Christiane Habrich-Böcker Beate Charlotte Kirchner Peter Weißenberg

Fracking — Die neue Produktionsgeografie

2. Auflage

Christiane Habrich-Böcker Beate Charlotte Kirchner Peter Weißenberg

Fracking — Die neue Produktionsgeografie

2. Auflage

Fracking – Die neue Produktionsgeografie

Christiane Habrich-Böcker Beate Charlotte Kirchner Peter Weißenberg

Fracking – Die neue Produktionsgeografie

2., aktualisierte und korrigierte Auflage

Christiane Habrich-Böcker München Deutschland Peter Weißenberg München Deutschland

Beate Charlotte Kirchner München Deutschland

ISBN 978-3-658-05886-9 DOI 10.1007/978-3-658-05887-6 ISBN 978-3-658-05887-6 (eBook)

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Gabler

© Springer Fachmedien Wiesbaden 2014, 2015

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Lektorat: Stefanie Brich

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier

Springer Gabler ist eine Marke von Springer DE. Springer DE ist Teil der Fachverlagsgruppe Springer Science+Business Media www.springer-gabler.de

Geleitwort

Die Energieversorgung der Welt steht vor einer radikalen Wende: Mit Fracking erschließt eine Förderart bislang unerreichbare Öl- und Gasquellen in der Tiefe. Das verändert die Spielregeln im globalen Energiemarkt.

Durch die Ausbeutung dieser sogenannten unkonventionellen Lagerstätten können einige Staaten, die bislang von Öl- und Gas-Importen abhängig sind, zu Exporteuren aufsteigen. Die Preise für Energie werden gerade in diesen Regionen enorm sinken. Unternehmen investieren Milliarden in Fracking und die LNG-Technologie zur Erdgasverflüssigung – und verändern damit das Gefüge der Weltwirtschaft. Für energieintensive Industrien wie Stahl- und Aluminiumhütten, Automobilfertigung oder Maschinenbau werden etwa Verlagerungen in der Produktion nötig, um die Wettbewerbsfähigkeit zu halten.

Doch die Fracking-Technologie ist heftig umstritten. In diesem Buch stellen Experten den neuesten Stand der Diskussion, Chancen und Risiken des Fracking-Booms vor. Entscheider aus Politik, Wirtschaft und Gesellschaft können sich so ein unvoreingenommenes Bild machen, um in einer aufgeheizten Debatte kompetent teilnehmen zu können.

Christiane Habrich-Böcker Beate Charlotte Kirchner Peter Weißenberg

Läuft etwas schief bei dem komplizierten Vorgang, den wir öffentliche Meinungsbildung nennen? Blättert man dieser Tage durch die Zeitungen, kann man diesen Eindruck bekommen. Da werden kritische Themen von vornherein zu gesellschaftlichen Tabuzonen erklärt, über die man als Politiker besser nicht redet, wenn man sich nicht unbeliebt machen will. Da werden Debatten über den Sinn oder Unsinn neuer Technologien mit politischen Machtworten beendet, bevor sie über-

VI Geleitwort

haupt den nötigen Erkenntnisgewinn gebracht haben. Und da werden jene, die für eine offene Diskussion plädieren, gleich als voreingenommen abqualifiziert.

Ein Beispiel, an dem sich die Mechanismen derzeit besonders gut nachvollziehen lassen, ist Fracking. Diese Fördermethode soll, so die Hoffnung ihrer Befürworter, bislang unerreichbare Erdöl- und Erdgasreserven freisetzen – mithilfe technischer Tiefenbohrungen, bei denen Chemikalien in den Boden eingepresst werden. Die Flüssigkeit sprengt das Gestein und macht die Förderung so erst möglich.

Man kann und muss offen über die Vor- und Nachteile einer solchen Technologie diskutieren, vor allem muss die Wissenschaft sich aktiv und engagiert an einer solchen Debatte beteiligen. Beim Thema Fracking jedoch sind die Fronten verhärtet, die Politik übt sich in Seitwärtsbewegungen, und die Wissenschaft beginnt das Thema zu meiden. Schließlich will man sich keine blutige Nase holen. Das Ergebnis: Es gewinnt nicht das beste Argument, ob Fracking in Deutschland eine sinnvolle Technologie sein kann – oder eben gerade nicht. Es gewinnt die Angst.

Fest steht: Je weniger wir unliebsame Diskussionen austragen, je weniger Argumente und je mehr Plattitüden wir austauschen, desto mehr leidet die öffentliche Meinungsbildung. Die Bevölkerung wird gar nicht erst korrekt und umfassend informiert. So kann sie sich kein fundiertes, auf Fakten basiertes Urteil zu Themen bilden, die für ihr Wohlergehen von Bedeutung sein könnten.

Wenn das hier vorliegende Buch dazu beitragen kann, diesen Zustand zumindest beim Thema Fracking zu ändern, ist viel gewonnen. Es kann und darf in der Wissenschaft nicht darum gehen, als eine Art Hidden Agenda bestimmte Sichtweisen zu fördern und andere zu unterdrücken. Die einzige Sichtweise, die es zu fördern gilt, ist die, dass möglichst viel Wissen über strittige Themen allen weiterhilft. In diesem Sinne wünsche ich Ihnen eine angenehme und erkenntnisreiche Lektüre – und uns allen eine öffentliche Meinungsbildung, die uns klüger macht und uns erlaubt, alle Fragen zu stellen, die wir brauchen, um klüger zu werden.

Helmholtz-Gemeinschaft Deutscher Forschungszentren Jan-Martin Wiarda Leiter Bereich Kommunikation und Medien

Vorwort

"Ein ganz besonderer Saft"

Mephisto schwärmt in Goethes Faust mit diesen Worten vom Lebenselixier Blut. Ohne den ganz besonderen Saft kann der Mensch nicht existieren. Für die Weltwirtschaft kommt der ganz besonderer Saft eindeutig immer noch aus der Erde: Es ist die fossile Energie, die unsere Zivilisation antreibt. Nach wie vor. Vor allem Öl, Kohle und Gas sind die Hauptenergieträger.

Doch diese Vorräte sind endlich. Darum brauchen industrielle und private Verbraucher dringend neue Ressourcen – und neben dem zarten Pflänzchen der erneuerbaren Energien ist es unzweifelhaft auch notwendig, Erdgas- und Erdöl-Reserven zu erschließen, die mit konventionellen Bohrtechniken nicht an die Oberfläche zu bringen sind.

Seit Jahrzehnten leistet dazu die Fracking-Technologie einen Beitrag – auch in Europa. Doch erst mit dem massiven Ausbau in den USA ist diese Methode in den Fokus der Öffentlichkeit geraten. Zu Recht: Denn Fracking führt wahrscheinlich zu einer neuen Produktionsgeografie. Fracking und neue Techniken der Erdgas-Aufbereitung werden so auch die Weltwirtschaft verändern. Die Karten der bisherigen Gewinner und Verlierer werden neu gemischt.

Wer nicht mitspielt, hat schon verloren. Aber was kann der verlieren, der das falsche Blatt hält? Dieses Buch will über Möglichkeiten, Chancen und Risiken aufklären. Dabei wird auch von Meinungen, Ängsten und Diskussionen die Rede sein. Vor allem aber von Fakten, Hintergründen und Perspektiven.

Christiane Habrich-Böcker verfasste die die Beträge über Auswirkung auf das globale wirtschaftliche Umfeld und die energieintensive Industrie. Peter Weißenberg recherchierte und schrieb zum Thema Energieindustrie, Beate Charlotte Kirchner stellt den Status quo in der politischen Landschaft sowie die Gegenpositionen dar.

Ein freier Geist und fundiertes Wissen sind gerade bei der Diskussion um das Thema Fracking entscheidend wichtig. Es geht schließlich um einen ganz besonderen Saft.

Inhaltsverzeichnis

1	Fracking – Fluch oder Segen?			
	1.1		lsätzliches zu Fracking	3
	1.2		ische Basis	10
	1.3		der Forschung	13
	Lite	ratur		17
2	Die	weltwei	iten Fracking-Gebiete	19
3	Die	Auswir	kungen auf die Wirtschaft	27
	3.1		aktor Energie in der Kostenrechnung	29
	3.2	Die Er	nergiepreise und die Standortwahl	30
		3.2.1	Das Fracking in den Schwellenländern	34
		3.2.2	Das mögliche Verbot in der EU	35
	3.3	Die Re	eaktionen der Finanzmärkte/Investoren	36
	3.4	Die po	olitischen Eingriffe	37
	3.5	Die Er	nergiewende und ihr Einfluss auf die Standortfrage	38
	Lite	ratur		39
4	Die	Pläne d	er Energieversorger	41
	4.1		ng und LNG revolutionieren den globalen Energiemarkt	42
		4.1.1	Situation in den USA	43
		4.1.2	Situation in China	43
		4.1.3	Situation in Europa	45
		4.1.4	LNG schafft den freien Erdgas-Markt	47
	4.2	Pläne	großer Energieversorger in aller Welt	48
		4.2.1	Auswirkung auf das US-Marktgefüge	49
		4.2.2	Aktivitäten in Europa	51
		4.2.3	Aktivitäten in China und Russland	52

X Inhaltsverzeichnis

		4.2.4	"Goldenes Gaszeitalter" dank LNG	53			
		4.2.5	Deutsche Unternehmen	54			
	4.3	Erdgas	s in Deutschland – die Sicht der Energiewirtschaft	56			
		4.3.1	Bedeutung der deutschen Erdgasressourcen	56			
		4.3.2	Die Industrie und ihre Fracking-Aktivitäten	58			
		4.3.3	Fracking für Deutschland – Fracking in Deutschland?	60			
	4.4	Fracki	ng als wirtschaftliche Bedrohung	61			
	Lite	ratur		61			
5	Die energieintensiven Branchen						
	5.1	Der Ei	nergieverbrauch und die wirtschaftlichen Zukunft	66			
	5.2	Die In	dustrie und die Abhängigkeit von Versorgungs-				
		und P	reisstabilität	72			
	5.3	Die Er	nergieintensiven Industrien suchen Lösungen	73			
	5.4	Die Aı	uswirkungen von Fracking auf die Mobilität von morgen	74			
		5.4.1	Gas kann umweltfreundliche Mobilität fördern	77			
	Lite	ratur		80			
6	Die Argumente der Gegner						
	unte	unter der Lupe					
	6.1		cologischen Faktoren	82			
		6.1.1	Risiken für das Wasser	82			
		6.1.2	Humantoxologische Risiken	88			
		6.1.3	Die Klimabilanz	92			
		6.1.4	Effekte auf Landschaft, Flora und Fauna	93			
		6.1.5	Die seismischen Risiken	94			
	6.2	Die ök	konomischen Faktoren	95			
		6.2.1	Fracking ist nicht wirtschaftlich	95			
		6.2.2	Gaspreise sinken nicht dauerhaft	97			
		6.2.3	Kein Wettbewerbsvorteil durch Preiseffekt	99			
		6.2.4	Die Haftungsfrage ist nicht geklärt	101			
	6.3	Studie	n und Untersuchungen	103			
	Lite	ratur		105			
7	Die	Die konträren politischen Standpunkte					
	7.1	Die po	olitische Brisanz des Themas	108			
		7.1.1	Der globale Kontext der Energieversorgung	108			
		7.1.2	Die Energiepolitik und Energieeffizienz	110			
		7.1.3	Die Grundsatzfrage: Angebots- oder Nachfrageseite	112			

Inhaltsverzeichnis XI

	7.2	Ohne	Fracking geht es nicht	114
		7.2.1	USA zielt auf Energieunabhängigkeit	114
		7.2.2	Günstige Rahmenbedingungen in den USA	116
	7.3	Die Er	nergiewirtschaft im globalen Kontext	119
		7.3.1	Der Preissturz in den USA	119
		7.3.2	Mögliche geopolitische Implikationen	120
		7.3.3	Folgen für den Energiegiganten Russland und Europa	122
		7.3.4	Mit LNG-Importen gegen die Gasabhängigkeit von	
			Russland?	123
	7.4	Fracki	ng darf nicht zum Einsatz kommen	125
		7.4.1	Relevante Studien	125
		7.4.2	Alternative und innovative Methoden zur	
			Energiegewinnung	128
	7.5	Diskus	ssion in Deutschland und Europa	130
		7.5.1	Deutschland und das Ziel Energiewende	130
		7.5.2	Status quo und Aussichten in der Europäischen Union	133
	Lite	ratur		138
Glo	ssar			139
Die	wicl	htigster	1 Websites	145

Abkürzungsverzeichnis

AEO American Energy Outlook

Barrel vom engl. Fass, eine Maßeinheit des Raums

bbl 1 Barrel Öl, in der petrochemischen Industrie gilt 1 bbl. (Impe-

rial, d. h. britisch (= 35 Gallonen) und U.S., d. h. US-amerika-

nisch (= 42 Gallonen))

bcf billion cubic feet, Milliarden Kubikfuß, Maßeinheit, mit der

vorhandene Ressourcen sowie Fördermengen beziffert werden

BGR Bundesanstalt für Geowissenschaften und Rohstoffe BHP BHP Billiton, weltweit größter Bergbaukonzern

BIP Bruttoinlandsprodukt
BSP Bruttosozialprodukt

BMU Bundesministerium für Umwelt, Naturschutz und Reaktorsi-

cherheit

BTU British Thermal Unit (1,055 J) Einheit für Energie, Wärme-

energie, die benötigt wird, um ein britisches Pfund Wasser um

1 Grad Fahrenheit zu erwärmen

BVOT Tiefbohrverordnungen

Clean Air Act US-amerikanisches Gesetz zur Luftreinhaltung, dessen Kern-

stück der Emissionshandel ist

Clean Water Act Gewässerschutzverordnung

CLP Classification, Labelling and Packaging, Global harmonisierte

System zur Einstufung und Kennzeichnung von Chemikalien

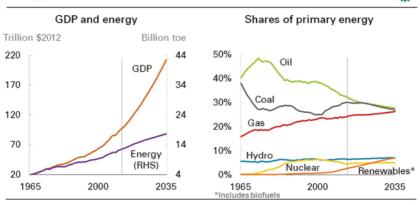
CO₂ Kohlendioxid

EEG Erneuerbare-Energien-Gesetz

EIA Energy Information Administration of the U.S. Department of

Energy

GIP Gas-In-Place


IEA International Energy Agency, Internationale Energieagentur

IPCC Intergovernmental Panel on Climate Change

LBEG	Landesamt für Bergbau, Energie und Geologie
LNG	Liquefied Natural Gas – hoch verdichtetes Erdgas, das sich über weite
	Strecken transportieren lässt.
LPG	Liquefied Petroleum Gas, internationale Bezeichnung für Flüssiggas
OPEC	Organization of Petroleum Exporting
PwC	PricewaterhouseCoopers AG, Unternehmensberatung und Wirt-
	schaftsprüfungsgesellschaft
REACH	Registration, Evaluation, Authorisation of Chemicals – Registrierung,
	Bewertung, Zulassung und Beschränkung chemischer Stoffe in der
	Europäischen Union
SDWA	Safe Drinking Water Act, Trinkwasserschutzgesetz
SRU	Sachverständigenrat für Umweltfragen
tcf	trillion cubic feet – Ressourcen in Billionen Kubikfuß
THG	Treibhausgas
URR	Ultimate Recovery Rate
U.S. EPA	U.S. Environmental Protection Agency – US-amerikanische Umwelt-
	behörde
USGS	U.S. Geological Survey, Geologischer Dienst der USA
UVP	Umweltverträglichkeitsprüfung
WEO	World Energy Outlook
WGK	Wassergefährdungsklasse ist ein Begriff aus dem deutschen Wasser-
	recht. Vereinfacht bezeichnet sie das Potenzial verschiedener Stoffe
	zur Verunreinigung von Wasser
WHG	Wasserhaushaltsgesetz

Das Thema spaltet derzeit die Öffentlichkeit: Gewinnung von Öl oder Gas, vor allem der Hebung der sogenannten unkonventionellen Ressourcen durch Fracking. Die Positionen in der Debatte sind konträr. Die Vertreter der einen Seite sagen zum Beispiel: Fracking greift massiv in die geologischen Gegebenheiten ein, verunreinigt das Wasser und senkt den Grundwasserspiegel. Dazu kommt: Für Menschen, in deren Umfeld Fracking-Bohrungen durchgeführt werden, ist die Art der Energiegewinnung eine hohe Belastung. Eine Fernsehreportage zeigte Horrorbilder wie Leitungswasser, das so mit Methan versetzt ist, dass es hoch entzündlich ist. Oder der Kinofilm "Promised Land" argumentierte mit Enteignungsszenarien von Ölgesellschaften etc. und stellt das Fracking als Kapitalisten-Vehikel an den Pranger.

Die andere Meinungsseite sieht dank Fracking das Ende der Energieknappheit, die durch die Peak-Oil-Szenarien heraufbeschwört wurden. Denn dank der Technologie werden Ressourcen förderbar, die bislang unerreichbar im Schiefergestein in rund vier Kilometer Tiefe eingeschlossen waren. Das Fracking-Exempel Nordamerika zeigt die positive Entwicklung: Die USA sind auf dem Weg durch die Fördermethode vom Gas-Importeur zum dauerhaften -Exporteur zu werden. Das hat Folgen für den Gaspreis in den Staaten. Die weiteren positiven Argumente: Fracking wird zum Jobmotor und mit der Reduzierung der Energiekosten sinken natürlich auch Produktionsaufwendungen der Fertigungen in den Ländern, die Fracking zulassen. Doch nach Abwägen des Für und Wider ist es mit dem Fracking wie so oft: Man weiß Genaues nicht. Alle Gutachten diesbezüglich konnten weder die unterstellten langfristigen Umweltauswirkungen wissenschaftlich darstellen, noch sind sich die Experten über das Potenzial an Energievorkommen einig, welches tatsächlich durch Fracking förderbar ist. Aber eines steht fest: An jedem Tag, der ins Land geht, wird das Verfahren weiterentwickelt, die Technologien verfeinert - vor allem in Richtung Umweltauswirkungen. Schon jetzt gibt es beispielsweise funktionierende, wenn auch teure Verfahren - auch von branchenfremden Unternehmen – zur Aufbereitung der Fracking-Flüssigkeit oder auch neue Materialien,

Energy decouples from GDP and fuel mix evolves

Energy Outlook 2035

Abb. 1.1 Der Gasanteil am Energieverbrauch wird steigen (Quelle: BP Energy Outlook)

die die bislang dem Wasser beigemischten Fluids durch umweltverträglichere Stoffe ersetzen.

Wie auch immer, alle Protagonisten sind sich einig: Auf dem Weg zum sinnvollen Fracking sind noch eine Menge Fragen zu lösen, beispielsweise auf nationaler Ebene, wem der Grund in der Tiefe gehört. Und warum setzt man überhaupt so eine unerforschte und somit umstrittene Methode ein? Ist das denn nötig? Matthias Bichsel, Technik-Vorstand bei Royal Dutch Shell, beantwortete in einem Interview in der "Die Zeit" die Frage: "Aber benötigt man dieses sogenannte unkonventionell Gas überhaupt?" mit: "Ohne Wenn und Aber: ja. Sonst würde es nicht gemacht …" (vgl. auch Abb. 1.1).

Was Sie in diesem Kapitel erfahren:

- 1.1 Grundsätzliches zu Fracking
- 1.2 Technische Basis
- 1.3 Stand der Forschung

¹ "Die Zeit vom 14.3.13, Nr. 12, Seite 30, Ressort Wirtschaft".