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Preface

The purpose of this book is to present an overview of, and introduction to, the
time-inconsistent control theory developed by the authors during the last decade.
The theory is developed for discrete as well as continuous time, and the kernel of
the content is drawn mainly from our journal articles Björk and Murgoci (2014),
Björk et al. (2017), and Björk et al. (2014). Starting from these articles, we have
included more examples and substantially simplified the exposition of the discrete-
time theory compared with that of Björk and Murgoci (2014). Moreover, we have
extended our framework to study time-inconsistent stopping problems, including
stopping problems with non-exponential discounting, mean-variance objective, and
distorted probabilities. Alongside our own results we have included discussions of
recent developments in the field. In order to make the text more self-contained we
have also added a brief recapitulation of optimal control and stopping in discrete
and continuous time.

It is important to recognize that the analysis of time inconsistency has a long
history in economics and finance literature. The idea of time consistency was
alluded to by Samuelson (1937) when introducing the most commonly used time-
discounting method in economics, exponential discounting. Strotz (1955) in his
seminal paper pointed out that any other choice of discounting function, apart
from the exponential case, will lead to a dynamically inconsistent problem. More
generally, in order to achieve dynamic consistency and analyze the agent’s problem
with a standard toolkit, one needs to make specific and often restrictive assumptions
about the objective functional the agent is maximizing (or minimizing). If the
agent’s objective does not conform to these assumptions (see Remark 1.1), time
consistency fails to hold and the usual concept of optimality does not apply. Loosely
speaking, this means that the agent’s tastes change over time, so that a plan for
some future period deemed optimal today is not necessarily optimal when that future
period actually arrives.

How can one handle time-inconsistent problems? One approach is to look for a
solution that is optimal today, ignoring the time inconsistency. Strotz (1955) refers
to an agent who fails to recognize the time inconsistency issue and adopts such
an approach as “spendthrift.” The term later coined in the literature is “naïve.”

v
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The naïve agent’s strategies are myopic and constantly changing. Strotz (1955)
also outlines two approaches for modeling a “sophisticated” agent who is aware
of the time inconsistency of their tastes: the strategy of pre-commitment and that of
consistent planning. In the former case, the agent decides on a plan of action that is
optimal today and commits to it, ignoring the incentives to revise it in the future. In
the latter case, the agent internalizes the incentives to deviate and treats them as a
constraint, thus aiming to arrive at a deviation-proof solution. Importantly, in both
cases the agent recognizes that their “today self” and their “future selves” may have
conflicting tastes.

In our work we choose to follow the consistent planning approach of Strotz
(1955) in that an agent’s strategies are taken to be the outcome of an intrapersonal
game whose players are successive incarnations of the same agent. Essentially, we
replace the usual concept of optimality with a more general concept of intrapersonal
equilibrium and look for Nash subgame-perfect equilibrium points (Selten, 1965).
Using this game-theoretic approach, we present an extension of the standard
dynamic programming equation, in the form of a system of nonlinear equations, for
determining the intrapersonal equilibrium strategy. This extended system, loosely
speaking, accounts for the incentives to deviate as time evolves and an agent’s
tastes change. This means that, for a general Markov process and a fairly general
objective functional, we obtain a plan that the agent will actually follow. We fully
acknowledge that, while our focus here is on the game-theoretic approach, the other
approaches that have been studied in the literature—the problem of a naïve agent
who reoptimizes as time goes by or that of a sophisticated agent who is able to
pre-commit—are both interesting and relevant.

The structure of the book is as follows. Following an introductory chapter, in
Part I we start by providing a brief review of optimal stochastic control in discrete
time. We present the standard results of discrete-time dynamic programming theory
and illustrate them by solving a standard linear quadratic regulator problem and
a simple discrete-time equilibrium model. Part II contains the main results for
stochastic time-inconsistent control problems in discrete time, originally developed
in Björk and Murgoci (2014), together with extensions and applications. We first
give an account of time-inconsistent control theory1 and present a number of
interesting extensions, including the generalization of the additively separable
expected utility model. The rest of the chapters in Part II discuss concrete examples
of the general theory. The applications we present include control problems with
non-exponential discounting and with mean-variance objective, time-inconsistent
regulator problems, and a time-inconsistent version of the simple equilibrium
model. In Part III, we summarize the continuous-time optimal control theory.

1The term “time-inconsistent” control was coined in the literature to emphasize the contrast with
optimal control theory, which deals with time-consistent problems. This terminology may seem
a bit confusing because, while the problem itself is inherently time inconsistent, the controls that
we aim to find are deviation-proof, meaning that they are time consistent. To be as precise as we
can be, we are studying time-consistent behavior of non-committed sophisticated agents who are
maximizing (or minimizing) a time-inconsistent objective functional.
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We first give a brief introduction to standard dynamic programming results in
continuous time and then proceed to illustrate the theory with a number of examples.
In Part IV, we build on results developed in Björk et al. (2017) for a class
of continuous-time stochastic control problems that, in various ways, are time
inconsistent. The structure of chapters in this part intentionally parallels that of
Part II, reflecting the fact that the discrete-time setting serves as a natural starting
point for the limiting arguments we use in the continuous-time case. In Part V,
we briefly summarize the standard optimal stopping theory. Then, in Part VI,2

we extend our methods in order to tackle time-inconsistent stopping problems in
discrete and continuous time, including stopping problems under prospect-type
distorted probabilities. Examples studied in this last part include a time-inconsistent
version of the simple secretary problem, costly procrastination, and the problem of
selling an asset (or investing in a project) that becomes time inconsistent if we allow
for non-exponential discounting or mean-variance preferences. Finally, we review
some basic concepts from arbitrage theory in the appendix.

This text is intended for graduate students and researchers in finance and
economics who are interested in the issues of time inconsistency that prevail in many
dynamic choice problems. In this book we aim to give the main arguments on how
to handle time-inconsistent problems, outline the guiding intuition, and illustrate
the general theory with a number of examples that are relevant in finance. While the
continuous-time applications are likely to be the main focus of mathematical finance
researchers, the discrete-time examples largely target the economics readership. Our
focus on presenting main arguments and ideas means that we often go lightly on
some of the more technical issues, so measurability and integrability issues are at
times swept under the carpet.

Since the book is intended to be self-contained, it contains a brief summary
of optimal control and stopping in discrete and continuous time. The reader
comfortable with these standard results is welcome to skip the summary chapters
and proceed to the more complicated time-inconsistent framework directly. We
acknowledge that there are many excellent textbooks on optimal stopping and
control. This is why we keep our discussion of the standard theory brief and refer
the reader to the extensive literature on the subject for further information. The
summary of the standard results is included for completeness as well as to allow for
comparing and contrasting the “intrapersonal equilibrium” results with the standard
optimal results in concrete applications.

It is also worth noting that a number of open problems remain for future research.
First, we note that existence and/or uniqueness remain to be proved for solutions of
the extended Bellman system in a number of settings. Second, the present theory
depends critically on the Markovian structure. It is intriguing to follow the new

2Note that Part VI was unfortunately finalized without Tomas Björk. The results presented in this
last part of the book are the product of numerous discussions between the authors over the last few
years. However, any remaining errors or omissions in this part are the responsibility of Mariana
Khapko and Agatha Murgoci.
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developments in the literature that operate without this assumption. Third, in this
book we present extensions of the standard dynamic programming results for time-
inconsistent problems, and it would be very interesting to see whether there exists an
efficient martingale formulation for these problems. Further open research problems
are discussed in Björk and Murgoci (2014) and Björk et al. (2017).

Notes on the literature can be found at the end of most chapters. These notes
provide discussions of the relevant literature, emphasizing new developments and
alternative approaches. They provide the reader with opportunities to explore each
topic further. We have tried to keep the reference list as complete as possible,
including both the work that has influenced us and also the new papers where our
methodology has been used. Any serious omission is unintentional.

Dedication

Here we would like to pay our tribute to Tomas Björk, without whom this
book would not exist. Tomas was an internationally recognized figure in financial
mathematics, a brilliant scholar and teacher, and a caring colleague. But to us he
was so much more. He was our role model, our mentor, and a close friend. We
are forever grateful for all the time, guidance, support, and encouragement he so
generously bestowed upon us. We miss him, dearly, every day.

In its obituary for Tomas, the Bachelier Finance Society rightly remarked that he
“was still active in his beloved mathematics up to the last day.” Indeed, this book,
putting together a decade of his interest in time-inconsistent problems, was among
the last things Tomas was working on. We very much hope that we have been able
to complete it in accordance with his vision.

Toronto, ON, Canada Mariana Khapko
Hellerup, Denmark Agatha Murgoci
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Chapter 1
Introduction

In this chapter we introduce the concept of time inconsistency in dynamic choice
problems. We start by reviewing the key ideas of dynamic programming and listing
the main reasons for the time consistency in a given problem. We then present a
number of seemingly simple examples from financial economics in which time
consistency fails to hold. To tackle these (and similar problems), we outline the
different approaches developed in the literature for handling time inconsistency
in a dynamic stochastic control setting. In this book, we take the game-theoretic
approach and look for subgame-perfect equilibrium strategies. Additionally, we
emphasize that, similar to control problems, a stopping problem can be time
inconsistent if it does not admit a Bellman optimality principle.

1.1 A Standard Control Problem

A standard discrete-time stochastic optimal control problem is that of maximizing
(or minimizing) a functional of the form

E

[
T∑

n=0

Hn (Xn, un) + F(XT )

]
,

where X is some controlled Markov process and Xn is the value of this random
process at time n, un is the control applied at time n, and H , F are given real-valued
functions. A typical example is when X is a controlled scalar stochastic equation of
the form

Xn+1 = μ(Xn, un, Yn+1),
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where Y is the stochastic noise process, μ is a given mapping, and we have some
initial condition X0 = x0. For simplicity we assume that there are no constraints on
the scalar control un.

The object of the present text is to study problems that are similar to the one
stated above, but where there is also an element of “time inconsistency.” In order
to understand exactly why and how our problems are different from the standard
one above, and what the term “time inconsistency” really means, we need to review,
very briefly, the main ideas of dynamic programming.

1.2 Dynamic Programming and the Concept of Time
Consistency

A standard way of attacking a problem like the one above is by using Dynamic
Programming, so we now briefly recall some of the main ideas (see Chap. 2 for
details). We restrict ourselves to control laws, that is the control applied at time k,
given that Xk = y, is of the form uk(y); the control law u is a deterministic function
of the variables k and y. We then embed our original control problem in a family of
problems indexed by the initial point. More precisely we consider, for every (n, x),
the problem Pn,x of maximizing the reward functional

Jn(x,u) = En,x

[
T∑

k=n

Hk (Xk, uk) + F(XT )

]

given the initial condition Xn = x. Denoting the optimal control law for Pn,x by
ûn,x

k (y) (where n ≤ k ≤ T − 1) and the corresponding optimal value function by
Vn(x) we see that the original problem corresponds to the problem P0,x0 .

We note that ex ante the optimal control law ûn,x
k (y) for the problem Pn,x

must be indexed by the initial point (n, x) but, as is well known, problems of
the kind described above turn out to be time consistent in the sense that the
Bellman optimality principle applies, which roughly says that the optimal control
is independent of the initial point. More precisely: if a control law is optimal on
the time interval {n, . . . , T }, then it is also optimal for any subinterval {m, . . . , T }
where n ≤ m, or more formally

ûn,x
k (y) = ûm,z

k (y),

for all states x, y, z and for all times n ≤ m ≤ k.
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Given the Bellman principle, it is easy to derive the Bellman equation

Vn(x) = sup
u∈R

{
Hn(x, u) + En,x

[
Vn+1(X

u
n+1)

]}
,

VT (x) = F(x),

for the determination of V .
We end this section by listing some important conditions concerning time

consistency, and in the next section we will see some seemingly quite natural
problems where these conditions do not hold, thus giving rise to time inconsistency.

Remark 1.1 Some of the main reasons for the time consistency of the indexed
family of problems

{Pn,x : x ∈ R, n = 0, 1, 2, . . .
}

are as follows.

• The term Hk (Xk, uk) in the problem Pn,x is allowed to depend on k, Xk and uk .
It is not allowed to depend on the initial point (n, x).

• The terminal evaluation term is allowed to be of the form En,x [F(XT )], i.e.
the expected value of a nonlinear function of the terminal value XT . We are not
allowed to have a term of the form G(En,x [XT ]), which is a nonlinear function
of the expected value.

• We are not allowed to let the terminal evaluation function F depend on the initial
point (n, x).

1.3 Some Disturbing Examples

We will now consider four seemingly simple examples from financial economics in
which time consistency fails to hold. In all these cases we consider a financial market
with a risky asset as well as a risk-free asset with rate of return r . We denote by X

the market value of a self-financing portfolio, and by c the consumption process.
We now consider three indexed families of optimization problems. In all cases the
(naïve) objective is to maximize the objective functional Jn(x,u), where (n, x) is
the initial point and u a shorthand expression for the control strategy, consisting of
consumption and portfolio weights.

1. Non-exponential discounting:

Jn(x,u) = En,x

[
T −1∑
k=n

β(k − n)U(ck) + β(T − n)F (XT )

]
.

In this problem U is the local utility of consumption, F is the utility of terminal
wealth, and β is the discounting function. This problem differs from a standard
problem by the fact that the initial point in time n enters into the discounting
function (see Remark 1.1). Obviously, if β is a power function so β(k − n) =
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δk−n, then we can factor out δ−n and convert the problem into a standard problem
with objective functional

Jn(x,u) = En,x

[
T −1∑
k=n

δkU(ck) + δT F (XT )

]
.

One can show, however, that every choice of the discounting function β except
the power case will lead to a time-inconsistent problem. More precisely, the
Bellman optimality principle will not hold.

2. Mean-variance utility:

Jn(x,u) = En,x [XT ] − γ

2
V arn,x (XT ) .

This case is a dynamic version of a standard Markowitz investment problem
where we want to maximize utility of final wealth. The utility of final wealth is
basically linear in wealth, as given by the term En,x [XT ], but we penalize the risk
by the conditional variance γ

2 V arn,x (XT ), where the constant γ measures the
degree of risk aversion. This looks innocent enough, but we recall the elementary
formula

V ar[X] = E[X2] − (E[X])2 .

Now, in a standard time-consistent problem we are allowed to have terms like
En,x [F(XT )] in the objective functional, meaning that we are allowed to include
the expected value of a nonlinear function of terminal wealth. In the present
case, however we have the term

(
En,x [X]

)2. This is not an expected value of a
nonlinear function, but instead a nonlinear function of the expected value, and
we thus have a time-inconsistent problem (see Remark 1.1).

3. Endogenous habit formation:

Jn(x,u) = En,x [ln (XT − x + β)] , β > 0.

In this particular example we basically want to maximize log utility of terminal
wealth. In a standard problem we would have the objective En,x [ln (XT − d)]
where d > 0 is the lowest acceptable level of terminal wealth. In our problem,
however, the lowest acceptable level of terminal wealth is given by x − β and
it thus depends on your wealth Xn = x at time n. This again leads to a time-
inconsistent problem. (We remark in passing that there are other examples of
endogenous habit formation that are indeed time consistent.)

4. Non-expected utility:

Jn(x,u) =
∫ ∞

0
w
(
Pn,x (U(XT ) > z)

)
dz.
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In this problem U : R → R+ is the utility function, w : [0, 1] → [0, 1] is the
probability distortion (weighting) function with w(0) = 0, w(1) = 1, and Pn,x (·)
denotes the conditional probability. Due to the probability distortion, the above
payoff functional is evaluated via a nonlinear expectation, the so-called Choquet
expectation or Choquet integral. The nonlinear distortion of the probability scale
leads to a time-inconsistent problem. If there is no probability distortion, so that
w(x) = x, then we recover the expected utility appearing in a standard time-
consistent problem.

1.4 Approaches to Handling Time Inconsistency

In all four examples of the previous subsection we are faced with a time-inconsistent
family of problems, in the sense that, if for some fixed initial point (n, x) we
determine the control law û that maximizes Jn(x,u), then at some later point (k,Xk)

the control law û (restricted to the interval [k, T ]) will no longer be optimal for the
functional Jk(Xk,u). It is thus conceptually unclear what we mean by “optimality”
and even more unclear what we mean by “an optimal control law,” so our first task
is to specify more precisely exactly which problem we are trying to solve. There are
then at least three different ways of handling a family of time-inconsistent problems
like the ones above.

• We fix one initial point, for example (0, x0), and then try to find the control law
û that maximizes J0(x0,u). We then simply disregard the fact that at a later point
in time such as (n,Xn) the control law û will not be optimal for the functional
Jn(Xn,u). In the economics literature, this is known as pre-commitment.

• At every point in time we view our problem as the pre-committed problem and
compute the optimal pre-committed control for today. Tomorrow (or at t + dt in
continuous time) we look at a new pre-commited problem and so on. We are thus
rolling over a continuously updated sequence of pre-committed optimal controls.
In the economics literature, this is known as the behavior of a naïve (or myopic)
agent.

• We take a game-theoretic perspective, viewing the problem as an intrapersonal
game and look for Nash subgame-perfect equilibrium points.

All of the three strategies above may in different situations be perfectly reason-
able, but in the present work we choose the last one. The basic idea is then that, when
we decide on a control action at time t , we should explicitly take into account that at
future times we will have a different objective functional or, loosely speaking, that
“our tastes are changing over time.” We can then view the entire problem as a non-
cooperative game, with one player for each time n, where player n can be viewed
as the future incarnation of ourselves (or rather of our preferences) at time n. Player
n chooses the control law u(n, ·) so, given this point of view, it is natural to look
for Nash equilibria for the game, and this is exactly our approach. For the case of a
finite-time horizon, the approach works roughly as follows.
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1. Given that XT −1 = x, player T −1 has a standard optimization problem to solve,
namely that of maximizing

Jn(x, uT −1)

over uT −1. We denote the optimal u by ûT −1(x).
2. Given that XT −2 = x, and that player T − 1 is using ûT −1, player T − 2 now

maximizes

Jn(x, uT −2, ûT −1)

over uT −2. We denote the optimal u by ûT −2(x).
3. We then proceed by induction.

It is fairly easy to formalize these ideas in discrete time (see Chap. 5 for precise
definitions) but it is far from trivial in continuous time (see Chap. 15).

1.5 Stopping Problems and Time Inconsistency

A standard discrete-time optimal stopping problem consists in maximizing (or
minimizing) an objective functional of the form

max
0≤τ≤T

E [F(τ,Xτ )] ,

where τ is the stopping time. The goal here is to determine the best time to intervene
and stop a process in order to maximize expected rewards or minimize expected
costs.

Similar to control problems, a stopping problem can become time inconsistent
if conditions outlined in Remark 1.1 fail to hold. This means that the examples
discussed in Sect. 1.3 can be extended to cover corresponding time-inconsistent
stopping problems. For example, we can study the problem of determining the best
time to sell an asset with price process X and mean-variance objective of the form

E [Xτ ] − γ

2
V ar [Xτ ] .

Our approach to handling a time-inconsistent stopping problem will again be a
game-theoretic one. We will view the problem as a non-cooperative game, where
we have one player at each point in time. This player can only choose the stopping
decision at that particular time. Then, instead of looking for an “optimal” stopping
rule, we aim to find subgame-perfect Nash equilibrium stopping strategies.
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1.6 The Time-Inconsistent Framework

The objective of the present text is to present a theory for time-inconsistent control
and stopping problems in a reasonably general Markovian framework. We do this for
discrete-time as well as continuous-time models. The discrete-time setup is roughly
as follows, and the continuous-time theory is very similar.

• We consider a general controlled Markov process X, living on some suitable
space (details are given below). It is important to notice that we do not make any
structural assumptions whatsoever about X, and we note that the setup obviously
includes the case when X is determined by a system of stochastic difference
equations.

• For the case of time-inconsistent control, we consider a general reward functional
of the form

Jn(x,u) = En,x

[
T −1∑
k=n

Hk

(
n, x,Xu

k ,uk(X
u
k )
)+ Fn(x,Xu

T )

]

+ Gn

(
x,En,x

[
Xu

T

])
,

where we also allow the case T = ∞.
• For the case of time-inconsistent stopping, we consider a reward functional of

the form

Jn(x, s) = En,x [Fn(x, τ,Xτ )] + Gn

(
x,En,x [Xτ ]

)
,

where s is a stopping strategy, which is a function of time and the process
value prescribing whether to stop or to continue at any given point, and τ is the
corresponding stopping time induced by s. See Chap. 23 for precise definitions.

Referring to the discussion in Remark 1.1 we see that with the choice of functionals
above, time inconsistency will enter at several points:

• The shape of the utility functionals depends explicitly on the initial position
(n, x) in time and space, as can be seen in the appearance of n and x in the
expressions Fn(x,XT ) and Fn(x, τ,Xτ ), and similarly for the other terms. In
other words, as the X process moves around, our utility function changes.

• We have expressions of the form Gn

(
x,En,x

[
Xu

T

])
and Gn

(
x,En,x[Xτ ]

)
. Each

of these, even apart from the appearance of n and x in the function G, is not
the expectation of a nonlinear function, but a nonlinear function of the expected
value. We thus do not have access to iterated expectations, so the problem
becomes time inconsistent.

This setup is studied in some detail, both in discrete and in continuous time, and the
main outcomes are as follows.
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• For time-inconsistent control problems, we derive an extension of the standard
Bellman equation (Hamilton–Jacobi–Bellman equation in continuous time) to a
non-standard system of equations for the determination of the equilibrium value
function and the equilibrium control.

• We study a number of concrete examples of time-inconsistent control problems.
In particular, we study non-exponential discounting, mean-variance optimal
portfolios, and a dynamic equilibrium model with time-inconsistent preferences.

• We show that our methodology can be extended from time-inconsistent control
to a fairly general class of time-inconsistent stopping models. In particular,
we present an extension of the Wald–Bellman equation (variational inequalities
in continuous time) to a non-standard extended system that allows for the
determination of the equilibrium value function and the equilibrium stopping
strategy.

• We consider concrete applications that include stopping problems with non-
exponential discounting, mean-variance objective, and distorted probabilities.

1.7 Notes on the Literature

The game-theoretic approach to time inconsistency using Nash equilibrium points
as outlined above has a long history starting with Strotz (1955) which studied
a deterministic Ramsay problem with non-exponential discounting. Subsequent
works by Pollak (1968), Peleg and Yaari (1973), and Goldman (1980) helped
to provide a more formal definition of Strotz’s strategy of “consistent planning”
in discrete time and show that it exists under fairly general conditions. Since
these results, the implications of non-exponential discounting, often referred to
as the present bias, have received a lot of attention in economics. Some of the
most important works along these lines in discrete and continuous time are Barro
(1999), Harris and Laibson (2001), Krusell and Smith (2003), Ekeland and Pirvu
(2008), Vieille and Weibull (2009), Ekeland and Lazrak (2010), Ekeland et al.
(2010), Marín-Solano and Navas (2010), Harris and Laibson (2013), and Pirvu and
Zhang (2014). Similarly to studies of consumer behavior under non-exponential
discounting, the work of Basak and Chabakauri (2010) provides an important
contribution to the finance literature, applying the game-theoretic approach to the
portfolio problem of a mean-variance investor. Building on the results in Basak and
Chabakauri (2010) and Björk and Murgoci (2014), Czichowsky (2013) studies the
mean-variance problem in a general semi-martingale setting.

In all the papers cited above, the various authors have studied particular models
and/or objective functionals, and the methodology has been tailor-made for the
particular problem under study. The present text, which is based on the journal
articles Björk and Murgoci (2014), Björk et al. (2017), and Björk et al. (2014),
is an attempt to derive a reasonably general (albeit Markovian) theory of time-
inconsistent control, and we do this by using dynamic programming arguments. We
would like to acknowledge that in this research project we have been much inspired
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by Basak and Chabakauri (2010) and Ekeland and Lazrak (2010). In recent years,
there have also been a number of interesting developments for time inconsistency
and optimal stopping. We review these in Part VI, where we extend our framework
to study time-inconsistent stopping problems.

Besides the game-theoretic approach to time inconsistency, which is the
main focus of the present work, the literature has been investigating alternative
approaches to handling time-inconsistent problems. For example, the mean-variance
portfolio choice problem has been solved using the pre-commitment approach by
Richardson (1989), Bajeux-Besnainou and Portait (1998), Zhou and Li (2000), and
Li and Ng (2000). In addition to considering the fully pre-committed agent, the
literature has also studied the strategy of an agent who is rolling over a continuously
updated sequence of pre-committed optimal controls. Pedersen and Peskir (2016,
2017) formalize such a strategy in terms of “dynamic optimality” for the mean-
variance optimal stopping (2016) and mean-variance portfolio selection (2017)
problems respectively. The “dynamically optimal” individual is similar to the
continuous version of Strotz’s “spendthrift” or the naïve individual as later described
by Pollak (1968), who at any given point looks for an optimal solution for that
point in time only. Lioui (2013) and Vigna (2020) present interesting comparisons
between the different approaches to time inconsistency described above for the
mean-variance asset allocation problem. A further alternative approach is to study
time inconsistency using the methodology of the stochastic maximum principle, and
there has recently been very active research in this area. See for example Djehiche
and Huang (2016) and Hu et al. (2012).

Among papers using the results originally developed in Björk and Murgoci
(2014) and Björk et al. (2017) (and now presented in this book), we can identify two
large groups: papers applying our theory to a particular finance problem and papers
developing numerical techniques that allow for the study of how various constraints
(leverage constraints, no-shorting constraint, etc.) affect both the game-theoretic and
the naïve solution.

In the first category, we mention Kryger and Steffensen (2010), Dong and Sircar
(2014), Kronborg and Steffensen (2015), Li et al. (2015b), Landriault et al. (2018),
Zhou et al. (2019), and Dai et al. (2021). Kryger and Steffensen (2010) study
investment problems with endogenous habit formation and group utility. Dong and
Sircar (2014) present an extensive study of time-inconsistent problems related to
portfolio optimization. They demonstrate that, when the time-inconsistent problem
is close to a time-consistent one, asymptotic approximation methods allow for the
obtainment of tractable solutions. Kronborg and Steffensen (2015) use the game-
theoretic approach to solve the mean-variance and the mean-standard deviation
problems that include consumption and labor income. Li et al. (2015b) derive the
reinsurance strategy for a mean-variance objective with stochastic interest rates
and inflation risk. Landriault et al. (2018) extend the mean-variance results for
a random investment horizon. Zhou et al. (2019) solve for the time-consistent
insurance and reinvestment strategies in a mean-variance problem with generalized
correlated returns. Dai et al. (2021) study the mean-variance model for log returns
in complete and incomplete markets, linking the results to the standard relative risk
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aversion (CRRA) utility maximization in complete markets. The authors use the
same equilibrium concepts as those presented in Chap. 15 but solve the problem
with the help of backward stochastic differential equations (BSDEs). Their twist on
the utility function appears to be particularly suited to study long-term allocation
problems.

Among the papers concentrating on numerical techniques, we note Wang and
Forsyth (2012) and van Staden et al. (2019, 2021). Wang and Forsyth (2012)
develop a numerical scheme to solve the mean-variance problem in a time-consistent
way and analyze the impact of realistic investments constraints, such as leverage
constraints, discrete rebalancing, transaction costs. They compare these results to
those obtained by solving a mean–quadratic variation problem and show that while
both problems result in very similar trade-offs from the terminal-wealth perspective,
the optimal controls are different, and hence the equivalence between the two
problems is not necessarily present in scenarios with investment constraints. In
models with jumps, van Staden et al. (2019) revisit the problem of comparing the
mean–quadratic variation and mean-variance problems. van Staden et al. (2021)
study the robustness to model misspecification of both subgame-perfect equilibrium
and pre-commitment solutions to the mean-variance problem. The game-theoretic
approach is shown to be more robust when there are no investment constraints or
when rebalancing is continuous. However, in scenarios with multiple investment
constraints and discrete rebalancing, the pre-commitment solution can be more
robust to model misspecification errors.



Part I
Optimal Control in Discrete Time



Chapter 2
Dynamic Programming Theory

Although our objective is to study time-inconsistent control problems, we will in
fact make use of ideas from dynamic programming in our study. In this chapter we
therefore give a brief summary of standard discrete-time dynamic programming.
We will give the main arguments while going lightly on some of the more technical
issues, sweeping measurability and integrability issues under the carpet.

2.1 Setup

The basic setup is that we have a filtered probability space (�,F, P,F), where
F = {Fn}∞n=0. On this space we consider a discrete-time controlled Markov process
X living on the state space X, with controls u in some control space U. Time is
indexed by the set of natural numbers N, and we use the notation [n,m] to denote
a discrete time interval, so [n,m] = {n, n + 1, . . . ,m − 1,m}, where n < m. We
also have some exogenously given objects:

• A reward functional of the form

E

[
T −1∑
n=0

Hn (Xn, un) + F(XT )

]
.

• An indexed family {Un(x) : x ∈ X, n ∈ N} of subsets of U, so Un(x) ⊆ U
for all x ∈ X and all n = 0, 1, 2, . . . , T . This family provides us with control
restrictions in the sense that if Xn = x then we must choose the control un such
that un ∈ Un(x).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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Note 2.1 With almost no loss of understanding of the main ideas of the arguments
below, the reader can informally assume that the X process is scalar (i.e. X = R),
that the control u is scalar (so U = R), and that the constraints are not present (so
Un(x) = R).

We can now state our main problem.

Problem 2.1 The problem to be solved is to choose an adapted control process u

that maximizes

E

[
T −1∑
n=0

Hn (Xn, un) + F(XT )

]

subject to the constraints

un ∈ Un(Xn), n = 0, 1, 2, . . .

In principle the control process u is allowed to be any adapted process satisfying
the constraints above, but we will restrict ourselves to the case of so-called feedback
control laws.

Definition 2.1 A feedback control law is a mapping u : N × X → U.

The interpretation of this is that, given the control law u, the control process u will
be of the form

un = un(Xn).

The class of feedback control laws is of course smaller than the class of adapted
controls. It is however possible to prove that the optimal control is always realized
by a feedback law, so from an optimality point of view there is no restriction to
limiting ourselves to feedback laws.

Definition 2.2 The class U of admissible feedback laws is defined as the class of
feedback laws u satisfying the constraints

un ∈ Un(Xn), n = 0, 1, 2, . . .

2.2 Embedding the Problem

The way to approach our optimization problem is to embed it in a family of problems
indexed by time and space. Then we can connect all these problems by a recursive
equation known as the Bellman equation. We will see that solving the Bellman
equation is equivalent to solving the optimal control problem.
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Definition 2.3 For each fixed initial point (n, x) we define the problem Pn,x as the
problem of maximizing

En,x

[
T −1∑
k=n

Hk (Xk,uk(Xk)) + F(XT )

]

over the class of feedback laws u satisfying the constraints

uk(x) ∈ Uk(x), for all k ≥ n, x ∈ X.

We now proceed to define the value function and the optimal value function. Recall
that U is the class of admissible feedback laws.

Definition 2.4

• The value function

J : N × X × U → R

is defined by

Jn(x,u) = En,x

[
T −1∑
k=n

Hk (Xk,uk(Xk)) + F(XT )

]
.

• The optimal value function

V : N × X → R

is defined by

Vn(x) = sup
u∈U

Jn(x,u).

The interpretation is that Jn(x,u) yields the expected utility of employing the
control law u for the time interval [n, T ] if you start in state x at time n. The optimal
value function Vn(x) gives you the optimal utility over [n, T ] if you start in state x

at time n.

2.3 Time Consistency and the Bellman Principle

We now proceed to state and prove the Bellman optimality principle. Going back to
the problem Pn,x introduced in Definition 2.3, we make the following simplifying
assumption.
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Assumption 2.1 We assume that for every initial point (n, x) there exists an
optimal control law for problem Pn,x . This control law is denoted by ûn,x .

The object ûn,x is a mapping ûn,x : [n, T ] × X → R, where the upper index (n, x)

denotes the fixed initial point for problem Pn,x . Consequently, the control applied
at some time k ≥ n will be given by the expression

ûn,x
k (Xk).

We would like to stress that a priori the optimal law for the problem Pn,x could very
well depend on the choice of the starting point (n, x). However, it turns out that
the optimal law is independent of this choice. The formalization and proof of this
statement is as follows.

Theorem 2.1 (The Bellman Optimality Principle) Fix an initial point (n, x) and
consider the corresponding optimal law ûn,x . Then the law ûn,x is also optimal for
any subinterval of the form [m,T ] where m ≥ n. In other words,

ûn,x
k (y) = ûm,Xm

k (y)

for all k ≥ m and all y ∈ X. In particular, the optimal law for the initial point n = 0
will be optimal for all subintervals. This law will be denoted by û.

Put in more colloquial terms, Bellman optimality principle says that a plan for the
future deemed optimal at an earlier point in time will also remain optimal. Suppose
that you optimize at time n = 0 and follow control law û up to time n, where
you now have reached the state Xn. At time n you reconsider, and now decide to
forget your original problem and instead solve problem Pn,Xn . What the Bellman
Principle tells you is that the law û (restricted to the time interval [n, T ]) is optimal,
not only for your original problem, but also for your new problem. In decision-
theoretic jargon we could say that our family of problems is time consistent, and
in particular this implies that the expression “the optimal law” has a well-defined
meaning—it does not depend on your choice of starting point.

Proof The proof is by contradiction. Let us assume that for some n > 0 there exists
a law ū on the interval [n, T ] such that

En,x

[
T −1∑
k=n

Hk (Xk, ūk(Xk)) + F(XT )

]
≥ En,x

[
T −1∑
k=n

Hk

(
Xk, ûk(Xk)

)+ F(XT )

]

for all x ∈ X with strict inequality for some x ∈ X. We can then construct a new
law u� on [0, T ] by the following formula

u�
k(y) =

{
ûk(y) for 0 ≤ k < n − 1,

ūk(y) for n ≤ k < T − 1.
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We then have

J0(x0,u�) = E0,x0

[
T −1∑
k=0

Hk

(
Xk,u�

k

)+ F(XT )

]

= E0,x0

[
n−1∑
k=0

Hk

(
Xk, ûk

)]+ E0,x0

[
T −1∑
k=n

Hk (Xk, ūk) + F(XT )

]

= E0,x0

[
n−1∑
k=0

Hk

(
Xk, ûk

)]+ E0,x0

[
En,Xn

[
T −1∑
k=n

Hk (Xk, ūk) + F(XT )

]]
,

where we have used iterated expectations and the Markov property to obtain the last
term. It now follows from the assumption concerning ū that we have

En,Xn

[
T −1∑
k=n

Hk (Xk, ūk) + F(XT )

]
≥ En,Xn

[
T −1∑
k=n

Hk

(
Xk, ûk

)+ F(XT )

]
.

with strict inequality with positive probability so, again using iterated expectations
and the Markov property, we obtain

J0(x0,u�) > E0,x0

[
n−1∑
k=0

Hk

(
Xk, ûk

)]+ E0,x0

[
En,Xn

[
T −1∑
k=n

Hk

(
Xk, ûk

)]+ F(XT )

]

= E0,x0

[
n−1∑
k=0

Hk

(
Xk, ûk

)]+ E0,x0

[
T∑

k=n

Hk

(
Xk, ûk

)]

= E0,x0

[
T∑

k=0

Hk

(
Xk, ûk

)+ F(XT )

]
= J0(x0, û).

We have thus obtained the inequality

J0(x0,u�) > J0(x0, û),

which contradicts the optimality of û on the interval [0, T ]. �

2.4 The Bellman Equation

In this section we proceed to derive the Bellman equation, which is the recursive
relation for the optimal value function. We fix an arbitrary initial point (n, x) and
consider the control law u� that deviates from the optimal control only at time n.


