either internal (as I discuss here) or external (as I discuss in the next section).

An internal style sheet is a style sheet that resides within the same file as the page’s HTML code. Specifically, the style sheet is embedded between the <style> and </style> tags in the page's head section, like so:

<!DOCTYPE html>

<html lang="en">

 <head>

 <style>

 Your style rules go here

 </style>

 </head>

 <body>

…

Here’s the general syntax to use:

<style>

 elementA {

 propertyA1: valueA1;

 propertyA2: valueA2;

 …

 }

OEBPS/images/9781119473923-fg010202.png
) sewp

Installation folder

Please, choose 3 folder o nstall XAMPP.
Select a folder |C:xampp

[F]

OEBPS/images/9781119473923-fg010203.png
M Windows Security Alert

der Firewall h tures of this

Windows Defender Firewall has blocked some features of Apache HTP Server on al publc and
private networks.

Neme: ‘Apache HITP Server
Publsher: Apache Software Foundation
Path: C:hampplapache bin\httpd.exe:

Allow Apache HTTP Server to commuricate on these netiorks:
ate netiorks, such s my home or work netiork

[JPublcnetworks, such as those in sirorts and coffee shops (notrecommended
because these networks often have lite o no seauity)

What are the risks of alowing an app trouch a frewall

OEBPS/images/9781119473923-fg010204.png
Tiodues
Service Module
X A
X wsa
x| ez
erury

X Tomeat
i [main)

M [main]

1 [main]

[main]

[main}

{main]

M [main]
5133 P [main]

[E) xaMPP Control Panel 322 [Compiled: Nov 12th 2015

XAMPP Control Panel v3.2.2

PIDs) Port(s) Actions
ot | [Admn || contg

San | [T [contg
san | [A | [contg
san | [A | [contg
san | [T [contg

Control Panel Version: 3.2.2_ [Compiled: Nov 12th 2015]
Running with Administrator rights - good!

XAMPP Installaion Directory: "c-\xampp\"

Checking or prerequisites.

Al prerequisites found

Initialzing Modules

Starting Check-Timer

Control Panel Ready.

g8 s

OEBPS/images/9781119473923-fg010205.png
B 8| O wecomeroxamre X [N - o

€ >0 0w mx = L@

[Z) XAMPP Apache + MariaDB + PHP + Perl

Welcome to XAMPP for Windows 7.1.9

You have successtuly msaled XAMP on i systamt Now you can stat using Apache, MariaD, PHP and atbr components You
can find more ino in the FAQS secton o check the HOW-TO Gudes for getng stated with PHP applicatns

OEBPS/images/9781119473923-fg010206.png
eoce & Setup

Setect Components [,:4]

Select the componerts you want 10 instal deat the components you do ot want
toinstall. Click Next when you are ready to continue.

“XAMPP Core Files. Build files for development: include,
man, docs and share folders.
XAMPP Developer Files

XAMPP Installer

Cancel | <Back || Next>

OEBPS/images/9781119473923-fg010207.png
LX) XAMPP 7.1.9-0

Welcome | MBRSGSSENEEY Appiication og

Sorver Suns

© MysaL Data Stopped

@ ProFTPD Stopped

© Apache Web Server Ru Stop
Restart
Configure

Start All Stop Al Restart All

OEBPS/images/9781119473923-fg010208.png
G Sohri P Bk _Viw Hetory Boslensin Widew Heb

[Z] XAMPP Apache + MariaDB + PHP + Perl

Welcome to XAMPP for OS X 7.1.9

You havesuccesstl intaled XAMPP on hissysom! Now yo can str using Apache, MaaDB, PHP and ather companan'. You
an find moreinf n tha FAQS section o check the HOW-TO Guids for gettg started with PHP applicatos.

OEBPS/images/9781119473923-fg010209.png
renes

SRR s et b 40 for it
588 e vimart content ekdthebe ee-gidth initisl-scatent. e
S Py e et ety shytas core
S s ey A A e 5o ser s
S e L
S e

STdoesment.reseytrunceion 0 ¢

Smamovbar-code"). Losa(~/includes navbar—code. £xt™)

Sleataater-cadets Losse/vourssatoster.on):

SLaeUISN et-exampies. o function(aata)
s s

v Claesoue

(SN

OEBPS/images/warning.png
&

WARNING.

OEBPS/images/9781119473923-fg010201.png
) sewp - o X

Selct Components E.]

Select the components you want to instal; dear the components you do not want to nstal. Clck
Next when you are ready to continue.

Cidk on a component to get a detaled descrption

XAMP Installer
<Back Next> Cancel

OEBPS/images/9781119473923-fg020120.png
Notice how an INLINE ELEMENT flows right along with the rest of the text.

OEBPS/images/9781119473923-fg020203.png
The Big Kahuna

Kahunas: Always Big?
‘Wait, What the Heck Is a Kahuna?

OEBPS/images/9781119473923-fg020201.png
Hello CSS World!

OEBPS/images/9781119473923-fg020202.png
" Hello CSS World!

OEBPS/images/tip.png

OEBPS/images/9781119473923-fg010110.png
(COPENHAGEN —Researchers from Aalborg University announced today that tey have finally discovered
the long sought-after Soup-Nuts Continuum. Scientist around the world have been searching for this elusive:
item ever since Albert Einstein's mother-in-law proposed it existence in 1922. *Today is an incredible day for
the physics community and for humanity as a whole,” said senior rescarcher Lars Grilntwerk, “Today, for the
firsttime in history, we arc on the verge of knowing everything from soup to, well, you know, nuts.”

OEBPS/images/9781119473923-fg010111.png
COPENHAGEN—Researchers from Aalborg University announced today that they have finally discovered
the long sought-after Soup-Nuts Continuum. Scientists around the world have been searching for this clusive
tem ever since Albert Einstein's mother-in-law proposed its existence in 1922.

“Today is an incredible day for the physics community and for humanity as a whole," said senior researcher

Lars Grilntwerk. "Today, for the first time in history, we are on the verge of knowing everything from soup 10,
well, you know, nuts.”

OEBPS/images/9781119473923-fg010112.png
COPENHAGEN—Researchers from Aalborg University
announced today that they have finally discovered the long
sought-after Soup-Nuts Continuum. Scientists around the world
have been searching for this elusive item ever since Albert
Einstein's mother-in-law proposed its existence in 1922.

"Today is an incredible day for the physics community and for
humanity as a whole," said senior researcher Lars Grintwerk.
"Today, for the first time in history, we are on the verge of knowing
everything from soup to, well, you know, nuts."

OEBPS/images/titlepg.png
Web Coding &
Development

ALL-IN-ONE

by Paul McFedries

diimmies

OEBPS/images/9781119473923-fg020111.png
Here's what the great jurist Oliver Wendell Holmes, Sr. had to say about puns:

A pun does not commonly justify a blow in return. But if a blow were
given for such cause, and death ensued, the jury would be judges both
of the facts and of the pun, and might, if the latter were of an
aggravated character, return a verdict of justifiable homicide.

Clearly, the dude was not a pun fan.

OEBPS/images/9781119473923-fg020112.png
3 Creating links. x

& C O ® mfedries.com/n dummies/example.php7book=28chapter=1aex... %

For web coding fun, check out the Web goﬁng Playground!

webcodingplaygroundio

OEBPS/images/9781119473923-fg020110.png
This is Heading 1
This is Heading 2

This is Heading 3

This is Heading 4

This is Heading 5

‘This is Heading 6

OEBPS/images/cover.jpg
Web Coding &
Development

ALL-IN-ONE

dimmies

Paul McFedries

OEBPS/images/9781119473923-fg020119.png
Requisite social media links:
Facebook Twitter Instagram Hooli

OEBPS/images/9781119473923-fg020117.png
Jsn't it
Jemaritc?

‘Welcome to “Isn’t it Semantic?”

OEBPS/images/9781119473923-fg020118.png
JIsn’t it
Jdemantic?

‘Welcome to “Isn’t it Semantic?”

Home Semanties Comact About

OEBPS/images/9781119473923-fg020115.png

OEBPS/images/9781119473923-fg020116.png
<nav>
<main>
<article>
<section>
<aside>
<section>
<footer>

OEBPS/images/9781119473923-fg020113.png
My All-Time Favorite Oxymorons

* Pretty ugly

Military intelligence
Jumbo shrimp
Original copy
Random order

Act naturally

Tight slacks
Freezer burn

Sight unseen
Microsoft Works

OEBPS/images/9781119473923-fg020114.png
My Ten Favorite U.S. College Nicknames

1. U.C. Santa Cruz Banana Slugs
2. Delta State Fighting Okra
3. Kent State Golden Flashes
4. Evergreen State College Geoducks
5. New Mexico Tech Pygmies
6. South Carolina Fighting Gamecocks
7. Southern Illinois Salukis
8. Whittier Poets
9. Western Illinois Leathernecks
10. Delaware Fightin’ Blue Hens

OEBPS/images/9781119473923-fg010103.png
Dear 16214412037:

At your earliest convenience, please send
me the mckedriescom web page located at
webcodingfordummies/indexhimil.

Sincerely,
W. Browser

OEBPS/images/9781119473923-fg010104.png
Decoding mcfedries.com/webcodingfordummies/index.html...
Results:
User account: paulmcfedries

Directory: webcodingfordummies
Filename: index.html

OEBPS/images/9781119473923-fg010105.png
Dear W. Browser:

Thank you for contacting us. Here is the file you
requested. Let us know if you need anything else.

Best,
mcfedries.com Web Server

OEBPS/images/9781119473923-fg010106.png
Decoding index.html...
Results:

Text: Received

Formatting: Request styles.css
Images: Request logo.png, cover. jpg
Audio: None

Video: None

Data: Request book examples

OEBPS/images/9781119473923-fg010107.png
Dear 1621442037:

Thank you For the page Fie. IF it's not too much
trouble, could you please also send along the Following:

stylescss

logopng

cover. .JFg

Book. examples £rom the database

OEBPS/images/9781119473923-fg010108.png
Dear W. Browser:

You're very welcome. We're here to serve! We're
gathering your order and will send along the extra
data you requested shortly.

Best,
mcfedries.com Web Server

OEBPS/images/9781119473923-fg010109.png
@ Firofox Flle Edt View History Bookmarks Tools Window Help I 1K)

008 [@we wore % \

| I ——
§

S Web Coding and
22 Development All-in-
One for Dummies

Example Files

OEBPS/images/9781119473923-fg010101.png
& Firefox File Edit

View History Bookmarks

eoe / e <\t
— G
€ http:/jmefedries.comjwebcodingfordummies/index.html

L hte:/imcfedries.com/webcodingtordummies/index.ntml_|

OEBPS/images/9781119473923-fg010102.png
Decoding http://mcfedries.com/webcodingfordummies/index.html...
Results:
Prefix: http://

Domain name: mcfedries.com
Web server IP address: 162.144.120.37

OEBPS/images/9781119473923-fg020101.png
Okay, listen up people because this is important!

OEBPS/images/9781119473923-fg020108.png
Dear reader: Do you see the red button in the upper-right corner of this page?
Never click the red button! You have been warned.

OEBPS/images/9781119473923-fg020109.png
Dear reader: Do you see the red button in the upper-right corner of this page?
Never, I repeat never, click the red button! You have been warned.

OEBPS/images/9781119473923-fg020106.png
@ Chrome File Edit View History Bookmarks People Window Help

® © ® /5 MyHome Sweet Home Page x
€ C {1 | ® metedries.comieb:

codingfordum

mies/example.php?book=2&chapter=18example=6

Hello HTML World!

OEBPS/images/9781119473923-fg020107.png
You'll never fit in there with that ridiculous thing on your head!

OEBPS/images/9781119473923-fg020104.png
@_Owome Pl Bt View

.
«

@ e v

€ 0 ©nciosioscom

Hutory _ Sookmusks _Pecsle Window _ He (RN W KW Y]
B e

Okay, listen up people because this is importani!

OEBPS/images/9781119473923-fg020105.png
Chrome File Edit View History Bookmarks People Window Help
© 0 ® /5 Wy Home Sweet Home Page

€ C {1 |® metecries.comve

OEBPS/images/9781119473923-fg020102.png
Okay, listen up people because this is important!

OEBPS/images/9781119473923-fg020103.png
@_Owome Pl Bt View

.
«

@ e v

C 0 ©nciosioncom

Hutory _ Sookmusks _Pecsle Window _ He (RN LN KW Y]
B e

Okay, listen up people because this is importani!

OEBPS/images/check.png

OEBPS/images/remember.png
uuuuuuuu

OEBPS/images/technicalstuff.png
&

