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Foreword

J. L. Flanagan

Professor Emeritus
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Over the past three decades digital signal processing has emerged as a recognized
discipline. Much of the impetus for this advance stems from research in representation,
coding, transmission, storage and reproduction of speech and image information. In
particular, interest in voice communication has stimulated central contributions to
digital filtering and discrete-time spectral transforms.

This dynamic development was built upon the convergence of three then-evolving
technologies: (i) sampled-data theory and representation of information signals (which
led directly to digital telecommunication that provides signal quality independent of
transmission distance); (ii) electronic binary computation (aided in early implementa-
tion by pulse-circuit techniques from radar design); and, (iii) invention of solid-state
devices for exquisite control of electronic current (transistors – which now, through mi-
croelectronic materials, scale to systems of enormous size and complexity). This timely
convergence was soon followed by optical fiber methods for broadband information
transport.

These advances impact an important aspect of human activity – information ex-
change. And, over man’s existence, speech has played a principal role in human
communication. Now, speech is playing an increasing role in human interaction with
complex information systems. Automatic services of great variety exploit the comfort
of voice exchange, and, in the corporate sector, sophisticated audio/video teleconfer-
encing is reducing the necessity of expensive, time-consuming business travel. In each
instance an overarching target is a user environment that captures some of the nat-
uralness and spatial realism of face-to-face communication. Again, speech is a core
element, and new understanding from diverse research sectors can be brought to bear.

Editors-in-Chief Benesty, Sondhi and Huang have organized a timely engineer-
ing handbook to answer this need. They have assembled a remarkable compendium
of current knowledge in speech processing. And, this accumulated understanding can
be focused upon enlarging the human capacity to deal with a world ever increasing in
complexity. Benesty, Sondhi and Huang are renowned researchers in their own right,
and they have attracted an international cadre of over 80 fellow authors and collab-
orators who constitute a veritable Who’s Who of world leaders in speech processing
research. The resulting book provides under one cover authoritative treatments that
commence with the basic physics and psychophysics of speech and hearing, and range
through the related topics of computational tools, coding, synthesis, recognition, and
signal enhancement, concluding with discussions on capture and projection of sound
in enclosures. The book can be expected to become a valuable resource for researchers,
engineers and speech scientists throughout the global community. It should equally
serve teachers and students in human communication, especially delimiting knowledge
frontiers where graduate thesis research may be appropriate.

Warren, New Jersey Jim Flanagan
October 2007
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Preface

Jacob Benesty

M. Mohan Sondhi

Yiteng Huang

The achievement of this Springer Handbook is the result of a wonderful journey that
started in March 2005 at the 30th International Conference on Acoustics, Speech, and
Signal Processing (ICASSP). Two of the editors-in-chief (Benesty and Huang) met in
one of the long corridors of the Pennsylvania Convention Center in Philadelphia with
Dr Dieter Merkle from Springer. Together we had a very nice discussion about the con-
ference and immediately an idea came up for a handbook. After a short discussion we
converged without too much hesitation on a handbook of speech processing. It was
quite surprising to see that, even after 30 years of ICASSP and more than half a century
of research in this fundamental area, there was still no major book summarizing the im-
portant aspects of speech processing. We thought that the time was ripe for such a large
project. Soon after we got home, a third editor-in-chief (Sondhi) joined the efforts.

We had a very clear objective in our minds: to summarize, in a reasonable number
of pages, the most important and useful aspects of speech processing. The content was
then organized accordingly. This task was not easy since we had to find a good balance
between feasible ideas and new trends. As we all know, practical ideas can be viewed
as old stuff while emerging ideas can be criticized for not having passed the test of
time; we hope that we have succeeded in finding a good compromise. For this we relied
on many authors who are well established and are recognized as experts in their field,
from all over the world, and from academia as well as from industry.

From simple consumer products such as cell phones and MP3 players to more-
sophisticated projects such as human–machine interfaces and robots that can obey
orders, speech technologies are now everywhere. We believe that it is just a matter of
time before more applications of the science of speech become impossible to miss in
our daily life. So we believe that this Springer Handbook will play a fundamental role
in the sustainable progress of speech research and development.

This handbook is targeted at three categories of readers: graduate students of speech
processing, professors and researchers in academia and research labs who are active
in this field, and engineers in industry who need to understand or implement specific
algorithms for their speech-related products. The handbook could also be used as a text
for one or more graduate courses on signal processing for speech and various aspects
of speech processing and applications.

For the completion of such an ambitious project we have many people to thank.
First, we would like to thank the many authors who did a terrific job in delivering very
high-quality chapters. Second, we are very grateful to the members of the editorial
board who helped us so much in organizing the content and structure of this book, tak-
ing part in all phases of this project from conception to completion. Third, we would
like to thank all the reviewers, who helped us to improve the quality of the mater-
ial. Last, but not least, we would like to thank the Springer team for their availability
and very professional work. In particular, we appreciated the help of Dieter Merkle,
Christoph Baumann, Werner Skolaut, Petra Jantzen, and Claudia Rau.

We hope this Springer Handbook will inspire many great minds to find new research
ideas or to implement algorithms in products.

Montreal, Basking Ridge, Murray Hill Jacob Benesty
October 2007 M. Mohan Sondhi

Yiteng Huang
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Introduction1. Introduction to Speech Processing

J. Benesty, M. M. Sondhi, Y. Huang

In this brief introduction we outline some major
highlights in the history of speech processing. We
briefly describe some of the important applications
of speech processing. Finally, we introduce the
reader to the various parts of this handbook.

1.1 A Brief History of Speech Processing ....... 1

1.2 Applications of Speech Processing .......... 2

1.3 Organization of the Handbook............... 4

References .................................................. 4

1.1 A Brief History of Speech Processing

Human beings have long been motivated to create ma-
chines that can talk. Early attempts at understanding
speech production consisted of building mechanical
models to mimic the human vocal apparatus. Two such
examples date back to the 13th century, when the Ger-
man philosopher Albertus Magnus and the English
scientist Roger Bacon are reputed to have constructed
metal talking heads. However, no documentation of
these devices is known to exist. The first documented
attempts at making speaking machines came some five
hundred years later. In 1769 Kratzenstein constructed
resonant cavities which, when he excited them by a vi-
brating reed, produced the sounds of the five vowels a,
e, i, o, and u. Around the same time, and independently
of this work, Wolfgang von Kempelen constructed
a mechanical speech synthesizer that could generate
recognizable consonants, vowels, and some connected
utterances. His book on his research, published in 1791,
may be regarded as marking the beginnings of speech
processing. Some 40 years later, Charles Wheatstone
constructed a machine based essentially on von Kempe-
len’s specifications [1.1–3].

Interest in mechanical analogs of the human vocal
apparatus continued well into the 20th century. Mimics
of the type of von Kempelen’s machine were con-
structed by several people besides Wheatstone, e.g.,
Joseph Faber, Richard Paget, R. R. Riesz, et al.

It is known that as a young man Alexander Graham
Bell had the opportunity to see Wheatstone’s imple-
mentation. He too made a speaking machine of that
general nature. However, it was his other invention –
the telephone – that provided a major impetus to mod-
ern speech processing. Nobody could have guessed at
that time the impact the telephone would have, not only

on the way people communicate with each other but
also on research in speech processing as a science in
its own right. The availability of the speech waveform
as an electrical signal shifted interest from mechanical
to electrical machines for synthesizing and processing
speech.

Some attempts were made in the 1920s and 1930s
to synthesize speech electrically. However it is Homer
Dudley’s work in the 1930s that ushered in the modern
era of speech processing. His most important contribu-
tion was the clear understanding of the carrier nature of
speech [1.4]. He developed the analogy between speech
signals and modulated-carrier radio signals that are used,
for instance, for the transmission or broadcast of audio
signals. In the case of the radio broadcast, the message to
be transmitted is the audio signal which has frequencies
in the range of 0–20 kHz. Analogously, the message to
be transmitted in the case of speech is carried mainly by
the time-varying shape of the vocal tract, which in turn
is a representation of the thoughts the speaker wishes to
convey to the listener. The movements of the vocal tract
are at syllabic rates, i. e., at frequencies between 0 and
20 Hz. In each case – electromagnetic and acoustic – the
message is in a frequency range unsuitable for transmis-
sion. The solution in each case is to imprint the message
on a carrier. In the electromagnetic case the carrier is
usually a high-frequency sinusoidal wave. In the acous-
tic case the carrier can be one of several signals. It is
the quasi periodic signal provided by the vocal cords for
voiced speech, and a noise-like signal provided by turbu-
lence at a constriction for fricative and aspirated sounds.
Or it can be a combination of these for voiced fricative
sounds. Indeed, the selection of the carrier as well as the
changes in intensity and fundamental frequency of the
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2 Introduction

vocal cords may be conveniently regarded as additional
parts of the message.

Being an electrical engineer himself, Dudley pro-
ceeded to exploit this insight to construct an electrical
speech synthesizer which dispensed with all the mech-
anical devices of von Kempelen’s machine. Electrical
circuits were used to generate the carriers. And the mes-
sage (i. e., the characteristics of the vocal tract) was
imprinted on the carrier by passing it through a time-
varying filter whose frequency response was adjusted to
simulate the transfer characteristics of the vocal tract.

With the collaboration of Riesz and Watkins, Dud-
ley implemented two highly acclaimed devices based on
this principle – the Voder and the Vocoder. The Voder
was the first versatile talking machine able to produce
arbitrary sentences. It was a system in which an opera-
tor manipulated a keyboard to control the sound source
and the filter bank. This system was displayed with great
success at the New York World Fair of 1939. It could
produce speech of much better quality than had been
possible with the mechanical devices, but remained es-
sentially a curiosity. The Vocoder, on the other hand
had a much more serious purpose. It was the first at-
tempt at compressing speech. Dudley estimated that
since the message in a speech signal is carried by the
slowly time-varying filters, it should be possible to send
adequate information for the receiver to be able to re-
construct a telephone speech signal using a bandwidth
of only about 150 Hz, which is about 1/20 the bandwidth
required to send the speech signal. Since bandwidth
was very expensive in those days, this possibility was
extremely attractive from a commercial point of view.

We have devoted so much space here to Dudley’s
work because his ideas were the basis of practically all
the work on speech signal processing that followed. The
description of speech in terms of a carrier (or excita-
tion function) and its modulation (or the time-varying
spectral envelope) is still – 70 years later – the basic
representation. The parameters used to quantify these
components, of course, have evolved in various ways.
Besides the channel Vocoder (the modern name for Dud-
ley’s Vocoder) many other types of Vocoders have been
invented, e.g., formant Vocoder, voice-excited Vocoder.

Besides speech compression, Dudley’s description was
also considered for other applications such as secure
voice systems, and the sound spectrograph and its use
for communication with the deaf.

Unfortunately, the quality achieved by analog imple-
mentations of Vocoders never reached a level acceptable
for commercial telephony. Nevertheless they found use-
ful applications for military purposes where poor speech
quality was tolerated. The Vocoder representation was
also the basis of a speech secrecy system that found
extensive use during World War II.

Another example of an analog implementation of
Dudley’s representation is the sound spectrograph. This
is a device that displays the distribution of energy in
a speech signal as a function of frequency, and the evo-
lution of this distribution in time. This tool has been
extremely useful for investigating properties of speech
signals. A real time version of the spectrograph was in-
tended for use as a device for communication with the
deaf. That, however, was not very successful. A few
people were able to identify about 300 words after
100 hours of training. However, it turned out to be too
difficult a task to be practical.

During more than three decades following Dudley’s
pioneering work, a great amount of research was done
on various aspects and properties of speech – properties
of the speech production mechanisms, the auditory sys-
tem, psychophysics, etc. However, except for the three
applications mentioned above, little progress was made
in speech signal processing and its applications. Ex-
ploitation of this research for practical applications had
to wait for the general availability of digital hardware
starting in the 1970s. Since then much progress has been
made in speech coding for efficient transmission, speech
synthesis, speech and speaker recognition, and hearing
aids [1.5–7]. In the next section we discuss some of these
developments.

Today, the area of speech processing is very vast and
rich as can be seen from the contents of this Handbook.
While we have made great progress since the invention
of the telephone, research in the area of speech process-
ing is still very active, and many challenging problems
remain unsolved.

1.2 Applications of Speech Processing

As mentioned above, one of the earliest goals of speech
processing was that of coding speech for efficient
transmission. This was taken to be synonymous with

reduction of the bandwidth required for transmitting
speech. Several advances were needed before the mod-
ern success in speech coding was achieved. First, the
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Introduction to Speech Processing 1.2 Applications of Speech Processing 3

notions of information theory introduced during the
late 1940s and 1950s brought the realization that the
proper goal was the reduction of information rate rather
than bandwidth. Second, hardware became available to
utilize the sampling theorem to convert a continuous
band-limited signal to a sequence of discrete samples.
And quantization of the samples allowed digitization of
a band-limited speech signal, thus making it usable for
digital processing. Finally, the description of a speech
signal in terms of linear prediction coefficients (LPC)
provided a very convenient representation [1.8–11].
(The theory of predictive coding was in fact developed
in 1955. However, its application to speech signals was
not made until the late 1970s.)

A telephone speech signal, limited in frequency from
0 to 3.4 kHz, requires 64 kbps (kilobits per second) to be
transmitted without further loss of quality. With mod-
ern speech compression techniques, the bit rate can be
reduced to 13 kbps with little further degradation. For
commercial telephony a remaining challenge is to re-
duce the required bit rate further but without sacrificing
quality. Today, the rate can be lowered down to 2.4 kbps
while maintaining very high intelligibility, but with a sig-
nificant loss in quality. Some attempts have been made
to reduce the bit rate down to 300 bps, e.g., for radio
communication with a submarine. However the quality
and intelligibility at these low bit rates are very poor.

Another highly successful application of speech pro-
cessing is automatic speech recognition (ASR). Early
attempts at ASR consisted of making deterministic mod-
els of whole words in a small vocabulary (say 100
words) and recognizing a given speech utterance as the
word whose model comes closest to it. The introduc-
tion of hidden Markov models (HMMs) in the early
1980s provided a much more powerful tool for speech
recognition [1.12–14]. Today many products have been
developed that successfully utilize ASR for communica-
tion between humans and machines. And the recognition
can be done for continuous speech using a large vocabu-
lary, and in a speaker-independent manner. Performance
of these devices, however, deteriorates in the presence
of reverberation and even low levels of ambient noise.
Robustness to noise, reverberation, and characteristics
of the transducer, is still an unsolved problem.

The goal of ASR is to recognize speech accurately
regardless of who the speaker is. The complementary
problem is that of recognizing a speaker from his/her
voice, regardless of what words he/she is speaking. At
present this problem appears to be solvable only if the
speaker is one of a small set of N known speakers. A vari-
ant of the problem is speaker verification, in which the

aim is to automatically verify the claimed identity of
a speaker. While speaker recognition requires the se-
lection of one out of N possible outcomes, speaker
verification requires just a yes/no answer. This prob-
lem can be solved with a high degree of accuracy for
much larger populations. Speaker verification has ap-
plication wherever access to data or facilities has to
be controlled. Forensics is another area of application.
The problem of reduced performance in the presence
of noise, as mentioned above for ASR, applies also to
speaker recognition and speaker verification.

A third application of speech processing is that of
synthesizing speech corresponding to a given text. When
used together with ASR, speech synthesis allows a com-
plete two-way spoken interaction between humans and
machines. Speech synthesis is also a way to communi-
cate for persons unable to speak. Its use for this purpose
by the famous physicist Stephen Hawking is well known.

Early attempts at speech synthesis consisted of de-
riving the time-varying spectrum for the sequence of
phonemes of a given text sentence. From this the corre-
sponding time variation of the vocal tract was estimated,
and the speech was synthesized by exciting the time-
varying vocal tract with periodic or noise-like excitation
as appropriate. The quality of the synthesis was signifi-
cantly improved by concatenating pre-stored units (i. e.,
short segments such as diphones, triphones) after mod-
ifying them to fit the context. Today the highest-quality
speech is synthesized by the unit selection method in
which the units are selected from a large amount of
stored speech and concatenated with little or no modifi-
cation.

Finally we might mention the application of speech
processing to aids for the handicapped. Hearing aid tech-
nology has made considerable progress in the last two
decades. Part of this progress is due to a slow but steady
improvement in our knowledge of the human hearing
mechanism. A large part is due to the availability of
high-speed digital hardware. At present performance of
hearing aids is still poor under noisy and reverberant
conditions.

A potentially useful application of speech processing
to aid the handicapped is to display the shape of one’s
vocal tract as one speaks. By trying to match one’s vocal
tract shape to a displayed shape, a deaf person can learn
correct pronunciation. Some attempts to implement this
idea have been made, but have still been only in the
realm of research.

Another useful application is a reading aid for the
blind. The idea is to have a device to scan printed
text from a book, and synthesize speech from the
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scanned text. Coupled with a device to change speak-
ing rate, this forms a useful aid for the blind. Several
products offering this application are available on the
market.

Many other application examples are described in
the various parts of this handbook. We invite the reader
to browse this volume on speech processing to find topics
relevant to his/her specific interests.

1.3 Organization of the Handbook

This handbook on speech processing is a comprehen-
sive source of knowledge in speech technology and its
applications. It is organized as follows. This volume
is divided into nine parts. For each part we invited at
least one associate editor (AE) to handle it. All the AEs
are very well-known researchers in their respective area
of research. Part A (AE: M. M. Sondhi) contains four
chapters on production, perception, and modeling of
speech signals. Part B (AEs: Y. Huang and J. Benesty)
concerns signal processing tools for speech, in eight
chapters. Part C (AE: B. Kleijn) covers five chapters on
speech coding. In part D (AE: S. Narayanan), the areas of

text-to-speech synthesis are presented in seven chapters.
Part E (AEs: L. Rabiner and B.-H. Juang), with 10 chap-
ters, is a comprehensive overview on speech recognition.
Part F (AE: S. Parthasarathy) contains three chapters on
speaker recognition. Part G (AE: C.-H. Lee) is about
language identification and contains four chapters. In
part H (AEs: J. Chen, S. Gannot, and J. Benesty), var-
ious aspects of speech enhancement are developed in
seven chapters. Finally the last section, part I (AEs:
J. Benesty, I. Cohen, and Y. Huang), presents the impor-
tant aspects of multichannel speech processing in four
chapters.
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Physiological2. Physiological Processes of Speech Production

K. Honda

Speech sound is a wave of air that originates from
complex actions of the human body, supported by
three functional units: generation of air pressure,
regulation of vibration, and control of resonators.
The lung air pressure for speech results from func-
tions of the respiratory system during a prolonged
phase of expiration after a short inhalation. Vi-
brations of air for voiced sounds are introduced by
the vocal folds in the larynx; they are controlled
by a set of laryngeal muscles and airflow from the
lungs. The oscillation of the vocal folds converts
the expiratory air into intermittent airflow pulses
that result in a buzzing sound. The narrow con-
strictions of the airway along the tract above the
larynx also generate transient source sounds; their
pressure gives rise to an airstream with turbu-
lence or burst sounds. The resonators are formed
in the upper respiratory tract by the pharyngeal,
oral, and nasal cavities. These cavities act as res-
onance chambers to transform the laryngeal buzz
or turbulence sounds into the sounds with special
linguistic functions. The main articulators are the
tongue, lower jaw, lips, and velum. They generate
patterned movements to alter the resonance char-
acteristics of the supra-laryngeal airway. In this
chapter, contemporary views on phonatory and
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articulatory mechanisms are summarized to il-
lustrate the physiological processes of speech
production, with brief notes on their observation
techniques.

2.1 Overview of Speech Apparatus

The speech production apparatus is a part of the motor
system for respiration and alimentation. The form of the
system can be characterized, when compared with those
of other primates, by several unique features, such as
small red lips, flat face, compact teeth, short oral cav-
ity with a round tongue, and long pharynx with a low
larynx position. The functions of the system are also
uniquely advanced by the developed brain with the lan-
guage areas, direct neural connections from the cortex
to motor nuclei, and dense neural supply to each mus-
cle. Independent control over phonation and articulation
is a human-specific ability. These morphological and
neural changes along human evolution reorganized the

original functions of each component into an integrated
motor system for speech communication.

The speech apparatus is divided into the organs of
phonation (voice production) and articulation (settings
of the speech organs). The phonatory organs (lungs and
larynx) create voice source sounds by setting the driv-
ing air pressure in the lungs and parameters for vocal
fold vibration at the larynx. The two organs together
adjust the pitch, loudness, and quality of the voice,
and further generate prosodic patterns of speech. The
articulatory organs give resonances or modulations to
the voice source and generate additional sounds for
some consonants. They consist of the lower jaw, tongue,

Part
A
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Articulation

Phonation

Velum

Larynx

Lungs

Nasal and
paranasal
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vocal tract

Subglottal
tract

Tongue
Lips

Lower jaw

Fig. 2.1 Sketch of a speech production system. Physio-
logical processes of speech production are realized by
combined sequential actions of the speech organs for
phonation and articulation. These activities result in sound
propagation phenomena at the three levels: subglottal cav-
ities, cavities of the vocal tract, and nasal and paranasal
cavities

lips, and the velum. The larynx also takes a part in
the articulation of voiced/voiceless distinctions. The
tongue and lower lip attach to the lower jaw, while
the velum is loosely combined with other articulators.
The constrictor muscles of the pharynx and larynx also
participate in articulation as well as in voice quality
control. The phonatory and articulatory systems influ-
ence each other mutually, while changing the vocal tract
shape for producing vowels and consonants. Figure 2.1
shows a schematic drawing of the speech production
system.

2.2 Voice Production Mechanisms

Generation of voice source requires adequate con-
figuration of the airflow from the lungs and vocal
fold parameters for oscillation. The sources for voiced
sounds are the airflow pulses generated at the larynx,
while those for some consonants (i. e., stops and frica-
tives) are airflow noises made at a narrow constriction
in the vocal tract. The expiratory and inspiratory mus-
cles together regulate relatively constant pressure during
speech. The laryngeal muscles adjust the onset/offset,
amplitude, and frequency of vocal fold vibration.

2.2.1 Regulation of Respiration

The respiratory system is divided into two segments:
the conduction airways for ventilation between the at-
mosphere and the lungs, and the respiratory tissue of
the lungs for gas exchange. Ventilation (i. e., expira-
tion and inhalation) is carried out by movements of the
thorax, diaphragm, and abdomen. These movements in-
volve actions of respiratory muscles and elastic recoil
forces of the system. During quiet breathing, the lungs
expand to inhale air by the actions of inspiratory mus-
cles (diaphragm, external intercostal, etc.), and expel
air by the elastic recoil force of the lung tissue, di-
aphragm, and cavities of the thorax and abdomen. In
effort expiration, the expiratory muscles (internal in-
tercostals, abdominal muscles, etc.) come into action.

The inspiratory and expiratory muscles work alternately,
making the thorax expand and contract during deep
breathing.

During speech production, the respiratory pattern
changes to a longer expiratory phase with a shorter in-
spiratory phase during quiet breathing. Figure 2.2 shows
a conventional view of the respiratory pattern during

Lung volume
above FRC
(l)

Lung pressure
(cmH2O)

Inspiratory m.

Exspiratory m.

20

0

5

0

Rest Speech

5 s

Fig. 2.2 Respiratory pattern during speech. Top two curves
show the changes in the volume and pressure in the lungs.
The bottom two curves show schematic activity patterns
of the inspiratory and expiratory muscles (after [2.1]).
The dashed line for the expiratory muscles indicates their
predicted activity for expiration
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Physiological Processes of Speech Production 2.2 Voice Production Mechanisms 9

speech [2.1]. The thorax is expanded by inspiration prior
to initiation of speech, and then compressed by elastic
recoil force by the tissues of the respiratory system to
the level of the functional residual capacity (FRC). The
lung pressure during speech is kept nearly constant ex-
cept for the tendency of utterance initial rise and final
lowering. In natural speech, stress and emphasis add lo-
cal pressure increases. The constant lung pressure is due
to the actions of the inspiratory muscles to prevent ex-
cessive airflow and maintain the long expiratory phase.
As speech continues, the lung volume decreases grad-
ually below the level of FRC, and the lung pressure is
then maintained by the actions of the expiratory muscles
that actively expel air from the lung. It has been argued
whether the initiation of speech involves only the elastic
recoil forces of the thorax to generate expiratory air-
flow. Indeed, a few studies have suggested that not only
the thoracic system but also the abdominal system as-
sists the regulation of expiration during speech [2.2, 3],
as shown by the dashed line in Fig. 2.2. Thus, the con-
temporary view of speech respiration emphasizes that
expiration of air during speech is not a passive process
but a controlled one with co-activation of the inspiratory
and expiratory muscles.

2.2.2 Structure of the Larynx

The larynx is a small cervical organ located at the top of
the trachea making a junction to the pharyngeal cavity:
it primarily functions to prevent foreign material from
entering the lungs. The larynx contains several rigid
structures such as the cricoid, thyroid, arytenoid, epiglot-
tic, and other smaller cartilages. Figure 2.3a shows the
arrangement of the major cartilages and the hyoid bone.
The cricoid cartilage is ring-shaped and supports the
lumen of the laryngeal cavity. It offers two bilateral ar-
ticulations to the thyroid and arytenoid cartilages at the
cricothyroid and cricoarytenoid joints, respectively. The
thyroid cartilage is a shield-like structure that offers at-
tachments to the vocal folds and the vestibular folds.
The arytenoid cartilages are bilateral tetrahedral carti-
lages that change in location and orientation between
phonation and respiration. The whole larynx is mechan-
ically suspended from the hyoid bone by muscles and
ligaments.

The gap between the free edges of the vocal folds is
called the glottis. The space is divided into two portions
by the vocal processes of the arytenoid cartilages: the
membranous portion in front (essential for vibration)
and cartilaginous portion in back (essential for respi-
ration). The glottis changes its form in various ways

during speech: it narrows by adduction and widens by
abduction of the vocal folds. Figure 2.3b shows that this
movement is carried out by the actions of the intrinsic
laryngeal muscles that attach to the arytenoid cartilages.
These muscles are functionally divided into the adductor
and abductor muscles. The adductor muscles include the
thyroarytenoid muscles, lateral cricoarytenoid, and ary-
tenoid muscles, and the abductor muscle is the posterior
cricoarytenoid muscle. The glottis also changes in length
according to the length of the vocal folds, which takes
place mainly at the membranous portion. The length of
the glottis shows a large developmental sexual variation.
The membranous length on average is 10 mm in adult fe-
males and 16 mm in adult males, while the cartilaginous
length is about 3 mm for both [2.4].

Hyoid
bone

laryngeal framework

glottal action

Epiglottic
cartilage

Arytenoid
cartilage

Cricothyroid
joint

Cricoid
cartilage

Posterior
cricoarytenoid
muscle

Arytenoid
muscle

Thyroid
cartilage

Thyroid
cartilage

b)

a)

Thyro-
arytenoid
muscle
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cricoarytenoid
muscle

Vocal
ligament

Cricoid
cartilage

Fig. 2.3a,b Laryngeal framework and internal structures.
(a) Oblique view of the laryngeal framework, which
includes the hyoid bone and four major cartilages. (b) Ad-
duction (left) and abduction (right) of the glottis and the
effects of the intrinsic laryngeal muscles
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10 Part A Production, Perception, and Modeling of Speech

2.2.3 Vocal Fold and its Oscillation

The larynx includes several structures such as the sub-
glottic dome, vocal folds, ventricles, vestibular folds,
epiglottis, and aryepiglottic folds, as shown in Fig. 2.4a.
The vocal folds run anteroposteriorly from the vocal pro-
cesses of the arytenoid cartilages to the internal surface
of the thyroid cartilage. The vocal fold tissue consists
of the thyroarytenoid muscle, vocal ligament, lamina
propria, and mucous membrane. They form a special
layer structure that yields to aerodynamic forces to
oscillate, which is often described as the body-cover
structure [2.5].

During voiced speech sounds, the vocal folds are
set into vibration by pressurized air passing through
the membranous portion of the narrowed glottis. The
glottal airflow thus generated induces wave-like motion

a)

b)

Thyroid
cartilage

coronal section

phases of vibration

Thyroarytenoid
muscle

Vestibular
folds

Vocal
folds

Trachea

Closed

Open

Closing Opening

Lateral
cricoarytenoid
muscle

Cricothyroid
muscle

Cricoid
cartilage

Ventricle

Fig. 2.4a,b Vocal folds and their vibration pattern.
(a) Coronal section of the larynx, showing the tissues of the
vocal and vestibular (false) folds. The cavity of the larynx
includes supraglottic and subglottic regions. (b) Vocal-fold
vibration pattern and glottal shapes in open phases. As
the vocal-fold edge deforms in a glottal cycle, the glottis
follows four phases: closed, opening, open and closing

of the vocal fold membrane, which appears to prop-
agate from the bottom to the top of the vocal fold
edges. When this oscillatory motion builds up, the vo-
cal fold membranes on either side come into contact
with each other, resulting in repetitive closing and open-
ing of the glottis. Figure 2.4b shows that vocal fold
vibration repeats four phases within a cycle: the closed
phase, opening phase, open phase, and closing phase.
The conditions that determine vocal fold vibration are
the stiffness and mass of the vocal folds, the width
of the glottis, and the pressure difference across the
glottis.

The aerodynamic parameters that regulate vocal
fold vibration are the transglottal pressure difference
and glottal airflow. The former coincides with the
measure of subglottal pressure during mid and low
vowels, which is about 5–10 cm H2O in comfortable
loudness and pitch (1 cm H2O = 0.98 hPa). The lat-
ter also coincides with the average measure of oral

a)

b)

Area and
airflow

modal phonation

breathy phonation

0 1 (cycle)

0 1 (cycle)

Output
sounds

Area and
airflow

Output
sounds

Fig. 2.5a,b Changes in glottal area and airflow in rela-
tion to output sounds during 1.5 glottal cycles from glottal
opening, with glottal shapes at peak opening (in the cir-
cles). (a) In modal phonation with complete glottal closure
in the closed phase, glottal closure causes abrupt shut-off
of glottal airflow and strong excitation of the air in the vo-
cal tract during the closed phase. (b) In breathy phonation,
the glottal closure is incomplete, and the airflow wave in-
cludes a DC component, which results in weak excitation
of the tract
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Physiological Processes of Speech Production 2.2 Voice Production Mechanisms 11

airflow during vowel production, which is roughly
0.1–0.2 l/s. These values show a large individual vari-
ation: the pressure range is 4.2–9.6 cm H2O in males
and 4.4–7.6 cm H2O in females, while the airflow rate
ranges between 0.1–0.3 l/s in males and 0.09–0.21 l/s
in females [2.6].

Figure 2.5 shows schematically the relationship be-
tween the glottal cycle and volumic airflow change
in normal and breathy phonation. The airflow varies
within each glottal cycle, reflecting the cyclic varia-
tion of the glottal area and subglottal pressure. The
glottal area curve roughly shows a triangular pattern,
while the airflow curve shows a skew of the peak to
the right due to the inertia of the air mass within the
glottis [2.7]. The closure of the glottis causes a discon-
tinuous decrease of the glottal airflow to zero, which
contributes the main source of vocal tract excitation,
as shown in Fig. 2.5a. When the glottal closure is
more abrupt, the output sounds are more intense with
richer harmonic components [2.8]. When the glottal clo-
sure is incomplete in soft and breathy voices or the
cartilaginous portion of the glottis is open to show
the glottal chink, the airflow includes a direct-current
(DC) component and exhibits a gradual decrease of
airflow, which results in a more sinusoidal waveform
and a lower intensity of the output sounds, as shown
in Fig. 2.5b.

Laryngeal control of the oscillatory patterns of the
vocal folds is one of the major factors in voice quality

Cricothyroid
muscle

Cricoid
cartilage

Thyroid
cartilage

Thyroarytenoid m.

cricothyroid joint and muscles rotation translation

Arytenoid
cartilage

Cricothyroid
joint

a) b) c)

Fig. 2.6a–c Cricothyroid joint and F0 regulation mechanism. (a) The cricothyroid joint is locally controlled by the
thyroarytenoid and two parts of the cricothyroid muscles: Pars recta (anterior) and pars obliqua (posterior). As F0 rises,
the thyroid cartilage advances and cricoid cartilage rotates to the direction to stretch the vocal folds, which leads to the
increases in the stiffness of vocal fold tissue and in the natural resonance frequency of the vocal folds. (b) Rotation of the
cricothyroid joint is caused mainly by the action of the pars recta to raise the cricoid arch. (c) Translation of the joint is
produced mainly by the pars obliqua

control. In sharp voice, the open phase of the glottal cycle
becomes shorter, while in soft voice, the open phase be-
comes longer. The ratio of the open phase within a glottal
cycle is called the open quotient (OQ), and the ratio of
the closing slope to the opening slope in the glottal cycle
is called the speed quotient (SQ). These two parameters
determine the slope of the spectral envelope. When the
open phase is longer (high OQ) with a longer closing
phase (low SQ), the glottal airflow becomes more si-
nusoidal, with weak harmonic components. Contrarily,
when the open phase is shorter (low OQ), glottal air-
flow builds up to pulsating waves with rich harmonics.
In modal voice, all the vocal fold layers are involved
in vibration, and the membranous glottis is completely
closed during the closed phase of each cycle. In falsetto,
only the edges of the vocal folds vibrate, glottal closure
becomes incomplete, and harmonic components reduce
remarkably.

The oscillation of the vocal folds during natural
speech is quasiperiodic, and cycle-to-cycle variation
are observed in speech waveforms as two types of
measures: jitter (frequency perturbation) and shimmer
(amplitude perturbation). These irregularities appear to
arise from combinations of biomechanical (vocal fold
asymmetry), neurogenic (involuntary activities of laryn-
geal muscles), and aerodynamic (fluctuations of airflow
and subglottal pressure) factors. In sustained phonation
of normal voice, the jitter is about 1% in frequency, and
the shimmer is about 6% in amplitude.
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12 Part A Production, Perception, and Modeling of Speech

2.2.4 Regulation
of Fundamental Frequency (F0)

The fundamental frequency (F0) of voice is the lowest
harmonic component in voiced sounds, which conforms
to the natural frequency of vocal fold vibration. F0
changes depending on two factors: regulation of the
length of the vocal folds and adjustment of aerodynamic
factors that satisfy the conditions necessary for vocal
fold vibration. In high F0, the vocal folds become thin-
ner and longer; while in low F0, the vocal folds become
shorter and thicker. As the vocal folds are stretched by
separating their two attachments (the anterior commis-
sure and vocal processes), the mass per unit length of
the vocal fold tissue is reduced while the stiffness of the
tissue layer involved in vibration increases. Thus, the
mass is smaller and the stiffness is greater for higher F0
than lower F0, and it follows that the characteristic fre-
quency of vibrating tissue increases for higher F0. The
length of the vocal folds is adjusted by relative move-
ment of the cricoid and thyroid cartilages. Its natural
length is a determinant factor of individual difference
in F0. The possible range of F0 in adult speakers is
about 80–400 Hz in males, and about 120–800 Hz in
females.

The thyroid and cricoid cartilages are articulated at
the cricothyroid joint. Any external forces applied to
this joint cause rotation and translation (sliding) of the
joint, which alters the length of the vocal folds. It is well
known that the two joint actions are brought about by the
contraction of the cricothyroid muscle to approximate
the two cartilages at their front edges. Figure 2.6 shows
two possible actions of the cricothyroid muscle on the
joint: rotation by the pars recta and translation of the pars
obliqua [2.9]. Questions still remain as to whether each
part of the cricothyroid conducts pure actions of rotation
or translation, and as to which part is more responsible
for determining F0.

The extrinsic laryngeal muscles can also apply ex-
ternal forces to this joint as a supplementary mechanism
for regulating F0 [2.10]. The most well known among
the activities of the extrinsic muscles in this regulation
is the transient action of the sternohyoid muscle ob-
served as F0 falls. Since this muscle pulls down the
hyoid bone to lower the entire larynx, larynx lower-
ing has long been thought to play a certain role in
F0 lowering. Figure 2.7 shows a possible mechanism
of F0 lowering by vertical larynx movement revealed
by magnetic resonance imaging (MRI). As the cricoid
cartilage descends along the anterior surface of the
cervical spine, the cartilage rotates in a direction that

shortens the vocal folds because the cervical spine
shows anterior convexity at the level of the cricoid
cartilage [2.11].

Aerodynamic conditions are an additional factor
that alters F0, as seen in the local rises of the sub-
glottal pressure during speech at stress or emphasis.
The increase of the subglottal air pressure results in
a larger airflow rate and a wider opening of the glottis,
which causes greater deformation of the vocal folds with
larger average tissue stiffness. The rate of F0 increase
due to the subglottal pressure is reported to be about
2–5 Hz/cmH2O when the chest cavity is compressed ex-
ternally, and is observed to be 5–15 Hz/cmH2O, when

Tongue
pull

a)

b)

horizontal component

vertical component

Joint
rotation

Larynx
lowering Joint

rotation

Fig. 2.7a,b Extrinsic control of F0. Actions of the cricothy-
roid joint are determined not only by the cricothyroid
muscle but also by other laryngeal muscles. Any exter-
nal forces applied to the joint can activate the actions of the
joint. (a) In F0 raising, advancement of the hyoid bone pos-
sibly apply a force to rotate the thyroid cartilage. (b) In F0

lowering, the cricoid cartilage rotates as its posterior plate
descends along the anterior convexity of the cervical spine
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Transmitter
electrode

Rectifier and
amplifier

High-frequency
current source

electroglottographyphotoglottography

Current

Receiver
electrode

Glottis

Fiberscope

Light source

DC amplifier

Cricoid
cartilagePhotodiode

1
2

a) b)

Fig. 2.8a,b Glottographic methods. (a) PGG with fiberscopy uses a photodetector attached near the cricothyroid cartilage
in two locations: one attachment for measuring vibrations, and two attachment for glottal gestures. (b) EGG uses a pair
of electrodes on the skin above the thyroid lamina to form a induction circuit to record electrical currents passed through
the vocal-fold edges

it is measured between the beginning and end of speech
utterances.

2.2.5 Methods
for Measuring Voice Production

Speech production mechanisms arise from the func-
tions of the internal organs of the human body that
are mostly invisible. Therefore, better understanding of
speech production processes relies on the development
of observation techniques. The lung functions in speech
can be assessed by the tools for aerodynamic mea-
surements, while examination of the larynx functions
during speech requires special techniques for imaging
and signal recording.

Monitoring Respiratory Functions
Respiratory functions during speech are examined by
recording aerodynamic measurements of lung volume,
airflow, and pressure. Changes in lung volume are mon-
itored with several types of plethysmography (e.g.,
whole-body, induction, and magnetic). The airflow from
the mouth is measured with pneumotachography us-
ing a mask with pressure probes (differential-pressure
anemometry) or thermal probes (hot-wire anemometry).
Measurements of the subglottal pressure require a tra-
cheal puncture of a needle with a pressure sensor or
a thin catheter-type pressure transducer inserted from
the nostril to the trachea via the cartilaginous part of the
glottis.

Laryngeal Endoscopy
Imaging of the vocal folds during speech has been con-
ducted with a combination of an endoscope and video
camera. A solid-type endoscope is capable of observing
vocal fold vibration with stroboscopic or real-time digi-
tal imaging techniques during sustained phonation. The
flexible endoscope is beneficial for video recording of
glottal movements during speech with a fiber optic bun-
dle inserted into the pharynx through the nostril via the
velopharyngeal port. Recently, an electronic type of flex-
ible endoscope with a built-in image sensor has become
available.

Glottography
Glottography is a technique to monitor vocal fold vi-
bration as a waveform. Figure 2.8 shows two types
of glottographic techniques. Photoglottography (PGG)
detects light intensity modulated by the glottis using
an optical sensor. The sensor is placed on the neck
and a flexible endoscope is used as a light source.
The signal from the sensor corresponds to the glot-
tal aperture size, reflecting vocal fold vibration and
glottal adduction–abduction movement. Electroglotto-
graphy (EGG) records the contact of the left
and right vocal fold edges during vibration. High-
frequency current is applied to a pair of surface
electrodes placed on the skin above the thyroid lam-
ina, which detect a varying induction current that
corresponds to the change in vocal fold contact
area.

Part
A

2
.2



14 Part A Production, Perception, and Modeling of Speech

2.3 Articulatory Mechanisms

Speech articulation is the most complex motor activ-
ity in humans, producing concatenations of phonemes
into syllables and syllables into words using movements
of the speech organs. These articulatory processes are
conducted within a phrase of a single expiratory phase
with continuous changes of vocal fold vibration, which
is one of the human-specific characteristics of sound
production mechanisms.

2.3.1 Articulatory Organs

Articulatory organs are composed of the rigid organ of
the lower jaw and soft-tissue organs of the tongue, lips,
and velum, as illustrated in Fig. 2.9. These organs to-
gether alter the resonance of the vocal tract in various
ways and generate sound sources for consonants in the
vocal tract. The tongue is the most important articu-
latory organ, and changes the gross configuration of
the vocal tract. Deformation of the whole tongue de-
termines vowel quality and produces palatal, velar, and
pharyngeal consonants. Movements of the tongue apex
and blade contribute to the differentiation of dental and
alveolar consonants and the realization of retroflex con-
sonants. The lips deform the open end of the vocal tract
by various types of gestures, assisting the production
of vowels and labial consonants. Actions of these soft-
tissue organs are essentially based on contractions of
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Fig. 2.9 Illustration of the articulatory
system with names of articulators and
cavities

the muscles within these organs, and their mechanism
is often compared with the muscular hydrostat. Since
the tongue and lips have attachments to the lower jaw,
they are interlocked with the jaw to open the mouth.
The velum controls opening and closing of the velopha-
ryngeal port, and allows distinction between nasal and
oral sounds. Additionally, the constrictor muscles of the
pharynx adjust the lateral width of the pharyngeal cav-
ity, and their actions also assist articulation for vowels
and back consonants.

Upper Jaw
The upper jaw, or the maxilla with the upper teeth, is the
structure fixed to the skull, forming the palatal dome on
the arch of the alveolar process with the teeth. It forms
a fixed wall of the vocal tract and does not belong to the
articulatory organs: yet it is a critical structure for speech
articulation because it provides the frame of reference
for many articulatory gestures. The structures of the up-
per jaw offer the location for contact or approximation by
many parts of the tongue such as the apex, blade, and dor-
sum. The phonetics literature describes the place of artic-
ulation as classified according to the locations of lingual
approximation along the upper jaw for dental, alveolar,
and palatal consonants. The hard palate is covered by
the thick mucoperiosteum, which has several transverse
lines of mucosal folds called the palatine rugae.
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Physiological Processes of Speech Production 2.3 Articulatory Mechanisms 15

Lower Jaw
The lower jaw, or the mandible with the lower teeth, is
the largest rigid motor organ among the speech produc-
tion apparatus. Its volume is about 100 cm3. As well as
playing the major role in opening and closing the mouth,
it provides attachments for many speech muscles and
supports the tongue, lips, and hyoid bone.

Figure 2.10 shows the action of the jaw and the mus-
cles used in speech articulation. The mandible articulates
with the temporal bone at the temporomandibular joint
(TMJ) and brings about jaw opening–closing actions by
rotation and translation. The muscles that control jaw
movements are generally called the masticatory mus-
cles. The jaw opening muscles are the digastric and
lateral pterygoid muscles. The strap muscles, such as
the geniohyoid and sternohyoid, also assist jaw opening.
The jaw closing muscles include the masseter, tempo-
ralis, and medial pterygoid muscles. While the larger
muscles play major roles in biting and chewing, com-
paratively small muscles are used for speech articulation.
The medial pterygoid is mainly used for jaw closing in
articulation, and the elastic recoil force of the connec-
tive tissues surrounding the mandible is another factor
for closing the jaw from its open position.

Tongue
The tongue is an organ of complex musculature [2.12].
It consists of a round body occupying its main mass
and a short blade with an apex. Its volume is approx-
imately 100 cm3, including the muscles in the tongue
floor. The tongue body moves in the oral cavity by vari-
ously deforming its voluminous mass, while the tongue
blade alters its shape and changes the angle of the tongue
apex. Deformation of the tongue tissue is caused by con-
tractions of the extrinsic and intrinsic tongue muscles,
which are illustrated schematically in Fig. 2.11.

The extrinsic tongue muscles are those that arise out-
side of the tongue and end within the tongue tissue. This
group includes four muscles, the genioglossus, hyoglos-
sus, styloglossus, and palatoglossus muscles, although
the former three muscles are thought to be involved in
the articulation of the tongue. The palatoglossus muscle
participates in the lowering of the velum as discussed
later.

The genioglossus is the largest and strongest mus-
cle in the tongue. It begins from the posterior aspect of
the mandibular symphysis and runs along the midline of
the tongue. Morphologically, it belongs to the triangular
muscle, and its contraction effects differ across portions
of the muscle. Therefore, the genioglossus is divided
functionally into the anterior, middle, and posterior bun-

dles. The anterior and middle bundles run midsagittally,
and their contraction makes the midline groove of the
tongue for the production of front vowels. The ante-
rior bundle often makes a shallow notch on the tongue
surface called the lingual fossa and assists elevation of
the tongue apex. The middle bundle runs obliquely, and
advances the tongue body for front vowels. The poste-
rior bundle of the genioglossus runs midsagittally and

Temporomandibular joint

External ear canal

Tympanic bone

Lateral pterygoid

Medial pterygoid

Digastric

a)
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rotation and translation of the jaw joint

muscles for jaw movements

Condyle

Fig. 2.10a,b Actions of the temporomandibular joint and
muscles for jaw opening and closing. (a) The lower jaw
opens by rotation and translation of the mandible at the
temporomandibular joint. Jaw translation is needed for wide
opening of the jaw because jaw rotation is limited by the nar-
row space between the condyle and tympanic bone. (b) Jaw
opening in speech depends on the actions of the digastric
and medial pterygoid muscles with support of the strap
muscles. Jaw closing is carried out by the contraction of
the lateral pterygoid muscle and elastic recoil forces of the
tissues surrounding the jaw
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16 Part A Production, Perception, and Modeling of Speech
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Fig. 2.11a,b Actions of the tongue and its musculature. (a) Major components of tongue deformation are high-front
vs.low-back (top) and high back versus low front (bottom) motions, (after [2.14]). (b) Lateral view (top) shows the
extrinsic and intrinsic muscles of the tongue with two tongue floor muscles. Coronal section (bottom) shows additional
intrinsic muscles

also spreads laterally, reaching a wide area of the tongue
root. This bundle draws the tongue root forward and el-
evates the upper surface of the tongue for high vowels
and anterior types of oral consonants. The hyoglossus
is a bilateral thin-sheet muscle, which arises from the
hyoid bone, runs upward along the sides of the tongue,
and ends in the tongue tissue, intermingling with the
styloglossus. Its contraction lowers the tongue dorsum
and pushes the tongue root backward for the produc-
tion of low vowels. The styloglossus is a bilateral long
muscle originating from the styloid process on the skull
base, running obliquely to enter the back sides of the
tongue. Within the tongue, it runs forward to reach
the apex of the tongue, while branching downward to
the hyoid bone and medially toward the midline. Al-
though the extra-lingual bundle of the styloglossus runs
obliquely, it pulls the tongue body straight back at the
insertion point because the bundle is surrounded by fatty
and muscular tissues. The shortening of the intra-lingual
bundle draws the tongue apex backward and causes an

upward bunching of the tongue body [2.13]. Each of
the extrinsic tongue muscles has two functions: draw-
ing of the relevant attachment point toward the origin,
and deforming the tongue tissue in the orthogonal ori-
entation. The resulting deformation of the tongue can be
explained by two antagonistic pairs of extrinsic muscles:
posterior genioglossus versus styloglossus, and anterior
genioglossus versus hyoglossus. The muscle arrange-
ment appears to be suitable for tongue body movements
in the vertical and horizontal dimensions.

The intrinsic tongue muscle is a group of muscles
that have both their origin and termination within the
tongue tissue. They include four bilateral muscles: the
superior longitudinal, inferior longitudinal, transverse,
and vertical muscles. The superior and inferior longitu-
dinal muscles operate on the tongue blade to produce
vertical and horizontal movements of the tongue tip.
The transverse and vertical muscles together compress
the tongue tissue medially to change the cross-sectional
shape of the tongue.
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Levator
labii sup.

selected muscles for lip and velum movementsactions of  the lips and velum

Depressor
labii inf.

Orbicularis
oris sup.

Orbicularis
oris inf.

Mentalis

Levator
veli palatini

Epipharyngeal
constrictor

Palatoglossus

b)a)

Fig. 2.12a,b Actions of the lips and velum, and their muscles. (a) Trace of MRI data in the production of /i/ and /u/ with
lip protrusion show that two parts of the orbicularis oris, marginal (front) and peripheral (back) bundles demonstrate their
geometrical changes within the vermillion tissue. The shapes of the velum also vary greatly between the rest position
(thick gray line) and vowel articulation. (b) Five labial muscles are shown selectively from among many facial muscles.
The velum shape is determined by the elevator, constrictor, and depressor (palatopharyngeus)

There are two muscles that support the tongue floor:
the geniohyoid and mylohyoid muscles. The geniohyoid
runs from the genial process of the mandibular symph-
ysis to the body of the hyoid bone. This muscle has
two functions: opening the jaw for open vowels and
advancing the hyoid bone to help raise F0. The mylohy-
oid is a sheet-like muscle beneath the tongue body that
stretches between the mandible and the hyoid bone to
support the entire tongue floor. This muscle supports the
tongue floor to assist articulation of high front vowels
and oral consonants.

Lips and Velum
The lips are a pair of soft-tissue organs consisting of
many muscles. Their functions resemble those of the
tongue because they partly adhere to the mandible and
partly run within the soft tissue of the lips. The vermil-
lion, or the part of red skin, is the unique feature of the
human lips, which transmits phonetic signals visually.
The deformation of the lips in speech can be divided
into three components. The first is opening/closing of
the lip aperture, which is augmented by jaw movement.
The second is rounding/spreading of the lip tissue, pro-
duced by the changes in their left–right dimension. The
third is protrusion/retraction of the lip gesture, gener-
ated by three-dimensional deformation of the entire lip
tissue.

The muscles that cause deformation of the lips are
numerous. Figure 2.12 shows only a few representative

muscles of the lips. The orbicularis oris is the mus-
cle that surrounds the lips, consisting of two portions;
the marginal and peripheral bundles. Contraction of the
marginal bundles near the vermillion borders is thought
to produce lip rounding without protrusion. Contraction
of the peripheral bundles that run in the region around the
marginal bundles compresses the lip tissue circumferen-
tially to advance the vermillion in lip protrusion [2.15].
The mentalis arises from the mental part of the mandible
to the lip surface, and its contraction elevates the lower
lip by pulling the skin at the mental region. The levator
labii superior elevates the upper lip, and the depressor
labii inferior depresses the lower lip relative to the jaw.
The superior and inferior angli oris muscles move the lip
corners up and down, respectively, which makes facial
expressions rather than speech articulation.

The exact mechanism of lip protrusion is still in
question. Tissue bunching by muscle shortening as
a general rule for the organs of muscle does not fully
apply to the phenomenon of lip protrusion. This is be-
cause, as the vermilion thickens in lip protrusion, it
does not compress on the teeth; its dental surface of-
ten detaches from the teeth (Figure 2.12a). A certain
three-dimensional stress distribution within the entire
labial tissue must be considered to account for the causal
factors of lip protrusion.

The velum, or the soft palate, works as a valve be-
hind the hard palate to control the velopharyngeal port,
as shown in Fig. 2.12a. Elevation of the velum is carried
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18 Part A Production, Perception, and Modeling of Speech

out during the production of oral sounds, while lower-
ing takes place during the production of nasal sounds.
The action of the velum to close the velopharyngeal
port is not a pure hinge motion but is accompanied
by the deformation of the velum tissue with narrowing
of the nasopharyngeal wall. In velopharyngeal clo-
sure, the levator veli palatine contracts to elevate the
velum, and the superior pharyngeal constrictor muscle
produces concentric narrowing of the port. In velopha-
ryngeal opening, the palatoglossus muscle assists active
lowering of the velum.

2.3.2 Vocal Tract and Nasal Cavity

The vocal tract is an acoustic space where source sounds
for speech propagate. Vowels and consonants rely on
strengthening or weakening of the spectral components
of the source sound by resonance of the air column in
the vocal tract. In the broad definition, the vocal tract
includes all the air spaces where acoustic pressure vari-
ation takes place in speech production. In this sense,
the vocal tract divides into three regions: the subglottal
tract, the tract from the glottis to the lips, and the nasal
cavities.

The subglottal tract is the lower respiratory tract be-
low the glottis down to the lungs via the trachea and
bronchial tubes. The length of the trachea from the glot-
tis to the carina is 10–15 cm in adults, including the

Interdental space

Oral cavity

Oral vestibule Hypopharynx

Oropharynx

Ventricle

Nasal cavity

Paranasal sinuses

Piriform fossa
Glottis

Veropharyngeal port

Tongue

Subglottal
tract

Fig. 2.13 Acoustic design of the vocal tract. Passages from the sub-
glottal tract to two output ends at the lips and nares are shown
with the effects of tongue and velar movements. The resonance of
the vocal tract above the supraglottic laryngeal cavity determines
major the vowel formants (F1, F2, and F3). The resonance of the
subglottal tract and interdental space interacts with the vowel for-
mants, while the hypopharyngeal cavities and other small cavities
cause local resonances and antiresonances in the higher-frequency
region

length of the subglottic laryngeal cavity (about 2 cm).
Vocal source sounds propagate from the glottis to the
trachea, causing the subglottal resonance in speech spec-
tra. The resonance frequencies of the subglottal airway
are estimated to be 640, 1400, and 2100 Hz [2.16]. The
second subglottal resonance is often observed below the
second formant of high vowels.

The vocal tract, according to the conventional def-
inition, is the passage of vocal sounds from the glottis
to the lips, where source sounds propagate and give
rise to the major resonances. The representative values
for the length of the main vocal tract from the glottis
to the lips are 15 cm in adult females and 17.5 cm in
adult males. According to the measurement data based
on the younger population, vocal tract lengths are 14 cm
in females and 16.5 cm in males [2.17, 18], which are
shorter than the above values. Considering the elon-
gation of the vocal tract during a course of life, the
above representative values appear reasonable. While
the oral cavity length is maintained by the rigid struc-
tures of the skull and jaw, the pharyngeal cavity length
increases due to larynx lowering before and after pu-
berty. Thus, elongation of the pharyngeal cavity is the
major factor in the developmental variation in vocal tract
length.

The vocal tract anatomically divides into four seg-
ments: the hypopharyngeal cavities, the mesopharynx,
the oral cavity, and the oral vestibule (lip tube). The
hypopharyngeal part of the vocal tract consists of the
supraglottic laryngeal cavity (2 cm long) and the bilat-
eral conical cavities of the piriform fossa (2 cm long).
The mesopharynx extends from the aryepiglottic fold
to the anterior palatal arch. The oral cavity is the seg-
ment from the anterior palatal arch to the incisors. The
oral vestibule extends from the incisors to the lip open-
ing. The latter shows an anterior convexity, which often
makes it difficult to measure the exact location of lip
opening.

The vocal tract is not a simple uniaxial tube but has
a complex three-dimensional construction. The immo-
bile wall of the vocal tract includes the dental arch and
the palatal dome. The posterior pharyngeal wall is al-
most rigid, but it allows subtle changes in convexity
and orientation. The soft walls include the entire tongue
surface, the velum with the uvula, the lateral pharyn-
geal wall, and the lip tube. The shape of the vocal tract
varies individually due to a few factors. First, the lat-
eral width of the upper and lower jaws relative to the
pharyngeal cavity width affects tongue articulation and
results in a large individual variation of vocal tract shape
observed midsagittally. Second, the mobility of the jaw
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depending on the location of the mandibular symphysis
relative to the skull can vary the openness of vowels.
Third, the size of the tongue relative to the oral and pha-
ryngeal cavities varies individually; the larger the tongue
size, the smaller the articulatory space for vowels.

Figure 2.13 shows a schematic drawing of the vocal
tract and nasal cavity. The vocal tract has nearly con-
stant branches such as the piriform fossa (entrance to
the esophagus) and the vallecula (between the tongue
root and epiglottis). The vocal tract also has controlled
branches to the nasal cavity at the velopharyngeal port
and to the interdental space (the space bounded by the
upper and lower teeth and the lateral cheek wall). The
latter forms a pair of side-branches when the tongue is
in a higher position as in /i/ or /e/, while it is unified with
the oral cavity when the tongue is in a lower position as
in /a/.

The nasal cavity is an accessory channel to the main
vocal tract. Its horizontal dimension from the anterior
nares to the posterior wall of the epipharynx is approxi-
mately 10–11 cm. The nasal cavity can be divided into
the single-tube segment (the velopharyngeal region and
epipharynx) and the dual-tube segment (the nasal cavity
proper and nasal vestibule). Each of the bilateral chan-
nels of the nasal cavity proper has a complex shape of
walls with the three turbinates with thick mucous mem-
brane, which makes a narrower cross section compared
with the epipharyngeal area [2.19]. The nasal cavity
has its own side-branches of the paranasal sinuses; the
maxillary, sphenoid, ethomoid, and frontal sinuses.

The nasal cavity builds nasal resonance to accom-
plish phonetic features of nasal sounds and nasalized
vowels. The paranasal sinuses also contribute to acoustic
characteristics of the nasal sounds. The nasal murmur re-
sults from these characteristics: a Helmholtz resonance
of the entire nasopharyngeal tract from the glottis to
the anterior nares and regional Helmholtz resonances
caused by the paranasal sinuses, together characterized
by a resonance peak at 200–300 Hz and spectral flatten-
ing up to 2 kHz [2.20, 21]. The nasal resonance could
takes place even in oral vowels with a complete closure
of the velopharyngeal port: the soft tissue of the velum
transmits the pressure variation in the oral cavity to the
nasal cavity, which would enhances sound radiation for
close vowels and voiced stops.

2.3.3 Aspects of Articulation
in Relation to Voicing

Here we consider a few phonetic evidences that can be
considered as joint products of articulation and phona-

tion. Vowel production is the typical example for this
topic, in view of its interaction with the larynx. Reg-
ulation of voice quality, which has been thought to be
a laryngeal phenomenon, is largely affected by the lower
part of the vocal tract. The voiced versus voiceless dis-
tinction is a pertinent issue of phonetics that involves
both phonatory and articulatory mechanisms.

Production of Vowels
The production of vowels is the result of the joint action
of phonatory and articulatory mechanisms. In this pro-
cess, the larynx functions as a source generator, and the
vocal tract plays the role of an acoustic filter to modu-
late the source sounds and radiate from the lip opening,
as described by the source-filter theory [2.22, 23]. The
quality of oral vowels is determined by a few peak fre-
quencies of vocal tract resonance (formants). In vowel
production, the vocal tract forms a closed tube with the
closed end at the glottis and the open end at the lip
opening. Multiple reflections of sound wave between
the two ends of the vocal tract give rise to vowel for-
mants (F1, F2, F3). The source-filter theory has been
supported by many studies as the fundamental concept
explaining the acoustic process of speech production,
which is further discussed in the next section.

Vowel articulation is the setup for the articulatory
organs to determine vocal tract shape for each vowel.
When the jaw is in a high position and the tongue is in
a high front position, the vocal tract assumes the shape
for /i/. Contrarily, when the jaw is in a low position and
the tongue is in a low back position, the vocal tract takes
the shape for /a/. The articulatory organ that greatly in-
fluences vocal tract shape for vowels is the tongue. When
the vocal tract is modeled as a tube with two segments
(front and back cavities), the movements of the tongue
body between its low back and high front positions cre-
ates contrasting diverging and converging shapes of the
main vocal tract. Jaw movement enhances these changes
in the front cavity volume, while pharyngeal constric-
tion assists in the back cavity volume. When the vocal
tract is modeled as a tube with three segments, the move-
ments of the tongue body between its high back and low
front positions determine the constriction or widening of
the vocal tract in its middle portion. The velum also con-
tributes to the articulation of open vowels by decreasing
the area of the vocal tract at the velum or making a nar-
row branch to the nasal cavity. The lip tube is another
factor for vowel articulation that determines the vocal
tract area near the open end.

Although muscular control for vowel articulation
is complex, a simplified view can be drawn based
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a) b)

Audio

GGA

GGP

HG

SG

averaged EMG of the extrinsic muscles muscles selection pattern

GGA

æ a

a

ui
i

æ

u

GGP

HG

Jaw

Lips

SG

Fig. 2.14a,b Tongue EMG data during
VCV utterances and muscle selection
pattern in vowel articulation. (a) Aver-
aged EMG data for four English cor-
ner vowels are shown for the major
muscles of the tongue: the anterior
genioglossus (GGA), posterior ge-
nioglossus (GGP), hyoglossus (HG),
and styloglossus (SG). (b) The sys-
tematic variation observed in the
muscle–vowel matrix suggests a mus-
cle selection pattern

on electromyographic (EMG) data obtained from the
tongue muscles [2.24]. Figure 2.14a shows a systematic
pattern of muscle activities for CVC (consonant-vowel-
consonant) utterances with /p/ and four English corner
vowels. The anterior and posterior genioglossus are
active for front vowels, while the styloglossus and hyo-
glossus are active for back vowels. These muscles also
show a variation depending on vowel height. These ob-
servations are shown schematically in Fig. 2.14b: the
basic control pattern for vowel articulation is the selec-
tion of two muscles among the four extrinsic muscles of
the tongue [2.25].

As the tongue or jaw moves for vowel articulation,
they apply forces to the surrounding organs and cause
secondary effects on vowel sounds. For example, ar-
ticulation of high vowels such as /i/ and /u/ is mainly
produced by contraction of the posterior genioglossus,
which is accompanied by forward movement of the hy-
oid bone. This action applies a force to rotate the thyroid
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Supra-laryngeal
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Laryngeal cavity
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Fig. 2.15a,b Vocal-tract resonance
with hypopharyngeal cavity coupling
in vowel production. (a) The supra-
glottal laryngeal cavity contributes
a resonance peak at 3–3.5 kHz, and
the bilateral cavities of the piri-
form fossa cause antiresonances at
4–5 kHz. (b) The main vocal tract
above the laryngeal cavity determines
the major vowel formants

cartilage in a direction that stretches the vocal folds. In
evidence, higher vowels tend to have a higher F0, known
as the intrinsic vowel F0 [2.26,27]. When the jaw opens
to produce open vowels, jaw rotation compresses the
tissue behind the mandibular symphysis, which applies
a force to rotate the thyroid cartilage in the opposite di-
rection, thereby shortening the vocal folds. Thus, the
jaw opening has the secondary effect of lowering the
intrinsic F0 for lower vowels.

Supra-Laryngeal Control of Voice Quality
The laryngeal mechanisms controlling voice quality
were described in an earlier section. In this section,
the supra-laryngeal factors are discussed. Recent stud-
ies have shown evidence that the resonances of the
hypopharyngeal cavities determine the spectral enve-
lope in the higher frequencies above 2.5 kHz by causing
an extra resonance and antiresonances [2.28–31]. The
hypopharyngeal cavities include a pair of vocal-tract
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side-branches formed by the piriform fossa. Each fossa
maintains a relatively constant cavity during speech,
which is collapsed only in deep inhalation by the wide
abduction of the arytenoid cartilage. The piriform fossa
causes one or two obvious antiresonances in the higher
frequencies above 4 kHz [2.29] and affects the surround-
ing formants. The laryngeal cavity above the vocal
folds also contributes to shaping the higher frequen-
cies [2.28, 32]. The supraglottic laryngeal cavity, from
the ventricles to the aryepiglottic folds via the ventricu-
lar folds, forms a type of Helmholtz resonator and gives
rise to a resonance at higher frequencies of 3–3.5 kHz.
This resonance can be counted as the fourth formant (F4)
but it is actually an extra formant to the resonance of the
vocal tract above the laryngeal cavity [2.30]. When the
glottis opens in the open phase of vocal fold vibration,
the supraglottic laryngeal cavity no longer constitutes
a typical Helmholtz resonator, and demonstrates a strong
damping of the resonance, which is observed as the dis-
appearance of the affiliated extra formant. Therefore, the
laryngeal cavity resonance shows a cyclic nature during
vocal fold vibration, and it is possibly absent in breathy
phonation or pathological conditions with insufficient
glottal closure [2.31]. Figure 2.15 shows an acoustic
model of the vocal tract to illustrate this coupling of the
hypopharyngeal cavities.

The hypopharyngeal cavities are not an entirely
fixed structure but vary due to physiological efforts
to control F0 and voice quality. A typical case of the

–0.2 s 0 0.2 s

Open

Close

–0.2 s 0 0.2 s

a s a a z a

Airflow

Vocal tract

Audio

/asa/ in low-high accent /aza/ in low-high accenta) b)

Glottal area

Fig. 2.16a,b Laryngeal articulatory patterns in producing VCV utterances with voiceless and voiced fricatives as in /asa/
and /aza/. From the top to bottom, speech signals, oral airflow, schematic patterns of vocal tract constriction, and glottal
area variations are shown schematically. This figure is based on the author’s recent experiment with anemometry with an
open-type airflow transducer and photoglotto-graphy with an external lighting technique, conducted by Dr. Shinji Maeda
(ENST) and the author

hypopharyngeal adjustment of voice quality is found
in the singing formant [2.28]. When high notes are
produced by opera singers, the entire larynx is pulled
forward due to the advanced position of the tongue,
which widens the piriform fossa to deepens the fossa’s
antiresonances, resulting in a decrease of the frequency
of the adjacent lower formant (F5). When the supra-
glottic laryngeal cavity is constricted, its resonance (F4)
comes down towards the lower formant (F3). Conse-
quently, the third to fifth formants come closer to each
other and generate a high resonance peak observed
near 3 kHz.

Regulation of Voiced and Voiceless Sounds
Voiced and voiceless sounds are often attributed to
the glottal state with and without vocal fold vibra-
tion, while their phonetic characteristics result from
phonatory and articulatory controls over the speech
production system. In voiced vowels, the vocal tract
forms a closed tube with no significant constrictions
except for the narrow laryngeal cavity. On the other
hand, in whispered vowels, the membranous glottis is
closed, and the supraglottic laryngeal cavity forms an
extremely narrow channel continued from the open car-
tilaginous glottis, with a moderate constriction of the
lower pharynx. Devoiced vowels exhibit a wide open
glottis and a reduction of tongue articulation. Pho-
netic distinctions of voiced and voiceless consonants
further involve fine temporal control over the larynx
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and supra-laryngeal articulators in language-specific
ways.

In the production of voiced consonants, vocal fold vi-
bration typically continues during the voiced segments.
In voiced stops and fricatives, the closure or narrow-
ing of the vocal tract results in decrease in glottal
airflow and transglottal pressure difference. The glot-
tal airflow during the stop closure is maintained during
the closure due to the increases in vocal tract vol-
ume: the expansion of the oral cavity (jaw lowering
and cheek wall expansion) and the expansion of the
pharyngeal cavity (lateral wall expansion and larynx
lowering). During the closure period, air pressure vari-
ations are radiated not only from the vocal tract wall
but also from the anterior nares due to transvelar prop-
agation of the intra-oral sound pressure into the nasal
cavities.

In the production of voiceless consonants, vocal fold
vibration is suppressed due to a rapid reduction of the
transglottal pressure difference and abduction of the vo-
cal folds. During stop closures, the intra-oral pressure
builds up to reach the subglottal pressure, which en-
hances the rapid airflow after the release of the closure.
Then, vocal fold vibration restarts with a delay to the
release, which is observed as a long voice onset time
(VOT) for voiceless stops. The process of suppressing
vocal fold vibration is not merely a passive aerodynamic
process on the vocal folds, but is assisted by a physio-
logical process to control vocal fold stiffness. The
cricothyroid muscle has been observed to increase its
activity in producing voiceless consonants. This ac-
tivity results in a high–falling F0 pattern during the
following vowel, contributing a phonetic attribute to
voiceless consonants [2.33]. In glottal stops, vocal fold
vibration stops due to forced adduction of the vocal
folds with an effort closure of the supraglottic laryngeal
cavity.

Figure 2.16 illustrates the time course of the pro-
cesses during vowel-consonant-vowel (VCV) utterances
with a voiceless fricative in comparison to the case with
a voiced fricative. The voiceless segment initiates with
glottal abduction and alveolar constriction, and vocal
fold vibration gradually fades out during the phase of
glottal opening. After reaching the maximum glottal ab-
duction, the glottis enters the adduction phase, followed
by the release of the alveolar constriction. Then, the glot-
tis becomes narrower and vocal fold vibration restarts.
There is the time lag between the release of the constric-
tion and full adduction of the glottis, which results in the
peak flow seen in Fig. 2.16a, presumably accompanied
by aspiration sound at the glottis.

2.3.4 Articulators’ Mobility
and Coarticulation

The mobility of speech articulators varies across organs
and contributes certain phonetic characteristics to speech
sounds. Rapid movements are essential to a sequence
from one distinctive feature to another, as observed in
the syllable /sa/ from a narrow constriction to the vocalic
opening, while gradual movements are found to produce
nasals and certain labial sounds. These variations are
principally due to the nature of articulators with respect
to their mobility. The articulatory mechanism involves
a complex system that is built up by organs with different
motor characteristics. Their variation in temporal mobil-
ity may be explained by a few biological factors. The
first is the phylogenetic origin of the organs: the tongue
muscles share their origin with the fast motor systems
such as the eyeball or finger, while other muscles such as
in the lips or velum originate from the slow motor sys-
tem similar to the musculature of the alimentary tract.
The second is the innervation density to each muscle:
the faster organs are innervated by thicker nerve bundles,
and vise versa, which derives from an adaptation of the
biological system to required functions. In fact, the hu-
man hypoglossal nerve that supplies the tongue muscles
is much thicker than that of other members of the pri-
mate family. The third is the composition of muscle fiber
types in the musculature, which varies from organ to or-
gan. The muscles in the larynx have a high concentration
of the ultrafast fibers (type 2B), while the muscle to el-
evate the velum predominantly contains the slow fibers
(type 1). In accordance with these biological views, the
rate of the articulators movement indexed by the maxi-
mum number of syllables per second follows the order
of the tongue apex, body, and lips: the tongue moves at
a maximum rate of 8.2 syllables per second at the apex,
and 7.1 syllables per second with the back of the tongue,
while the lips and facial structures move at a maxi-
mum rate of 2.5–3 syllables per second [2.34]. More
recent measurements indicate that the lips are slower
than the tongue apex but faster than the tongue dorsum.
The velocities during speech tasks reach 166 mm/sec
for the lower lip, 196 mm/sec for the tongue tip, and
129 mm/sec for the tongue dorsum [2.35]. The discrep-
ancy between these two reports regarding the mobility
of the lips may be explained by the types of movements
measured: opening–closure movement by the jaw–lower
lip complex is faster than the movement of the lips
themselves, such as protrusion and spreading.

It is often noted that speech is characterized by asyn-
chrony among articulatory movements, and the degree
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of asynchrony varies with the feature to be realized.
Each articulator does not necessarily strictly keep pace
with other articulators in a syllable sequence. The phys-
iological basis of this asynchrony may be explained by
the mobility of the articulatory organs and motor preci-
sion required for the target of articulation. The slower
articulators such as the lips and velum tend to exhibit
marked coarticulation in production of labial and nasal
sounds. In stop–vowel–nasal sequences (such as /tan/),
the velopharyngeal port is tightly closed at the stop onset
and the velum begins to lower before the nasal con-
sonant. Thus, the vowel before the nasal consonant is
partly nasalized. When the vowel /u/ is preceded by /s/,
the lips start to protrude during the consonant prior to
the rounded vowel.

The articulators’ mobility also contributes some
variability to speech movements. The faster articula-
tors such as parts of the tongue show various patterns
from target undershooting to overshooting. In articula-
tion of close–open–close vowel sequences such as /iai/,
tongue movements naturally show undershooting for the
open vowel. In contrast, when the alveolar voiceless
stop /t/ is placed in the open vowel context as in /ata/,
the tongue blade sometimes shows an extreme overshoot
with a wide contact on the hard palate because such artic-
ulatory variations do not significantly affect the output
sounds. On the contrary, in alveolar and postalveolar
fricatives such as /s/ and /sh/, tongue movements also
show a dependence on articulatory precision because the
position of the tongue blade must be controlled precisely
to realize the narrow passage for generating frication
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Fig. 2.17a,b Electropalatography and magnetic sensing system. (a) Electropalatography displays tongue–palate contact
patterns by detecting weak electrical current caused by the contact between the electrodes on the artificial palate and the
tongue tissue. (b) Magnetic sensing system is based on detection of alternate magnetic fields with different frequencies
using miniature sensor coils

sounds. The lateral /l/ is similar to the stops with respect
to the palatal contact, while the rhotic /r/ with no contact
to the palate can show a greater extent of articulatory
variations from retroflex to bunched types depending on
the preceding sounds.

2.3.5 Instruments
for Observing Articulatory Dynamics

X-ray and palatography have been used as common
tools for articulatory observation. Custom instruments
are also developed to monitor articulatory movements,
such as the X-ray microbeam system and magnetic sen-
sor system. The various types of newer medical imaging
techniques are being used to visualize the movements
of articulatory system using sonography and nuclear
magnetic resonance. These instruments are generally
large scale, although relatively compact instruments are
becoming available (e.g., magnetic probing system or
portable ultrasound scanner).

Palatography
The palatograph is a compact device to record tempo-
ral changes in the contact pattern of the tongue on the
palate. There are traditional static and modern dynamic
types. The dynamic type is called electropalatography, or
dynamic palatography, which employs an individually
customized palatal plate to be placed on the upper jaw.
As shown in Fig. 2.17a, this system employs a palatal
plate with many surface electrodes to monitor electrical
contacts on the tongue’s surface.
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Fig. 2.18a,b Medical imaging techniques. (a) Ultrasound scanner uses an array of transmitters and receivers to detect
echo signals from regions where the ultrasound signals reflect strongly such as at the tissue-air boundaries on the tongue
surface. (b) Magnetic resonance imaging (MRI) generates strong static magnetic field, controlled gradient fields in the
three directions, and radio-frequency (RF) pulses. Hydrogen atoms respond to the RF pulses to generate echo signals,
which are detected with a receiver coil for spectral analysis

Marker Tracking System
A few custom devices have been developed to record
movements of markers attached on the articulatory
organs. X-ray microbeam and magnetic sensing sys-
tems belong to this category. Both can measure 10
markers simultaneously. The X-ray microbeam system
uses a computer-controlled narrow beam of high-energy
X-rays to track small metal pellets attached on the artic-
ulatory organs. This system allows automatic accurate
measurements of pellets with a minimum X-ray dosage.

The magnetic sensing system (magnetometer, or
magnetic articulograph) is designed to perform the same
function as the microbeam system without X-rays. The
system uses a set of transmitter coils that generate alter-
nate magnetic fields and miniature sensor coils attached
to the articulatory organs, as shown in Fig. 2.17b. The
positions of the receiver coils are computed from the
filtered signals from the coils.

Medical Imaging Techniques
X-ray cinematography and X-ray video fluorography
have been used for re-cording articulatory movements in
two-dimensional projection images. The X-ray images
show clear outlines of rigid structures, while they pro-

vide less-obvious boundaries for soft tissue. The outline
of the tongue is enhanced by the application of liquid
contrast media on the surface. Metal markers are of-
ten used to track the movements of flesh points on the
soft-tissue articulators.

Ultrasonography is a diagnostic technique to obtain
cross-sectional images of soft-tissues in real time. Ultra-
sound scanners consist of a sound probe (phased-array
piezo transducer and receiver) and image processor, as
illustrated in Fig. 2.18a. The probe is attached to the
skin below the tongue to image the tongue surface in the
sagittal or coronal plane.

Magnetic resonance imaging (MRI), shown in
Fig. 2.18b, is a developing medical technique that ex-
cels at soft-tissue imaging of the living body. Its principle
relies on excitation and relaxation of the hydrogen nu-
clei in water in a strong homogeneous magnetic field
in response to radio-frequency (RF) pulses applied with
variable gradient magnetic fields that determine the slice
position. MRI is essentially a method for recording
static images, while motion imaging setups with strobo-
scopic or real-time techniques have been applied to the
visualization of articulatory movements or vocal tract
deformation three-dimensionally [2.36].

2.4 Summary

This chapter described the structures of the human
speech organs and physiological mechanisms for pro-
ducing speech sounds. Physiological processes during

speech are multidimensional in nature as described in
this chapter. Discoveries of their component mecha-
nisms have been dependent on technical developments
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for visualizing the human body and analyses of biolog-
ical signals, and this is still true today. For example, the
hypopharyngeal cavities have long been known to exist,
but their acoustic role was underestimated until recent
MRI observations. The topics in this chapter were cho-
sen with the author’s hope to provide a guideline for the
sophistication of speech technologies by reflecting the

real and detailed processes of human speech production.
Expectations from these lines of studies include speech
analysis by recovering control parameters of articulatory
models from speech sounds, speech synthesis with full
handling of voice quality and individual vocal charac-
teristics, and true speech recognition through biologic,
acoustic, and phonetic characterizations of input sounds.
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Nonlinear Co3. Nonlinear Cochlear Signal Processing
and Masking in Speech Perception

J. B. Allen

There are many classes of masking, but two major
classes are easily defined: neural masking and
dynamic masking. Neural masking characterizes
the internal noise associated with the neural
representation of the auditory signal, a form
of loudness noise. Dynamic masking is strictly
cochlear, and is associated with cochlear outer-
hair-cell processing. This form is responsible
for dynamic nonlinear cochlear gain changes
associated with sensorineural hearing loss, the
upward spread of masking, two-tone suppression
and forward masking. The impact of these various
forms of masking are critical to our understanding
of speech and music processing. In this review,
the details of what we know about nonlinear
cochlear and basilar membrane signal processing is
reviewed, and the implications of neural masking
is modeled, with a comprehensive historical review
of the masking literature. This review is appropriate
for a series of graduate lectures on nonlinear
cochlear speech and music processing, from an
auditory point of view.
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3.1 Basics

Auditory masking is critical to our understanding of
speech and music processing. There are many classes
of masking, but two major classes are easily defined.
These two types of masking and their relation to nonlin-
ear (NL) speech processing and coding are the focus of
this chapter.

The first class of masking, denoted neural mask-
ing, is due to internal neural noise, characterized in
terms of the intensity just noticeable difference, denoted
ΔI(I, f, T ) (abbreviated JNDI) and defined as the just
discriminable change in intensity. The JNDI is a func-
tion of intensity I , frequency f and stimulus type T (e.g.,
noise, tones, speech, music, etc.). As an internal noise,
the JNDI may be modeled in terms of a loudness (i. e.,
perceptual intensity) noise density along the length of
the cochlea (0≤ X ≤ L), described in terms of a partial
loudness JND (ΔL(X, T ), a.k.a. JNDL). The cochlea or

inner ear is the organ that converts signals from acous-
tical to neural signals. The loudness JND is a function
of the partial loudness L(X), defined as the loudness
contribution coming from each cochlear critical band,
or more generally, along some tonotopic central audi-
tory representation. The critical band is a measure of
cochlear bandwidth at a given cochlear place X. The
loudness JND plays a major role in speech and music
coding since coding quantization noise may be masked
by this internal quantization (i. e., loudness noise).

The second masking class, denoted here as dy-
namic masking, comes from the NL mechanical action
of cochlear outer-hair-cell (OHC) signal processing. It
can have two forms, simultaneous and nonsimultane-
ous, also known as forward masking, or post-masking.
Dynamic-masking (i. e., nonlinear OHC signal process-
ing) is well known (i. e., there is a historical literature
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on this topic) to be intimately related to questions
of cochlear frequency selectivity, sensitivity, dynamic
range compression and loudness recruitment (the loss
of loudness dynamic range). Dynamic masking includes
the upward spread of masking (USM) effect, or in neu-
ral processing parlance, two-tone suppression (2TS). It
may be underappreciated that NL OHC processing (i. e.,
dynamic masking) is largely responsible for forward
masking (FM, or post-stimulus masking), which shows
large effects over long time scales. For example OHC
effects (FM/USM/2TS) can be as large as 50 dB, with an
FM latency (return to base line) of up to 200 ms. Forward
masking (FM) and NL OHC signal onset enhancement
are important to the detection and identification of per-
ceptual features of a speech signal. Some research has
concluded that forward masking is not related to OHC
processing [3.1, 2], so the topic remains controversial.
Understanding and modeling NL OHC processing is key
to many speech processing applications. As a result, a vi-
brant research effort driven by the National Institute of
Health on OHC biophysics has ensued.

This OHC research effort is paying off at the high-
est level. Three key examples are notable. First is the
development of wide dynamic-range multiband com-
pression (WDRC) hearing aids. In the last 10–15 years
WDRC signal processing (first proposed in 1937 by
researchers at Bell Labs [3.3]), revolutionized the
hearing-aid industry. With the introduction of compres-
sion signal processing, hearing aids now address the
recruitment problem, thereby providing speech audibil-
ity over a much larger dynamic range, at least in quiet.
The problems of the impaired ear given speech in noise
is poorly understood today, but this problem is likely
related to the effects of NL OHC processing. This pow-
erful circuit (WDRC) is not the only reason hearing aids
of today are better. Improved electronics and transducers
have made significant strides as well. In the last few years
the digital barrier has finally been broken, with digital
signal processing hearing aids now becoming common.

A second example is the development of otoacoustic
emissions (OAE) as a hearing diagnostic tool. Pioneered
by David Kemp and Duck Kim, and then developed by
many others, this tool allows for cochlear evaluation of
neonates. The identification of cochlear hearing loss in
the first month has dramatically improves the lives of
these children (and their parents). While it is tragic to
be born deaf, it is much more tragic for the deafness to
go unrecognized until the child is three years old, when
they fail to learn to talk. If you cannot hear you do not
learn to talk. With proper and early cochlear implant
intervention, these kids can lead nearly normal-hearing

lives and even talk on the phone. However they cannot
understand speech in noise. It is at least possible that
this loss is due to the lack of NL OHC processing.

A third example of the application of NL OHC pro-
cessing to speech processing is still an underdeveloped
application area. The key open problem here is: How
does the auditory system, including the NL cochlea, fol-
lowed by the auditory cortex, processes human speech?
There are many aspects of this problem including speech
coding, speech recognition in noise, hearing aids and
language learning and reading disorders in children. If
we can solve the robust phone decoding problem, we
will fundamentally change the effectiveness of human-
machine interactions. For example, the ultimate hearing
aid is the hearing aid with built in robust speech feature
detection and phone recognition. While we have no idea
when this will come to be, and it is undoubtedly many
years off, when it happens there will be a technology
revolution that will change human communications.

In this chapter several topics will be reviewed. First
is the history of cochlear models including extensions
that have taken place in recent years. These models in-
clude both macromechanics and micromechanics of the
tectorial membrane and hair cells. This leads to com-
parisons of the basilar membrane, hair cell, and neural
frequency tuning. Hearing loss, loudness recruitment, as
well as other key topics of modern hearing health care,
are discussed. The role of NL mechanics and dynamic
range are reviewed to help the reader understand the
importance of modern wideband dynamic range com-
pression hearing aids as well as the overall impact of
NL OHC processing.

Any reader desiring further knowledge about
cochlear anatomy and function or a basic description
of hearing, they may consult Pickles [3.4], Dallos [3.5],
Yost [3.6].

3.1.1 Function of the Inner Ear

The goal of cochlear modeling is to refine our under-
standing of how auditory signals are processed. The
two main roles of the cochlea are to separate the input
acoustic signal into overlapping frequency bands, and
to compress the large acoustic intensity range into the
much smaller mechanical and electrical dynamic range
of the inner hair cell. This is a basic question of infor-
mation processing by the ear. The eye plays a similar
role as a peripheral organ. It breaks the light image into
rod- and cone-sized pixels, as it compresses the dynamic
range of the visual signal. Based on the intensity JND,
the corresponding visual dynamic range is about nine to
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Fig. 3.1a,b On the left we see all the major structures of the cochlea (a). The three chambers are filled with fluid. Reissner’s
membrane is an electrical barrier and is not believed to play a mechanical role. The right panel (b) shows the inner and
outer hair cells, pillar cells and other supporting structures, the basilar membrane (BM), and the tectorial membrane (TM)
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ten orders of magnitude of intensity [3.7, 8], while the
ear has about 11 to 12. The stimulus has a relatively high
information rate. Neurons are low-bandwidth channels.
The eye and the ear must cope with this problem by re-
ducing the stimulus to a large number of low bandwidth
signals. It is then the job of the cortex to piece these
pixel signals back together, to reconstruct the world as
we see and hear it.

The acoustic information coding starts in the cochlea
(Fig. 3.1a) which is composed of three major chambers
formed by Reissner’s membrane and the basilar mem-
brane (BM). Mechanically speaking, there are only two
chambers, as Reissner’s membrane is only for electrical
isolation of the scala media (SM) [3.4, 5]. Figure 3.1b
shows a blown-up view of the organ of Corti where the
inner hair cells (IHC) and outer hair cells (OHC) sit be-
tween the BM and the tectorial membrane (TM). As the
BM moves up and down, the TM shears against the retic-
ular lamina (RL), causing the cilia of the inner and outer
hair cells to bend. The afferent auditory nerve fibers that
are connected to the inner hair cells carry the signal
information into the auditory system. Many fewer effer-
ent fibers bring signals from the auditory system to the
base of the outer hair cells. The exact purpose of these
efferent fibers remains unknown.

Inner Hair Cells
In very general terms, the role of the cochlea is to con-
vert sound at the eardrum into neural pulse patterns
along approximately 30 000 neurons of the human audi-
tory (VIIIth) nerve. After being filtered by the cochlea,
a low-level pure tone has a narrow spread of excita-
tion which excites the cilia of about 40 contiguous
inner hair cells [3.5, 9, 10]. The IHC excitation sig-
nal has a narrow bandwidth and a center frequency
that depends on the inner hair cell’s location along the
basilar membrane. Each hair cell is about 10 μm in
diameter while the human basilar membrane is about
35 mm in length (35 000 μm). Thus the neurons of the
auditory nerve encode the responses of about 3500 in-
ner hair cells which form a single row of cells along
the length of the BM. Each inner-hair-cell voltage is
a low-pass-filtered representation of the detected inner-
hair-cell cilia displacement [3.11]. Each hair cell is
connected to many neurons, having a wide range of
spontaneous firing rates and thresholds [3.12]. In the
cat, for example, approximately 15–20 neurons en-
code each of these narrow band inner hair cells with
a neural timing code. It is commonly accepted that all
mammalian cochleae are similar in function except the
frequency range of operation differs between species

(e.g., human ≈ 0.1–20 kHz and cat ≈ 0.3–50 kHz). It
is widely believed that the neuron information chan-
nel between the hair cell and the cochlear nucleus is
a combination of the mean firing rate and the rela-
tive timing between neural pulses (spikes). The mean
firing rate is reflected in the loudness coding, while
the relative timing carries more subtle cues, including
for example pitch information such as speech voicing
distinctions.

Outer Hair Cells
As shown in Fig. 3.1b there are typically three (occa-
sionally four) outer hair cells (OHCs) for each inner
hair cell (IHCs), leading to approximately 12 000 OHCs
in the human cochlea. Outer hair cells are used for inten-
sity dynamic-range control. This is a form of NL signal
processing, not dissimilar to Dolby sound processing.
This form of processing was inspired by cochlear func-
tion, and was in use long before it was patented by
Dolby, in movie sound systems developed by Bell Labs
in the 1930s and 1940s. Telephone speech is similarly
compressed [3.13] via μ-law coding. It is well known
(as was first proposed by Lorente de Nó [3.14] and
Steinberg [3.3]) that noise damage of nerve cells (i. e.,
OHCs) leads to a reduction of dynamic range, a dis-
order clinically named loudness recruitment. The word
recruitment, which describes the abnormal growth of
loudness in the impaired ear, is a seriously misleading
term, since nothing is being recruited [3.15].

We may describe cochlear processing two ways: first
in terms of the signal representation at various points in
the system; and second, in terms of models which are
our most succinct means of conveying the conclusions
of years of detailed and difficult experimental work on
cochlear function. The body of experimental knowledge
has been very efficiently represented (to the extent that it
is understood) in the form of these mathematical models.
When no model exists (e.g., because we do not under-
stand the function), a more basic description via the
experimental data is necessary. Several good books and
review papers that make excellent supplemental reading
are available [3.4, 8, 16, 17].

For pedagogical purposes this chapter has been di-
vided into four parts. Besides this introduction, we
include sections on the NL cochlea, neural masking, and
finally a brief discussion. Section 3.2 discusses dynamic
masking due to NL aspects of the cochlear outer hair
cells. This includes the practical aspects, and theory, of
the upward spread of masking (USM) and two-tone sup-
pression. Section 3.3 discusses neural masking, the JND,
loudness recruitment, the loudness signal-to-noise ratio
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(SNR), and the Weber fraction. Section 3.4 provides
a brief summary.

3.1.2 History of Cochlear Modeling

Typically the cochlea is treated as an uncoiled long thin
box, as shown in Fig. 3.2a. This represents the starting
point for the macromechanical models.

Macromechanics
In his book On the Sensations of Tone Helmholtz [3.18]
likened the cochlea to a bank of highly tuned resonators
selective to different frequencies, much like a piano or
a harp [3.19, p. 22–58], with each string representing
a different place X on the basilar membrane. This model
as proposed was quite limited since it leaves out key fea-
tures, the most important of which is the cochlear fluid
coupling between the mechanical resonators. But given
the early publication date, the great master of physics
and psychophysics Helmholtz shows deep insight and
his studies provided many very important contributions.

The next major contribution by Wegel and
Lane [3.20] stands in a class of its own even today, as
a double-barreled paper having both deep psychophys-
ical and modeling insight. Fletcher published much of
the Wegel and Lane data one year earlier [3.21]. It is
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Fig. 3.2a,b On the left (a) see the basic 2-D box model of
the cochlea. The Base (x = 0) is the high-frequency end of
the cochlea while the Apex (x = L) carries the low frequen-
cies. On the right (b) the 1924 Wegel and Lane electrical
equivalent circuit. The model is built from a cascade of
electrical sections

not clear to me why Wegel and Lane are always quoted
for these results rather than Fletcher. In Fletcher’s 1930
modeling paper, he mentioned that he was the subject in
the Wegel and Lane study. It seems to me that Fletcher
deserves some of the credit. The paper was the first to
quantitatively describe the details of how a high level
low frequency tone affects the audibility of a second
low-level higher-frequency tone (i. e., the upward spread
of masking). It was also the first publication to propose
a modern model of the cochlea, as shown in Fig. 3.2b.
If Wegel and Lane had been able to solve the model
equations implied by their circuit (of course they had no
computer to do this), they would have predicted cochlear
traveling waves. It was their mistake, in my opinion, to
make this a single paper. The modeling portion of their
paper has been totally overshadowed by their experi-
mental results. Transmission line theory had been widely
exploited by Campbell, the first mathematical research
at AT&T research (ca. 1898) with the invention of the
wave filter [3.22, 23], which had been used for speech
articulation studies [3.24–26], and Fletcher and Wegel
were fully utilizing Campbell’s important discoveries.

It was the experimental observations of G. von
Békésy starting in 1928 on human cadaver cochleae
which unveiled the physical nature of the basilar
membrane traveling wave. What von Békésy found (con-
sistent with the 1924 Wegel and Lane model) was that
the cochlea is analogous to a dispersive transmission
line where the different frequency components which
make up the input signal travel at different speeds along
the basilar membrane, thereby isolating each frequency
component at a different place X along the basilar
membrane. He properly identified this dispersive wave
a traveling wave, just as Wegel and Lane had predicted
in their 1924 model of the cochlea.

Over the intervening years these experiments have
been greatly improved, but von Békésy’s fundamental
observation of the traveling wave still stands. His origi-
nal experimental results, however, are not characteristic
of the responses seen in more-recent experiments, in
many important ways. These differences are believed
to be due to the fact that Békésy’s cochleae were dead,
and because of the high sound levels his experiments
required. He observed the traveling wave using strobo-
scopic light, in dead human cochleae, at sound levels
well above 140 dB−SPL.

Today we find that for a pure tone input the traveling
wave has a more sharply defined location on the basilar
membrane than that observed by von Békésy. In fact,
according to measurements made over the last 20 years,
the response of the basilar membrane to a pure tone
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32 Part A Production, Perception, and Modeling of Speech

can change in amplitude by more than five orders of
magnitude per millimeter of distance along the basilar
membrane (e.g., 300 dB/oct is equivalent to 100 dB/mm
in the cat cochlea).

The One-Dimensional Model of the Cochlea
To describe this response it is helpful to call upon
the macromechanical transmission line models of
Wegel [3.20] (Fig. 3.2b) and Fletcher [3.27], first quanti-
tatively analyzed by Zwislocki [3.28, 29], Ranke [3.30],
Peterson and Bogert [3.31], Fletcher [3.32, 33]. This
popular transmission line model is now denoted the
one-dimensional (1-D), or long-wave model.

Zwislocki [3.28] was first to quantitatively analyze
Wegel and Lane’s macromechanical cochlear model,
explaining Békésy’s traveling wave observations. The
stapes input pressure P1 is at the left, with the input
velocity V1, as shown by the arrow, corresponding to
the stapes velocity. This model represents the mass of
the fluids of the cochlea as electrical inductors and the
BM stiffness as capacitors. Electrical circuit networks
are useful when describing mechanical systems. This
is possible because of an electrical to mechanical ana-
log that relates the two systems of equations. Electrical
circuit elements comprise a de facto standard for de-
scribing such equations. It is possible to write down the
equations that describe the system from the circuit of
Fig. 3.2b, by those trained in the art. Engineers and sci-
entists frequently find it easier to read and think in terms
of these pictorial circuit diagrams, than to interpret the
corresponding equations.

BM Impedance. During the following discussion it is
necessary to introduce the concept of a one-port (two-
wire) impedance. Ohm’s law defines the impedance as

Impedance= effort

flow
. (3.1)

In an electrical system the impedance is the ratio of
a voltage (effort) over a current (flow). In a mechanical
system it is the force (effort) over the velocity (flow).

For linear time-invariant causal (LTIC) systems
(i. e., an impedance), phasor notation is very useful,
where the tone is represented as the real part (Re) of the
complex exponential

ei2π ft+iφ ≡ cos (2π ft+φ)+ i sin (2π ft+φ) .
(3.2)

The symbol ≡ denotes equivalence. It means that the
quantity to the left of ≡ is defined by the quantity on
the right. More specifically, impedance is typically de-

fined in the frequency domain using Laplace transform
notation, in terms of a damped tone

A eσ t cos (2π ft+φ)≡ A Re est+iφ (3.3)

excitation, characterized by the tone’s amplitude A,
phase φ and complex Laplace frequency s ≡ σ + i2π f .
When a function such as Z(s) is shown as a function
of the complex frequency s, this means that its inverse
Laplace transform z(t)↔ Z(s) must be causal. In the
time domain, the voltage may be found from the current
via a convolution with z(t). Three classic examples of
such impedances are presented next.

Example 3.1: The impedance of the tympanic mem-
brane (TM, or eardrum) is defined in terms of a pure
tone pressure in the ear canal divided by the result-
ing TM volume velocity (the velocity times the area of
TM motion) [3.34, 35]. The pressure (effort) and vol-
ume velocity (flow) referred to here are conventionally
described using complex numbers, to account for the
phase relationship between the two.

Example 3.2: The impedance of a spring is given by the
ratio of the force F( f ) to velocity V ( f )= sX( f ) with
displacement X

Z(s)≡ F

V
= K

s
= 1

sC
, (3.4)

where the spring constant K is the stiffness, C the com-
pliance, and s is the complex radian frequency. The
stiffness is represented electrically as a capacitor (as
parallel lines in Fig. 3.2b). Having s = σ + i2π f in the
denominator indicates that the impedance of a spring has
a phase of −π/2 (e.g., −90◦). Such a phase means that
when the velocity is cos (2π ft), the force is sin (2π ft).
This follows from Hooke’s law

F = K X = K

s
sX = K

s
V . (3.5)

Example 3.3: From Newton’s law F = Ma where F is
the force, M is the mass, and acceleration a(s)= sV (s)
(i. e., the acceleration in the time domain is dv(t)/dt).
The electrical element corresponding to a mass is an
inductor, indicated in Fig. 3.2b by a coil. Thus for a mass
Z(s)= sM.

From these relations the magnitude of the impedance
of a spring decreases as 1/ f , while the impedance mag-
nitude of a mass is proportional to f . The stiffness with
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its−90◦ phase is called a lagging phase, while the mass
with its +90◦ phase is called a leading phase.

Different points along the basilar membrane are
represented by the cascaded sections of the lumped
transmission line model of Fig. 3.2b. The position X
along the model is called the place variable and corre-
sponds to the longitudinal position along the cochlea.
The series (horizontal) inductors (coils) denoted by Lk
represent the fluid mass (inertia) along the length of
the cochlea, while the shunt elements represent the
mechanical (acoustical) impedance of the correspond-
ing partition (organ of Corti) impedance, defined as the
pressure drop across the partition divided by its volume
velocity per unit length

Zp(s, X)= Kp(X)

s
+ Rp(X)+ sMp , (3.6)

where K (X) is the partition stiffness, and Rp is the par-
tition resistance. Each inductor going to ground (li in
Fig. 3.2b) represents the partition plus fluid mass per
unit length Mp of the section. Note that sM, Rp and
K/s are impedances, but the mass M and stiffness K are
not. The partition stiffness decreases exponentially along
the length of the cochlea, while the mass is frequently
approximated as being independent of place.

As shown in Fig. 3.3a, for a given input frequency
the BM impedance magnitude has a local minimum at
the shunt resonant frequency, where the membrane that
can move in a relatively unrestricted manner. The shunt
resonance has special significance because at this reso-
nance frequency Fcf(X) the inductor and the capacitor
reactance cancel each other, creating an acoustic hole,
where the only impedance element that contributes to
the flow resistance is Rp. Solving for Fcf (X)

Kp(X)

2πiFcf
+2πiFcf Mp = 0 (3.7)

defines the cochlear map function, which is a key con-
cept in cochlear modeling:

Fcf(X)≡ 1

2π

√
Kp(X)

Mp
. (3.8)

The inverse of this function specifies the location of
the hole Xcf( f ) as shown in Fig. 3.3a. In the example
of Fig. 3.3a two frequencies are show, at 1 and 8 kHz,
with corresponding resonant points shown by Xcf(1) and
Xcf(8).

Basal to Xcf( f ) in Fig. 3.3a, the basilar membrane
is increasingly stiff, and apically (to the right of the
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Fig. 3.3 (a) Plot of the log-magnitude of the impedance as
a function of place for two different frequencies of 1 and
8 kHz showing the impedance; the region labeled K (X) is
the region dominated by the stiffness and has impedance
K (X)/s. The region labeled M is dominated by the mass
and has impedance sM. The characteristic places for 1 and
8 kHz are shown as Xcf . (b) Cochlear map of the cat follow-
ing Liberman and Dodds. The resonance frequency depends
on place according to the cochlear map function (b). A crit-
ical bandwidth Δ f ( f ) and a critical spread Δx(X) area
related through the cochlear map

resonant point), the impedance is mass dominated. The
above description is dependent on the input frequency
f since the location of the hole is frequency dependent.
In this apical region the impedance has little influence
since almost no fluid flows past the low-impedance hole.
This description is key to our understanding of why the
various frequency components of a signal are splayed
out along the basilar membrane.

If one puts a pulse of current in at the stapes, the high-
est frequencies that make up the pulse would be shunted
close to the stapes since at high frequencies the hole is
near the stapes, while the lower frequencies would con-
tinue down the line. As the low-pass pulse travels down
the basilar membrane, the higher frequencies are pro-
gressively removed, until almost nothing is left when
the pulse reaches the end of the model (the helicotrema
end, the apex of the cochlea).
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34 Part A Production, Perception, and Modeling of Speech

When a single tone is played, the response in the base
increases in proportion to the BM compliance (inversely
with the stiffness) until there is is a local maximum just
before the traveling wave reaches the resonant hole, at
which point the response plummets, since the fluid flow
is shorted by the hole. For a fixed stimulus frequency
f there is a maximum along the place axis called the
characteristic place, denoted by X(p)

cf ( f ). Likewise at
a given place X as a function of frequency there is a local
maximum called the characteristic frequency, denoted
by F(p)

cf (X). The relation between the peak in place as
a function of frequency or of the peak in frequency as
a function of place is also called the cochlear map. There
is serious confusion with conventional terminology here.
The resonant frequency of the BM impedance mathe-
matically defines Fcf and specifies the frequency on the
base of the high-frequency steep portion of the tuning
slope, not the peak. However the peak is used as the
visual cue, not the base of the high-frequency slope.
These two definitions differ by a small factor (that is ig-
nored) that depends directly on the high-frequency slope
of the response. Over most of the frequency range this
slope is huge, resulting in a very small factor, justifying
its being ignored. However at very low frequencies the
slope is shallow and the factor can then be large. The
droop in the cochlear map seen in Fig. 3.3b at the apex
(x = L) may be a result of these conflicting definitions.
The cochlear map function Fcf (X) plays a key role in
cochlear mechanics, has a long history, and is known by
many names [3.27,36–40], the most common today be-
ing Greenwood’s function. In the speech literature it is
called the Mel scale.

The spread of the response around the peak for
a fixed frequency is denoted the critical spread Δx( f ),
while the frequency spread at a given place is called
the critical band denoted Δ f (X). As early as 1933 it
was clear that the critical band must exist, as extensively
discussed by Fletcher and Munson [3.41]. At any point
along the BM the critical band is proportional to the
critical ratio κ(X), defined as the ratio of pure tone de-
tection intensity at threshold in a background of white
noise, to the spectral level of the noise [3.42], namely

Δ f (X)∝ κ(X) . (3.9)

In the next section we shall show how the the rela-
tions between these various quantities are related via the
cochlear map.

Derivation of the Cochlear Map Function. The deriva-
tion of the cochlear map is based on counting critical
bands as shown by Fletcher [3.10] and popularized
by Greenwood [3.43]. The number of critical bands
Ncb may be found by integrating the critical band
density over both frequency and place, and equat-
ing these two integrals, resulting in the cochlear map
Fcf(X):

Ncb ≡
Xcf∫
0

dX

Δx(X)
=

Fcf∫
0

d f

Δ f ( f )
. (3.10)

There are approximately 20 pure-tone frequency
JNDs per critical band [3.37], [3.42, p. 171], and
Fletcher showed that the critical ratio expressed in dB
κdB(X) is of the form aX+b, where a and b are con-
stants [3.10]. As verified by Greenwood [3.43, p. 1350,
(1)] the critical bandwidth in Hz is therefore

Δ f (X)∝ 10κdB(X)/10 . (3.11)

The critical spread Δx(X) is the effective width of
the energy spread on the basilar membrane for a pure
tone. Based on a suggestion by Fletcher, Allen showed
that for the cat, Δx(X) corresponds to about 2.75 times
the basilar membrane width with Wbm(X)∝ eX [3.10].
It is reasonable to assume that the same relation would
hold in the human case.

The direct observation of the cochlear map in the
cat was made by Liberman [3.44] and Liberman and
Dodds [3.45], and they showed the following empirical
formula fit the data

Fcf(X)= 456(102.1(1−X/L)−0.8) , (3.12)

where the length of the cat cochlea is L = 21 mm,
and X is measured from the stapes [3.44]. The
same formula may be used for the human cochlea
if L = 35 mm is used, the 456 is replaced by 165.4,
and 0.8 by 0.88. Based on (3.12), and as de-
fined in Fig. 3.3b, the slope of the cochlear map is
3 mm/oct for the cat and 5 mm/oct for the human, as
may be determined from the formula L log10(2)/2.1
with L = 21 or 35 for cat and human, respec-
tively.

For a discussion of work after 1960 on the critical
band see Allen [3.10] and Hartmann [3.17].
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3.2 The Nonlinear Cochlea

3.2.1 Cochlear Modeling

In cochlear modeling there are two fundamental
intertwined complex problems, cochlear frequency se-
lectivity and cochlear/OHC nonlinearity. Wegel and
Lane’s 1924 transmission line wave theory was a most
important development, since it was published 26 years
prior to the experimental results of von Békésy, and
it was based on a simple set of physical principles,
conservation of fluid mass, and a spatially variable
basilar membrane stiffness. It gives insight into both
the NL cochlea, as well has two-dimensional (2-D)
model frequency-selective wave-transmission effects
(mass loading of the BM).

Over a 15 year period starting in 1971, there was
a paradigm shift. Three discoveries rocked the field:

1. nonlinear compressive basilar membrane and inner-
hair-cell measures of neural-like cochlear frequency
selectivity [3.47, 48],
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Fig. 3.4a,b There are six numbers that characterize every curve, three slopes (S1, S2, S3), in dB/oct, two frequencies
(Fz, Fcf), and the excess gain characterizes the amount of gain at Fcf relative to the gain defined by S1. The excess gain
depends on the input level for the case of a nonlinear response like the cochlea. Rhode found up to ≈ 35 dB of excess
gain at 7.4 kHz and 55 dB−SPL, relative to the gain at 105 dB−SPL. From of the 55 dB−SPL curve of (a) (the most
sensitive case), and his Table I, S1 = 9, S2 = 86, and S3 =−288 (dB/oct), Fz = 5 kHz, Fcf = 7.4 kHz, and an excess
gain of 27 dB. Rhode reported S1 = 6 dB/oct, but 9 seems to be a better fit to the data, so 9 dB/oct is the value we have
used for our comparisons. (a) Response of the basilar membrane for his most sensitive animal. The graduations along
the abscissa are at 0.1, 1.0 and 10.0 kHz (after [3.46, Fig. 9a]) (b) Basic definition of the 6 parameters for characterizing
a tuning curve: slopes S1, S2, S3, frequencies Fz and Fcf , and the excess gain

2. otoacoustic (ear canal) nonlinear emissions [3.49],
and

3. motile outer hair cells [3.50].

Today we know that these observations are related,
and all involve outer hair cells. A theory (e.g., a com-
putational model) is needed to tie these results together.
Many groups are presently working out such theories.

On the modeling side during the same period (the
1970’s) all the variants of Wegel and Lane 1-D linear
theory were becoming dated because:

1. numerical model results became available, which
showed that 2- and three-dimensional (3-D) models
were more frequency selective than the 1-D model,

2. experimental basilar membrane observations showed
that the basilar membrane motion had a nonlinear
compressive response growth, and

3. improved experimental basilar membrane obser-
vations became available which showed increased
nonlinear cochlear frequency selectivity.
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Because these models and measures are still under
development today [the problem has not yet (ca. 2007)
been solved], it is necessary to describe the data
rather than the models. Data that drives these nonlinear
cochlear measures include:

• The upward spread of masking (USM), first de-
scribed quantitatively by Wegel and Lane in 1924,• Distortion components generated by the cochlea and
described by Wegel and Lane [3.20], Goldstein and
Kiang [3.52], Smoorenburg [3.53], Kemp [3.54], Kim
et al. [3.55], Fahey and Allen [3.56] and many others,• Normal loudness growth and recruitment in the im-
paired ear [3.3, 41],• The frequency dependent neural two-tone suppres-
sion observed by Sachs and Kiang [3.57], Arthur
et al. [3.58], Kiang and Moxon [3.59], Abbas and
Sachs [3.60], Fahey and Allen [3.56], Pang and
Guinan [3.61], and others,• The frequency-dependent basilar membrane response-
level compression first described by Rhode [3.46,
47],• The frequency-dependent inner-hair-cell receptor
potential level compression, first described by Sellick
and Russell [3.48], Russell and Sellick [3.62].• Forward masking data that shows a linear return to
baseline after up to 0.2 s [3.63]. There may be com-
pelling evidence that OHCs are the source of forward
masking.

We shall discuss each of these, but two related meas-
ures are the most important for understanding these NL
masking effects, the upward spread of masking (USM)
and two-tone suppression (2TS).

Basilar Membrane Nonlinearity. The most basic early
and informative of these nonlinear effects was the NL
basilar membrane measurements made by Rhode [3.46,
47], as shown in Fig. 3.4a, showing that the basilar mem-
brane displacement to be a highly NL function of level.
For every four dB of pressure level increase on the in-
put, the output displacement (or velocity) only changed
one dB. This compressive nonlinearity depends on fre-
quency, and only occurs near the most sensitive region
(e.g., the tip of the tuning curve). For other frequencies
the system was either linear, namely, one dB of input
change gave one dB of output change for frequencies
away from the best frequency, or very close to linear.
This NL effect was highly dependent on the health of
the animal, and would decrease or would not be present
at all, when the animal was not in its physiologically
pristine state.

An important and useful measure of cochlear linear
and nonlinear response first proposed by Rhode [3.46,
Fig. 8], is shown in Fig. 3.4b which describes cochlear
tuning curves by straight lines on log–log coordinates.
Such straight line approximations are called Bode plots
in the engineering literature. The slopes and break
points, defined as the locations where the straight lines
cross, characterize the response.

Otoacoustic Emissions. A few years after Rhode’s
demonstration of cochlear nonlinearity, David Kemp
observed otoacoustic emissions (tonal sound emanat-
ing from the cochlea and NL echos to clicks and tone
bursts) [3.49,54,64–66]. Kemp’s findings were like a jolt
to the field, which led to a cottage industry of objective
testing of the auditory system, including both cochlear
and middle ear tests.

Motile OHCs. Subsequently, Brownell et al. [3.50] dis-
covered that isolated OHCs change their length when
placed in an electric field, thus that the outer hair cell
is motile. This then led to the intuitive and widespread
proposal that outer hair cells act as voltage-controlled
motors that directly drive the basilar membrane on a cy-
cle by cycle basis. It seems quite clear, from a great deal
of data, that the OHC onset response time is on the order
of one cycle or so of the BM impulse response, because
the first peak is linear [3.67]. The release time must be
determined by the OHC membrane properties, which is
slow relative to the attack. Thus OHC NL processing is
the basis for both the frequency asymmetry of simulta-
neous (upward versus downward spread) and temporal
(forward versus backward) masking.

As summarized in Fig. 3.5, OHCs provide feedback
to the BM via the OHC receptor potential, which in
turn is modulated by both the position of the basilar

�����
�������!

 �����
!���


���������

��!!�


��

����	
�����

�
�	�������
�����

���>���	���
��	��

�

!���5

(�	
��������
��

���
��������
��

$�!�	�����
��


Fig. 3.5 Block flow diagram of the inner ear (after
Allen [3.51])
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membrane (forming a fast feedback loop), and alterna-
tively by the efferent neurons that are connected to the
outer hair cells (forming a slow feedback loop). The de-
tails of all this are the topic of a great deal of present
research.

OHCs are the one common element that link all the
NL data previously observed, and a missing piece of
the puzzle that most needs to be understood before any
model can hope to succeed in predicting basilar mem-
brane, hair cell, and neural tuning, or NL compression.
Understanding the outer hair cell’s two-way mechanical
transduction is viewed as the key to solving the problem
of the cochlea’s dynamic range.

Historically the implication that hair cells might play
an important role in cochlear mechanics go back at least
to 1936 when loudness recruitment was first reported by
Fowler [3.68] in a comment by R. Lorente de Nó [3.14]
stating that cochlear hair cells are likely to be involved
in loudness recruitment.

The same year Steinberg and Gardner [3.3] were
explicit about the action of recruitment when they con-
cluded:

When someone shouts, such a deafened person suf-
fers practically as much discomfort as a normal
hearing person would under the same circum-
stances. Furthermore for such a case, the effective
gain in loudness afforded by amplification depends
on the amount of variable type loss present. Owing
to the expanding action of this type of loss it would
be necessary to introduce a corresponding compres-
sion in the amplifier in order to produce the same
amplification at all levels.

Therefore as early as 1937 there was a clear sense
that cochlear hair cells were related to dynamic range
compression.

More recently, theoretical attempts to explain the dif-
ference in tuning between normal and damaged cochleae
led to the suggestion that OHCs could influence BM
mechanics. In 1983 Neely and Kim [3.69] concluded:

We suggest that the negative damping components
in the model may represent the physical action of
outer hair cells, functioning in the electrochemical
environment of the normal cochlea and serving to
boost the sensitivity of the cochlea at low levels of
excitation.

In 1999 yet another (a fourth) important discovery
was made, that the outer-hair-cell mechanical stiffness
depends on the voltage across its membrane [3.70, 71].
This change in stiffness, coupled with the naturally oc-

curring internal static pressure, may well account for
the voltage dependent accompanying length changes
(the cell’s voltage dependent motility). This view fol-
lows from the block diagram feedback model of the
organ of Corti shown in Fig. 3.5 where the excita-
tion to the OHC changes the cell voltage Vohc, which
in turn changes the basilar stiffness [3.51]. This is
one of several possible theories that have been put
forth.

This experimental period set the stage for explain-
ing the two most dramatic NL measures of cochlear
response, the upward spread of masking and its re-
lated neural correlate, two-tone suppression, and may
well turn out to be the explanation of the nonlinear
forward-masking effect as well [3.63].

Simultaneous Dynamic-Masking
The psychophysically measured upward spread of
masking (USM) and the neurally measured two-tone
suppression (2TS) are closely related dynamic-masking
phenomena. Historically these two measures have been
treated independently in the literature. As will be
shown, it is now clear that they are alternative objective
measures of the same OHC compressive nonlinear-
ity. Both involve the dynamic suppression of a basal
(high-frequency) probe due to the simultaneous presen-
tation of an apical (low-frequency) suppressor. These
two views (USM versus 2TS) nicely complement
each other, providing a symbiotic view of cochlear
nonlinearity.

Upward Spread of Masking (USM). In a classic paper,
Mayer [3.72] was the first to describe the asymmetric
nature of masking [3.63,73]. Mayer made his qualitative
observations with the use of clocks, organ pipes and
tuning forks, and found that that the spread of masking
is a strong function of the probe-to-masker frequency
ratio ( fp/ fm) [3.63].

In 1923, Fletcher published the first quantitative
results of tonal masking. In 1924, Wegel and Lane
extended Fletcher’s experiments (Fletcher was the sub-
ject [3.27, p. 325]) using a wider range of tones. Wegel
and Lane then discuss the results in terms of their 1-D
model described above. As shown in Fig. 3.6a, Wegel
and Lane’s experiments involved presenting listeners
with a masker tone at frequency fm = 400 Hz and in-
tensity Im (the abscissa), along with a probe tone at
frequency fp (the parameter used in the figure). At
each masker intensity and probe frequency, the thresh-
old probe intensity I∗p (Im) is determined, and displayed
relative to its threshold sensation level (SL) (the ordinate
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Fig. 3.6a,b On the left (a) we see the psychoacoustic measure of 2TS, called the upward spread of masking. On the
right (b) are related measures taken in the auditory nerve by a procedure called two-tone suppression (2TS). Low- and
high-side masking or suppression have very different thresholds and slopes. These suppression slopes and thresholds are
very similar between 2TS and the USM. (a) Upward spread of masking as characterized by Wegel and Lane in 1924. The
solid lines correspond to the probe being higher than the 400 Hz masker, while the dashed lines correspond to the 400 Hz
probe lower than the masker. On the left we see upward spread of masking functions from Wegel and Lane for a 400 Hz
low-frequency masker. The abscissa is the masker intensity Im in dB−SL while the ordinate is the threshold probe
intensity I∗p (Im) in dB−SL. The frequency of the probe fp, expressed in kHz, is the parameter indicated on each curve.
The dashed box shows that the masking due to a 1 kHz tone becomes more than that at 450 Hz, for a 400 Hz probe. This
is the first observation of excitation pattern migration with input intensity. (b) Two-tone suppression (2TS) input–output
(IO) functions from Abbas and Sachs [3.60, Fig. 8]. On the left (1) is low-side suppression and on the right (2) we see
high-side suppression. In 2TS the suppressor plays the role of the masker and the probe the role of the maskee. Note
that the threshold of suppression for low-side suppressor (masker) is close to 70 dB−SPL, which is similar to human
low-side suppressors, the case of the Wegel and Lane USM (1) (60–70 dB−SPL). The onset of suppression for high-side
suppressors is close to the neuron’s CF threshold of 50 dB, as elaborated further in Fig. 3.7a

is the probe level at threshold [dB−SL]). The asterisk
indicates a threshold measure.

In Fig. 3.6a fm = 400 Hz, Im is the abscissa, fp is
the parameter on each curve, in kHz, and the threshold
probe intensity I∗p (Im) is the ordinate. The dotted line
superimposed on the 3 kHz curve (Im/1060/10)2.4 repre-
sents the suppression threshold at 60 dB−SL which has
a slope of 2.4 dB/dB. The dotted line superimposed on
the 0.45 kHz curve has a slope of 1 and a threshold of
16 dB−SL.

Three regions are clearly evident: the downward
spread of masking ( fp < fm, dashed curves), critical
band masking ( fp ≈ fm, dashed curve marked 0.45),
and the upward spread of masking ( fp > fm, solid
curves) [3.74].

Critical band masking has a slope close to 1 dB/dB
(the superimposed dotted line has a slope of 1). Four
years later Riesz [3.75] shows critical band masking

obeys the near miss to Weber’s law, as described
in Sect. 3.3.2. The downward spread of masking (the
dashed lines in Fig. 3.6a) has a low threshold intensity
and a variable slope that is less than one dB/dB, and
approaches 1 at high masker intensities. The upward
spread of masking (USM), shown by the solid curves,
has a threshold near 50 dB re sensation level (e.g.,
65 dB−SPL), and a growth just less than 2.5 dB/dB.
The dotted line superimposed on the fp = 3 kHz curve
has a slope of 2.4 dB/dB and a threshold of 60 dB−SL.

The dashed box shows that the upward spread
of masking of a probe at 1 kHz can be greater
than the masking within a critical band (i. e.,
fp = 450 Hz> fm = 400 Hz). As the masker frequency
is increased, this crossover effect occurs in a small
frequency region (i. e., 1/2 octave) above the masker fre-
quency. The crossover is a result of a well-documented
NL response migration, of the excitation pattern with
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Fig. 3.7 (a) Definitions of 2TS low-side masking procedure (see (3.13) and (3.14)). (b) Example of 2TS (low-side
masking) in the cat auditory nerve (AN). A cat neural tuning curve taken with various low-side suppressors present
(suppressor below the best frequency), as indicated by the symbols. The tuning curve with the lowest threshold is for no
suppressor. When the suppressor changes by 20 dB, the Fcf threshold changes by 36 dB. Thus for a 2 kHz neuron, the
slope is 36/20, or 1.8. These numbers are similar to those measure by Delgutte [3.80]. One Pa= 94 dB−SPL

stimulus intensity, described in a wonderful paper by
McFadden [3.76]. Response migration was also ob-
served by Munson and Gardner in a classic paper on
forward masking [3.77]. This important migration ef-
fect is beyond the scope of the present discussion, but
is reviewed in [3.74, 78, 79] discussed in the caption of
Fig. 3.10.

The upward spread of masking is important be-
cause it is easily measured psychophysically in normal
hearing people, is robust, well documented, and nicely
characterizes normal outer-hair-cell nonlinearities. The
psychophysically measured USM has correlates in basi-
lar membrane and hair cell signals, and is known as
two-tone suppression (2TS) in the auditory nerve litera-
ture, as discussed in the caption of Fig. 3.6b.

Two-Tone Suppression. The neural correlate of the
psychophysically measured USM is called two-tone sup-
pression (2TS). As shown in the insert of Fig. 3.7a, first
a neural tuning curve is measured. A pure tone probe
at intensity Ip( fp), and frequency fp, is placed a few
dB (e.g., 6 to 10) above threshold at the characteris-
tic (best) frequency of the neuron Fcf (i. e., fp = Fcf).
In 2TS a suppressor tone plays the role of the masker.
There are two possible thresholds. The intensity of the
suppressor tone Is( fs) at frequency fs is increased until
either

1. the rate response to either the probe alone R(Ip, Is =
0) decreases by a small increment ΔR, or

2. drops to the small increment ΔR, just above the
undriven spontaneous rate R(0, 0).

These two criteria are defined in Fig. 3.6b and may be
written

Rp
(
Ip, I∗s

)≡ R(Ip, 0)−ΔR (3.13)

and

Rspont
(
Ip, I∗s

)≡ R(0, 0)+ΔR ; (3.14)

ΔR indicates a fixed small but statistically significant
constant change in the rate (e.g., ΔR = 20 spikes/s is
a typical value). The threshold suppressor intensity is
defined as I∗s ( fs), and as before the∗ indicates the thresh-
old suppressor intensity. The two threshold definitions
(3.13) and (3.14) are very different, and both are useful.
The difference in intensity between the two thresholds
is quite large, and the more common measure used by
Abbas and Sachs [3.60] is (3.13). The second measure
(3.14) is consistent with neural tuning curve suppres-
sion, and is therefore the more interesting of the two. It
corresponds to suppression of the probe to threshold.

Neural data of Abbas and Sachs [3.60, Fig. 8] are
reproduced in Fig. 3.6b. For this example (see entry in
lower-right just below 105), Fcf is 17.8 kHz, and the
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fp = Fcf probe intensity 20 log 10(|P1|) is 60 dB. The
label on the curves is the frequency f1. The thresh-
old intensity of the associated neural tuning curve is
has a low spontaneous rate and a 50–55 dB threshold.
The left panel of Fig. 3.6b is for apical suppressors that
are lower in frequency than the characteristic frequency
(CF) probe ( fs < fp). In this case the threshold is just
above 65 dB−SPL. The suppression effect is relatively
strong and almost independent of frequency. In this ex-
ample the threshold of the effect is less than 4 dB apart
(the maximum shift of the two curves) at suppressor
frequencies fs of 10 and 5 kHz (a one octave separation).

The right panel shows the case fs > fp. The suppres-
sion threshold is close to the neuron’s threshold (e.g.,
50 dB−SPL) for probes at 19 kHz, but increases rapidly
with frequency. The strength of the suppression is weak
in comparison to the case of the left panel ( fs < fp), as
indicated by the slopes of the family of curves.

The Importance of the Criterion. The data of Fig. 3.6b
uses the first suppression threshold definition (3.13) Rp
(a small drop from the probe driven rate). In this case the
Fcf probe is well above its detection threshold at the sup-
pression threshold, since according to definition (3.13),
the probe is just detectably reduced, and thus audible.
With the second suppression threshold definition (3.14),
the suppression threshold corresponds to the detection
threshold of the probe. Thus (3.14), suppression to the
spontaneous rate, is appropriate for Wegel and Lane’s
masking data where the probe is at its detection thresh-
old I∗p (Im). Suppression threshold definition (3.14) was
used when taking the 2TS data of Fig. 3.7b, where the
suppression threshold was estimated as a function of
suppressor frequency.

To be consistent with a detection threshold criterion,
such as the detection criterion used by Wegel and Lane in
psychophysical masking, (3.14) must be used. To have
a tuning curve pass through the Fcf probe intensity of a
2TS experiment (i. e., be at threshold levels), it is nec-
essary to use the suppression to rate criterion given by
(3.14). This is shown in Fig. 3.7b where a family of tun-
ing curves is taken with different suppressors present.
As described by Fahey and Allen [3.56, Fig. 13], when
a probe is placed on a specific tuning curve of Fig. 3.7b,
corresponding to one of the suppressor level symbols
of Fig. 3.7b, and a suppression threshold is measured,
that suppression curve will fall on the corresponding
suppression symbol of Fig. 3.7b. There is a symmetry
between the tuning curve measured in the presents of
a suppressor, and a suppression threshold obtained with
a given probe. This symmetry only holds for criterion

(3.14), the detection threshold criterion, which is appro-
priate for Wegel and Lane’s data. If one uses (3.13) as
in [3.60] they will not see this symmetry as cleary.

Suppression Threshold. Using the criterion (3.14),
Fahey and Allen [3.56, Fig. 13] showed that the suppres-
sion threshold I∗s (Ip) in the tails is near 65 dB−SPL
(0.04 Pa). This is true for suppressors between 0.6 and
4 kHz. A small amount of data are consistent with the
threshold being constant to much higher frequencies, but
the Fahey and Allen data are insufficient on that point.

Suppression Slope. Delgutte has written several insight-
ful papers on masking and suppression [3.80–82]. He
estimated how the intensity growth slope (in dB/dB)
of 2TS varies with suppressor frequency for several
probe frequencies [3.80]. As may be seen in his fig-
ure, the suppression growth slope for the case of a low
frequency apical suppressor on a high frequency basal
neuron (the case of the left panel of Fig. 3.6b), is
≈ 2.4 dB/dB. This is the same slope as for Wegel and
Lane’s 400 Hz masker, 3 kHz probe USM data shown
in Fig. 3.6a. For suppressor frequencies greater than the
probe’s ( fs > fp), Delgutte reports a slope that is signif-
icantly less than 1 dB/dB. Likewise Wegel and Lane’s
data has slopes much less than 1 for the downward spread
of masking.

One may conclude that USM and 2TS data show
systematic and quantitative correlations between the
threshold levels and slopes. The significance of these
correlations has special importance because

1. they come from very different measurement
methods, and

2. Wegel and Lane’s USM are from human, while
the 2TS data are from cat, yet they show simi-
lar responses. This implies that the cat and human
cochleae may be quite similar in their NL responses.

The USM and 2TS threshold and growth slope
(e.g., 50 dB−SL and 2.4 dB/dB) are important fea-
tures that must be fully understood and modeled before
we can claim to understand cochlear function. While
there have been several models of 2TS [3.83–85] as
discussed in some detail by Delgutte [3.80], none are
in quantitative agreement with the data. The two-tone
suppression model of Hall [3.84] is an interesting contri-
bution to this problem because it qualitatively explores
many of the key issues. Finally forward-masking data
also show related nonlinear properties that we specu-
late may turn out to be related to NL OHC function as
well [3.78, 86, 87].
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3.2.2 Outer-Hair-Cell Transduction

The purpose of this section is to address two intimately
intertwined problems cochlear frequency selectivity and
cochlear nonlinearity. The fundamental question in
cochlear research today is: What is the role of the outer
hair cell (OHC) in cochlear mechanics? The OHC is the
source of the NL effect, and the end product is dynamic
masking, including the USM, 2TS and forward masking,
all of which include dramatic amounts of gain and tuning
variation. The issues are the nature of the NL transfor-
mations of the BM, OHC cilia motion, and OHC soma
motility, at a given location along the basilar membrane.

The prevailing and popular cochlear-amplifier view
is that the OHC provides cochlear sensitivity and fre-
quency selectivity [3.5, 88–94]. The alternative view,
argued here, is that the OHC compresses the excita-
tion to the inner hair cell, thereby providing dynamic
range expansion.

There is an important difference between these two
views. The first view deemphasizes the role of the OHC
in providing dynamic range control (the OHC’s role is
to improve sensitivity and selectivity), and assumes that
the NL effects result from OHC saturation.

The second view places the dynamic range problem
as the top priority. It assumes that the sole purpose of the
OHC nonlinearity is to provide dynamic range compres-
sion, and that the OHC plays no role in either sensitivity
or selectivity, which are treated as important but inde-
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Fig. 3.8a–c On the far left (a) is the electrical equivalent circuit model of an IHC with thermal noise sources due to the
cell leakage resistance Johnson and shot noise vJ and the Brownian motion of the cilia, represented by the voltage noise
source vB. The cilia force fc and velocity ξ̇c are the stimulus (input) variables to the forward transduction (b), and are
loaded by the mechanical impedance of the cilia viscous drag r and compliance c. (c) For OHCs, when the cilia move,
current flows into the cell charging the membrane capacitance, thus changing the membrane voltage Vm. This membrane
capacitance Cm(Vm) is voltage dependent (i. e., it is NL). The membrane voltage has also been shown to control the cell’s
soma axial stiffness. It follows that the axial force Fz(Vm) the cell can deliver, and the axial velocity Vz(Vm) of the cell,
must also depend on the membrane voltage. The precise details of how all this works is unknown

pendent issues. Of course other views besides these two
are possible.

The Dynamic-Range Problem
The question of how the large (up to 120 dB) dy-
namic range of the auditory system is attained has been
a long standing problem which remains fundamentally
incomplete. For example, recruitment, the most common
symptom of neurosensory hearing loss, is best charac-
terized as the loss of dynamic range [3.3, 10, 15, 95].
Recruitment results from outer-hair-cell damage [3.96].
To successfully design hearing aids that deal with the
problem of recruitment, we need models that improve
our understanding of how the cochlea achieves its dy-
namic range.

Based on a simple analysis of the IHC voltage, one
may prove that the dynamic range of the IHC must be
less than 65 dB [3.97]. In fact it is widely accepted that
IHC dynamic range is less than 50 dB.

The IHC’s transmembrane voltage is limited at the
high end by the cell’s open circuit (unloaded) mem-
brane voltage, and at the low end by thermal noise.
There are two obvious sources of thermal noise, cilia
Brownian motion, and Johnson (shot) noise across the
cell membrane (Fig. 3.8).

The obvious question arises: How can the basic
cochlear detectors (the IHCs) have a dynamic range
of less than 50 dB (a factor of 0.3 × 102), and yet the
auditory system has a dynamic range of up to 120 dB
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(a factor of 106)? The huge amount of indirect evidence
has shown that this increased dynamic range results from
mechanical NL signal compression provided by outer
hair cells. This dynamic-range compression shows up in
auditory psychophysics and in cochlear physiology in
many ways.

This thus forms the basic dynamic-range dilemma.

Outer-Hair-Cell Motility Model
A most significant finding in 1985 was of OHC motility,
namely that the OHC changes its length by up to 5% in
response to the cell’s membrane voltage [3.50, 99, 100].
This less than 5% change in length must account for
a 40 dB (100 times) change in cochlear sensitivity. This
observation led to a significant increases in research on
the OHC cell’s motor properties.

In 1999 it was shown that the cell’s longitudinal
soma stiffness changes by at least a factor of 2 (> 100%),
again as a function of cell membrane voltage [3.70,71].
A displacement of the cilia in the direction of the tallest
cilia, which is called a depolarizing stimulus, decreases
the magnitude of the membrane voltage |Vm|, decreases
the longitudinal soma stiffness, and decreases the cell
soma length. A hyperpolarizing stimulus increases the
stiffness and extends the longitudinal soma length.

Given this much larger relative change in stiffness
(a factor of 2) compared to the relative change in length
(a factor of 1.05), for a maximum voltage change, it
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Fig. 3.9a,b The tuning curves shown by the dashed lines are the average of single nerve fiber responses from six cats
obtained by M. C. Liberman and B. Delgutte. (a) Comparison between neural data and the computed model excitation
patterns from Allen’s passive RTM model (transfer function format). This CA model assumes an IHC cilia bundle
displacement of about 50 pm at the neural rate threshold. (b) Comparison between neural data computed tuning curves
from Neely’s active model [3.98]. This CA model assumes an IHC cilia bundle displacement of 300 pm (0.3 nm) at the
neural rate threshold

seems possible, or even likely, that the observed length
changes (the motility) are simply a result of the volt-
age dependent stiffness. For example, imagine a spring
stretched by applying a constant force (say a weight),
and then suppose that the spring’s stiffness decreases. It
follows from Hooke’s law (3.5) that the spring’s length
will increase when the stiffness decreases.

Each cell is stretched by its internal static pressure
P [3.101], and its stiffness is voltage controlled [3.70,
71]. The voltage dependent relative stiffness change is
much greater than the relative motility change. Thus
we have the necessary conditions for stiffness-induced
motility.

3.2.3 Micromechanics

Unlike the case of macromechanical models, the physics
of every micromechanical model differs significantly.
This is in part due to the lack of direct experimental ev-
idence of physical parameters of the cochlea. This is an
important and very active area of research (e.g., [3.102]).

To organize our discussion of cochlear micromech-
anics, we represent each radial cross-section through the
cochlear partition (Fig. 3.1b) as a linear two-port net-
work. A general formalization in transmission matrix
form of the relation between the basilar membrane input
pressure P(x, s) and velocity V (x, s) and the OHC out-
put cilia bundle shear force f (x, s) and shear velocity
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v(x, s)(
P

V

)
=
(

A B

C D

)(
f

v

)
, (3.15)

where A, B, C, and D are complex functions of place X
and radian frequency s.

Passive BM Models
The most successful passive model of cochlear tuning
is the resonant tectorial membrane (RTM) model [3.9,
104]. The RTM model starts from the assumption that
the slope S2 of BM tuning is insufficient to account for
the slope S2 of neural tuning, as seen in Fig. 3.4b. This
sharpening is accounted for by a reflection in the tecto-
rial membrane, introducing an antiresonance (spectral
zero) at frequency Fz (Fig. 3.4b), which is about half
an octave below the resonant frequency Fcf of the basi-
lar membrane. As described by Allen and Neely [3.9],
the detailed A, B, C, D elements of (3.15) are given by
Allen [3.104], Allen and Neely [3.9].

As described in Allen [3.105], the response ratio
of IHC cilia bundle displacement to basilar membrane
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displacement is defined as Hihc(x, s). The parameters of
the RTM model may be chosen such that model results fit
the experimental neural threshold tuning curves closely,
as shown in Fig. 3.9a.

The Nonlinear RTM Model. The resonant tectorial mem-
brane (RTM) model is made NL by control of the BM
stiffness via OHC’s stiffness is based on Fig. 3.1b. The
OHC soma stiffness has been shown to be voltage depen-
dent by Dallos et al. [3.106] and dependent on prestin
in the membrane wall [3.107]. If an elastic connection
is assumed where the TM attaches to the Limbus, and
if this elasticity is similar to that of the cilia of the
OHC, then the resulting transfer function between the
BM and IHC cilia is strongly filtered at low frequen-
cies [3.51,103,108,109]. Such models are actively under
consideration [3.102].

It is postulated that the decrease in OHC stiffness ac-
companying cilia stimulation results in a decrease of the
net BM partition stiffness Kp(x) (i. e., increasing compli-
ance) of (3.6). As shown in Fig. 3.3, this decrease in the
local BM stiffness would result in the partition excitation
pattern shifting basally towards the stapes. Such shifts in
the BM response patterns are commonly seen. Another
way to view this is shown in Fig. 3.10. This migration
of the excitation pattern, combined with the assumption
that the TM has a high-pass characteristic, means that
the cilia excitation gain at CF is nonlinearly compressed

Fig. 3.10a,b In (a) results of model calculations by Sen
and Allen [3.103] are shown of a NL BM stiffness model.
On the right shows a cartoon of what might happen to the
excitation pattern of a low-level probe when a suppressor
is turned on given such a nonlinearity. The presence of the
suppressor causes the probe to be suppressed and shifted
slightly toward the base when the stiffness is decreased with
increased level. It may be inferred from Fig. 3.3a that, if the
BM stiffness is reduced, the location of the maximum will
shift to the base, as is seen in real data. (a) Compression in
the NL RTM model. Note how the response at the peak is
reduced as the BM stiffness changes, causing the peak to
shift to the base. As this happens the response in the tail
region between 0≤ X ≤ 0.3 cm becomes more sensitive,
and thus shows an expansive NL response. All of these
effects have been seen in real BM data. (b) Cartoon showing
the effect of a low-side masker on a high-frequency tone as
a function of position along the basilar membrane. When the
suppressor is turned on, the CF of the high-frequency probe
becomes less sensitive and shifts to higher frequencies. We
model this effect in the panel on the left as BM stiffness
that depends on level (i. e., Kp(Is))
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as the intensity increases. This compression effect is
shown in a cartoon format in Fig. 3.10b, while Fig. 3.10a
shows the actual calculated model results. Note how the
bandwidth Δ f (X)) remains approximately constant as
a function of input intensity.

Sewell [3.110] has nicely demonstrated that as the
voltage driving the hair cells changes, the neural gain in
dB at CF changes proportionally. It is not yet known why
the dB gain is proportional to the voltage (1 dB/mv),
however this would explain why forward masking de-
cays linearly in dB value with time, after a strong
excitation, since the membrane voltage Vm(t) is propor-
tional to e−t/τm , due to the OHC membrane’s τm = RC
time constant. In my view, explaining the proportion-
ality between the neural threshold in dB and the linear
membrane voltage, is key.

Discussion. Two important advantages of the NL RTM
model include its physically based assumptions (de-
scribed above), and its simplicity. Given these physical
assumptions, we show next that the NL RTM model can
explain:

1. the basal-ward half-octave traveling-wave migration
as a function of increasing intensity [3.76],

2. the upward spread of masking (USM) [3.20, 21],
two-tone suppression (2TS) (see Sect. 3.2.1),

3. distortion product generation [3.49,55,56,111–113],
4. normal and recruiting loudness growth, and
5. hypersensitive tails [3.45].

From the steep 2.5 dB/dB slope of the USM and 2TS
(Fig. 3.6a) it seems necessary that the low-frequency
suppressor is turning down the high-frequency probe
even though the growth of the masker at the high fre-
quency’s place is linear with masker level, as shown in
Fig. 3.10b.

Active BM Models
One obvious question about active cochlear models is
Are they really necessary? At least three attempts to an-
swer this question based on detailed comparisons of
basilar membrane responses have concluded that the
measured responses cannot be accounted for by a pas-
sive cochlear model [3.93, 114–117].

The CA Hypothesis. The most popular active microme-
chanical theory is called the cochlear amplifier (CA)
hypothesis. The concept of the cochlear amplifier, ori-
ginated by Gold, Kemp, Kim and Neely, and named by
H. Davis, refers to a hypothetical mechanism within the
cochlear partition which increases the sensitivity of basi-

lar membrane vibrations to low-level sounds and, at the
same time, increases the frequency selectivity of these
vibrations [3.94]. The CA adds mechanical energy to
the cochlear partition at acoustic frequencies by draw-
ing upon the electrical and mechanical energy available
from the outer hair cells. In response to a tone, the CA
adds mechanical energy to the cochlear traveling wave
in the region defined by S2 as it approaches the place of
maximum response. This energy is reabsorbed at other
places along the cochlear partition. The resulting im-
provement in sensitivity of the ear due to the CA is
thought to be 40 dB, or more under certain conditions;
however, the details of how this amplification might be
accomplished are still unknown [3.118, 119]. A general
discussion of this model is presented in Geisler [3.90],
and in Allen and Fahey [3.91].

It is presumed that this OHC action amplifies the
BM signal energy on a cycle-by-cycle basis, increasing
the sensitivity [3.69, 92]. In some of the models it is as-
sumed that this cycle-by-cycle pressure (force) due to the
OHCs causes the sharp BM tuning tip. In most of these
models, the CA is equivalent to introducing a frequency-
dependent negative damping (resistance) into the BM
impedance [3.120]. Nonlinear compression is intro-
duced by assuming that the resistance is signal level de-
pendent. This NL resistance model was first described by
Hall [3.84] for the case of R > 0. Thus the CA model is
an extension of Hall’s model to the case of R< 0. In sev-
eral models NL negative damping is obtained with a non-
linear stiffness and a small delay. The addition of a small
delay introduces a negative real part into the impedance.
In mathematical physics, NL damping resonators are
described by van der Pol equations, while NL stiffness
resonators are described by Duffing equations [3.121].

Allen and Fahey [3.91] developed a method for di-
rectly measuring the cochlear amplifier (CA) gain. All
of the studies to date using this method have found
no gain. However many researchers continue to be-
lieve that the CA has gain. Given that the gain is order
40–50 dB this is difficult to understand. A nice summary
of this situation has been recently published in Shera and
Guinan [3.120]. The reasons for the failure to directly
measure any CA gain are complex and multifaceted, and
many important questions remain open. One possibility
that remains open is that the many observed large NL
OHC BM effects we see are not due to cycle-by-cycle
power amplification of the BM traveling wave.

Discussion and Summary
Discussion. Both active and passive BM models are
reasonably successful at simulating the neural thresh-
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old response tuning curves. Thus we may need to
look elsewhere to contrast the difference between these
two approaches, such as 2TS/USM. While the passive
RTM model is easily made NL with the introduction of
Kohc(Vm), differences between nonlinear RTM and CA
models have not yet been investigated. The CA and RTM
models differ in their interpretation of damaged cochlear
responses. In CA models, the loss of sensitivity of the
cochlea with damage is interpreted as a loss of CA gain
while in passive models, the loss of sensitivity has been
interpreted as a 2:1 change in the BM stiffness [3.122].

The discovery of OHC motility demonstrates the
existence of a potential source of mechanical energy
within the cochlear partition which is suitably positioned
to influence vibrations of the basilar membrane. It is
still an open question whether this source of energy is
sufficient to power a CA at high frequencies.

One possible advantage of the CA is that of improv-
ing the signal-to-noise ratio in front of the IHC detector.
A weakness of the CA models has been their lack of
specificity about the physical realization of the active el-
ements. Until we have a detailed physical representation
for the CA, RTM models have the advantage of being
simpler and more explicit.

The discovery by He and Dallos that the OHC soma
stiffness is voltage dependent is an exciting development
for the NL passive RTM model, as it greatly simplifies
the implementation of the physical model. The RTM
model has been in disfavor because many feel it does
not account for basilar membrane tuning. This criticism
is largely due to the experimental results of physiologists
who have measured the BM–ear canal transfer function,
and found the tuning of BM velocity to be similar to
neural threshold response data. Much of the experimen-
tal BM data, however, are not convincing on this point,
with the BM slope S2 (Fig. 3.4b) generally being much
smaller than that of neural responses [3.97]. The ques-
tion of whether an active model is required to simulate
measured BM responses is still being debated.

Better estimates of the amplitude of cilia bundle
displacement at a given sound pressure level directly ad-
dress the sensitivity questions. If the estimate of Russell
of 30 mV/degree is correct [3.123], then the cochlear
sensitivity question may be resolved by having very
sensitive detectors. Also, better estimates are needed

of the ratio of the BM frequency response to the IHC
frequency response, both at high and low frequencies.
Rhode’s approach of using the slopes of Fig. 3.4b rather
than traditional ad hoc bandwidth measures, is a useful
tool in this regard. The bandwidth 10 dB down rela-
tive to the peak has been popular, but arbitrary and thus
poor, criterion in cochlear research. A second, some-
what better, bandwidth measure is Fletcher’s equivalent
rectangular bandwidth discussed in Allen [3.10].

Summary. This section has reviewed what we know
about the cochlea. The Basics section reviews the na-
ture of modeling and briefly describes the anatomy of
the inner ear, and the function of inner and outer hair
cells. In Sect. 3.1.2 we reviewed the history of cochlear
modeling. The Wegel and Lane paper was a key paper
that introduced the first detailed view of masking, and
in the same paper introduced the first modern cochlear
model Fig. 3.2b. We presented the basic tools of cochlear
modeling, impedance, and introduced the transmission
matrix method (two-port analysis). We describe how
these models work in intuitive terms, including how the
basilar membrane may be treated as having a frequency
dependent acoustic hole. The location of the hole, as
a function of frequency, is called the cochlear map. This
hole keeps fluid from flowing beyond a certain point,
producing the cochlear traveling wave.

We reviewed and summarized the NL measures of
cochlear response. Since these data are not fully under-
stood, and have not been adequately modeled, this is
the most difficult section. However it is worth the effort
to understand these extensive data and to appreciate the
various relations between them, such as the close paral-
lel between two-tone suppression and the upward spread
of masking, and between loudness recruitment and outer
hair cell damage.

We review several models of the hair cell, including
forward and reverse transduction. Some of this mater-
ial is recently published, and the view of these models
could easily change over the next few years as we better
understand reverse transduction.

Finally in Sect. 3.2.3 we reviewed the basics of
micromechanics. We have presented the two basic types
of models, passive and active models, with a critical
review of each.

3.3 Neural Masking

When modeling human psychophysics one must care-
fully distinguish the external physical variables, which

we call Φ variables, from the internal psychophysical
variables, or Ψ variables. It may be helpful to note that
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Φ andΨ sound similar to the initial syllable of the words
physical and psychological, respectively [3.124]. Psy-
chophysical modeling seeks a transformation from the
Φ domain to theΨ domain. TheΦ intensity of a sound is
easily quantified by direct measurement. TheΨ intensity
is the loudness. The idea that loudness could be quan-
tified was first suggested by Fechner [3.125] in 1860,
who raised the question of the quantitative transforma-
tion between the physical and psychophysical intensity.
For a recent review of this problem, and a brief sum-
mary of its long history, see Schlauch et al. [3.126]. This
section is based on an earlier report by Allen [3.79], and
Allen and Neely [3.127].

An increment in the intensity of a sound that results
in a just noticeable difference is called an intensity JND.
Fechner suggested quantifying the intensity-loudness
growth transformation by counting the number of the
loudness JNDs between two intensity values. However,
after many years of work, the details of the relation-
ship between loudness and the intensity JNDs remain
unclear [3.128–130].

The contribution of Allen and Neely [3.127] and
Allen [3.79] is that it takes a new view of the prob-
lem of the intensity JND and loudness by merging
the 1953 Fletcher neural excitation pattern model of
loudness [3.10, 131] with auditory signal detection the-
ory [3.132].

It is generally accepted that the intensity JND is
the physical correlate of the psychological-domain un-
certainty corresponding to the psychological intensity
representation of a signal. Along these lines, for long
duration pure tones and wide-band noise, we assume
that the Ψ -domain intensity is the loudness, and that
the loudness JND results from loudness noise due to its
stochastic representation.

To model the intensity JND we must define a deci-
sion variable associated with loudness and its random
fluctuations. We call this loudness random decision vari-
able the single-trial loudness. Accordingly we define
the loudness and the loudness JND in terms of the
first and second moments of the single-trial loudness,
that is the mean and variance of the distribution of the
single-trial loudness decision variable. We also define
the ratio of the mean loudness to the loudness stan-
dard deviation as the loudness signal-to-noise ratio,
SNRL.

Our ultimate goal in this work is to use signal detec-
tion theory to unify masking and the JND, following
the 1947 outline of this problem by Miller [3.133].
Tonal data follows the near miss to Weber’s law
(thus does not obey Weber’s law), while the wide-

band noise data does obey Weber’s law. We will
show that the transformation of the Φ-domain (in-
tensity) JND data (both tone and noise) into the Ψ

domain (loudness) unifies these two types of JND
data, since SNRL(L) is the same for both the tone
and noise cases. To help understand these results,
we introduce the concept of a near miss to Stevens’
law, which we show cancels the near–miss to We-
ber’s law, giving the invariance in SNRL for the tone
case [3.127]. This work has applications in speech and
audio coding.

For the case of tones, we have chosen to illus-
trate our theoretical work using the classical intensity
modulation measurements of Riesz [3.75] who meas-
ured the intensity JND using small, low-frequency
(3 Hz), sinusoidal modulation of tones. Modern methods
generally use pulsed tones which are turned on and
off somewhat abruptly, to make them suitable for
a two-alternative, forced-choice (2AFC) paradigm.
This transient could trigger cochlear forward masking.
Riesz’s modulation method has a distinct advan-
tage for characterizing the internal signal detection
process, because it maintains a nearly steady-state
small-signal condition within the auditory system,
minimizing any cochlear forward masking compo-
nent. The interpretation of intensity JNDs is therefore
simplified since underlying stochastic processes are
stationary.

An outline of this neural masking section is as fol-
lows. After some basic definitions in Sect. 3.3.1 and
a review of historical models (e.g., Weber and Fech-
ner), in Sect. 3.3.2, we explore issues surrounding the
relation between the intensity JND and loudness, for
the special cases of tones in quiet and for wide-band
noise. First, we look at formulae for counting the num-
ber of intensity and loudness JNDs and we use these
formulae, together with decision-theoretic principles,
to relate loudness to the intensity JND. We then re-
view the loudness-JND theory developed by Hellman
and Hellman [3.134], which provided the inspiration
for the present work. Next, we empirically estimate the
loudness SNR, defined as the mean loudness over the
loudness variance, and proportional to L/ΔL , as a func-
tion of both intensity and loudness, using the tonal JND
data of Riesz [3.75] and the loudness growth function of
Fletcher and Munson [3.41]. We then repeat this calcu-
lation for Miller’s wide-band noise JND and loudness
data. Finally we propose a model of loudness that may be
used to compute the JND. This model merges Fletcher’s
neural excitation pattern model of loudness with signal
detection theory.
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3.3.1 Basic Definitions

We need a flexible yet clear notation that accounts for
important time fluctuations and modulations that are
present in the signals, such as beats and gated signals.
We include a definition of masked threshold because we
view the intensity JND as a special case of the masked
threshold [3.133]. We include a definition of beats so
that we can discuss their influence on Riesz’s method
for the measurement of intensity JNDs.

Intensity. In the time domain, it is common to define
the Φ intensity in terms of the time-integrated squared
signal pressure s(t), namely,

Is(t)≡ 1

�cT

t∫
t−T

s2(t)dt , (3.16)

where T is the integration time and �c is the specific
acoustic impedance of air. The intensity level is defined
as Is/Iref , and the sound pressure level as |s|/sref , where
the reference intensity is Iref or 10−10 μW/cm2 and the
reference pressure sref = 20 μPa. These two reference
levels are equivalent at only one temperature, but both
seem to be in use. Equivalence of the pressure and in-
tensity references requires that �c= 40 cgs Rayls. At
standard atmospheric pressure, this is only true when
the temperature is about 39 ◦C. Such levels are typically
expressed in dB units.

Intensity of Masker plus Probe. The JND is sometimes
called self-masking, to reflect the view that it is deter-
mined by the internal noise of the auditory system. To
model the JND it is useful to define a more-general meas-
ure called the masked threshold, which is defined in the
Φ domain in terms of a nonnegative pressure scale fac-
tor α applied to the probe signal p(t) that is then added to
the masking pressure signal m(t). The relative intensity
of the probe and masker is varied by changing α. Setting
s(t)= m(t)+αp(t), we denote the combined intensity
as

Im+p(t, α)≡ 1

�cT

t∫
t−T

[m(t)+αp(t)]2 dt . (3.17)

The unscaled probe signal p(t) is chosen to have the
same long-term average intensity as the masker m(t),
defined as I . Let Im(t) be the intensity of the masker with
no probe (α= 0), and Ip(t, α)= α2 I be the intensity of
the scaled probe signal with no masker. Thus

I ≡ Im+p(t, 0)= Im(t)= Ip(t, 1) .

Because of small fluctuations in Im and Ip due to the
finite integration time T , this equality cannot be ex-
actly true. We are specifically ignoring these small
rapid fluctuations – when these rapid fluctuations are
important, our conclusions and model results must be
reformulated.

Beats. Rapid fluctuations having frequency compo-
nents outside the bandwidth of the period Tsecond
rectangular integration window are very small and
will be ignored (T is assumed to be large). Accord-
ingly we drop the time dependence in terms Im and
Ip. The beats between m(t) and p(t) of these signals
are within a common critical band. Slowly varying
correlations, between the probe and masker having
frequency components within the bandwidth of the in-
tegration window, may not be ignored, as with beats
between two tones separated in frequency by a few
Hz. Accordingly we keep the time dependence in the
term Im+p(t, α) and other slow–beating time dependent
terms. In the Φ domain these beats are accounted for
as a probe–masker correlation function ρmt(t) [3.132,
p. 213].

Intensity Increment δI(t‚α). Expanding (3.17) and solv-
ing for the intensity increment δI we find

δI(t, α)≡ Im+p(t, α)− I = [
2αρmp(t)+α2]I ,

(3.18)

where

ρmp(t)= 1

�cTI

t∫
t−T

m(t)p(t)dt (3.19)

defines a normalized cross-correlation function between
the masker and the probe. The correlation function must
lie between −1 and 1.

Detection Threshold. As the probe-to-masker ratio α is
increased from zero, the probe can eventually be de-
tected. We specify the probe detection threshold as α∗,
where the asterisk indicates the threshold value of α
where a subject can discriminate intensity Im+p(t, α∗)
from intensity Im+p(t, 0) 50% of the time, corrected for
chance (i. e., obtain a 75% correct score in a direct com-
parison of the two signals [3.132, p. 129]). The quantity
α∗(t, I) is the probe to masker root-mean-square (RMS)
pressure ratio at the detection threshold. It is a function
of the masker intensity I and, depending on the exper-
imental setup, time. α∗ summarizes the experimental
measurements.
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Masked Threshold Intensity. When ρmp = 0, the
masked threshold intensity is defined in terms of α∗ as

I∗p (I)≡ Ip(α∗)= α2∗ I ,

which is the threshold intensity of the probe in the
presence of the masker.

The masked threshold intensity is a function of
the stimulus modulation parameters. For example, tone
maskers and narrow-band noise maskers of equal inten-
sity, and therefore approximately equal loudness, give
masked thresholds that are about 20 dB different [3.135].
As a second example, when using the method of
beats [3.75], the just–detectable modulation depends on
the beat frequency. With modern 2AFC methods, the
signals are usually gated on and off (100% modula-
tion) [3.136]. According to Stevens and Davis [3.137,
p. 142]

A gradual transition, such as the sinusoidal variation
used by Riesz, is less easy to detect than an abrupt
transition; but, as already suggested, an abrupt
transition may involve the production of unwanted
transients.

One must conclude that the relative masked threshold
[i. e., α∗(t, I)] is a function of the modulation conditions,
and depends on ρmp, and therefore T .

Ψ-Domain Temporal Resolution. When modeling
time-varying psychological decision variables, the rel-
evant integration time T is not the duration defined by
the Φ intensity (3.16), rather the integration time is de-
termined in the Ψ domain. This important Ψ -domain
model parameter is called loudness temporal integra-
tion [3.138]. It was first explicitly modeled by Munson
in 1947 [3.139].

The Φ-domain temporal resolution (T ) is critical to
the definition of the JND in Riesz’s experiment because
it determines the measured intensity of the beats. TheΨ -
domain temporal resolution plays a different role. Beats
cannot be heard if they are faster than, and therefore fil-
tered out by, the Ψ domain response. The Ψ -domain
temporal resolution also impacts results for gated stim-
uli, such as in the 2AFC experiment, though its role is
poorly understood in this case. To model the JND as
measured by Riesz’s method of just-detectable beats,
one must know the Ψ -domain resolution duration to
calculate the probe–masker effective correlation ρmp(t)
in the Ψ domain. It may be more practical to estimate
the Ψ domain resolution from experiments that esti-
mate the degree of correlation, as determined by the

beat modulation detection threshold as a function of the
beat frequency fb.

In summary, even though Riesz’s modulation detec-
tion experiment is technically a masking task, we treat it,
following Riesz [3.75], Miller [3.133], and Littler [3.16],
as characterizing the intensity JND. It follows that theΨ -
domain temporal resolution plays a key role in intensity
JND and masking models.

The Intensity JND ΔI. The intensity just-noticeable dif-
ference (JND) is

ΔI(I)≡ δ(t, α∗) , (3.20)

the intensity increment at the masked threshold, for
the special case where the probe signal is equal to the
masking signal (p(t)= m(t)). From (3.18) with α set to
threshold α∗ and ρmp(t)= 1

ΔI(I)= (2α∗ +α2∗)I . (3.21)

It is traditional to define the intensity JND to be a func-
tion of I , rather than a function of α(I), as we have done
here. We shall treat both notations as equivalent [i. e.,
ΔI(I) or ΔI(α)].

An important alternative definition for the special
case of the pure-tone JND is to let the masker be a pure
tone, and let the probe be a pure tone of a slightly dif-
ferent frequency (e.g., a beat frequency difference of
fb = 3 Hz). This was the definition used by Riesz [3.75].
Beats are heard at fb = 3 Hz, and assuming the period of
3 Hz is within the passband of theΨ temporal resolution
window, ρmp(t)= sin (2π fbt). Thus

ΔI(t, I)= [
2α∗ sin (2π fbt)+α2∗

]
I . (3.22)

If the beat period is less than the Ψ temporal resolu-
tion window, the beats are filtered out by the auditory
brain (the effective ρmn is small) and we do not hear the
beats. In this case ΔI(I)= α2∗ I . This model needs to be
tested [3.139].

Internal Noise. It is widely accepted that the pure-tone
intensity JND is determined by the internal noise of
the auditory system [3.140, 141], and that ΔI is pro-
portional to the standard deviation of the Ψ -domain
decision variable that is being discriminated in the in-
tensity detection task, reflected back into the Φ domain.
The usual assumption, from signal detection theory, is
that ΔI = d′σI, where d′ is defined as the proportion-
ality between the change in intensity and the variance
d′ ≡ΔI/σI. Threshold is typically when d′ = 1 but can
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depend on the the experimental design; σI is the inten-
sity standard deviation of theΦ-domain intensity due to
Ψ -domain auditory noise [3.15, 17, 127].

Hearing Threshold. The hearing threshold (or un-
masked threshold) intensity may be defined as the
intensity corresponding to the first (lowest intensity)
JND. The hearing threshold is represented as I∗p (0) to
indicate the probe intensity when the masker intensity
is small (i. e., I → 0). It is believed that internal noise is
responsible for the hearing threshold.

Loudness L. The loudness L of a sound is the Ψ in-
tensity. The loudness growth function L(I) depends on
the stimulus conditions. For example L(I) for a tone
and for wide-band noise are not the same functions.
Likewise the loudness growth function for a 100 ms
tone and a 1 s tone differ. When defining a loudness
scale it is traditional to specify the intensity, frequency,
and duration of a tone such that the loudness growth
function is one [L(Iref, fref, Tref )= 1 defines a loud-
ness scale]. For the sone scale, the reference signal is
a Iref = 40 dB−SPL tone at fref = 1 kHz with dura-
tion Tref = 1 s. For Fletcher’s LU scale the reference
intensity is the hearing threshold, which means that
1 sone= 975 LU [3.42] for a normal hearing person.
Fletcher’s LU loudness scale seems a more-natural scale
than the sone scale used in the American National Stan-
dards Institute (ANSI) and International Organization
for Standardization (ISO) standards.

The Single–Trial Loudness. A fundamental postulate
of psychophysics is that all decision variables (i. e., Ψ
variables) are random variables, drawn from some prob-
ability space [3.132, Chap. 5]. For early discussions of
this point see Montgomery [3.142] and p. 144 of Stevens
and Davis [3.137]. To clearly indicate the distinction be-
tween random and nonrandom variables, a tilde (∼) is
used to indicate a random variable. As a mnemonic,
we can think of the ∼ as a wiggle associated with
randomness.

We define the loudness decision variable as the
single-trial loudness L̃ , which is the sample loudness
heard on each stimulus presentation. The loudness L is
then the expected value of the single-trial loudness L̃

L(I)≡ E L̃(I) . (3.23)

The second moment of the single-trial loudness

σ2
L ≡ E(L̃− L)2 (3.24)

defines the loudness variance σ2
L and standard deviation

σL.

Derived Definitions
The definitions given above cover the basic variables.
However many alternative forms (various normaliza-
tions) of these variables are used in the literature. These
derived variables were frequently formed with the hope
of finding an invariance in the data. This could be viewed
as a form of modeling exercise that has largely failed
(e.g., the near miss to Weber’s law), and the shear num-
ber of combinations has led to serious confusions [3.138,
p. 152]. Each normalized variable is usually expressed
in dB, adding an additional unnecessary layer of con-
fusion to the picture. For example, masking is defined
as the masked threshold normalized by the unmasked
(quiet) threshold, namely

M ≡ I∗p (Im)

I∗p (0)
.

It is typically quoted in dB re sensation level (dB−SL).
The intensity JND is frequently expressed as a relative
JND called the Weber fraction defined by

J(I)≡ ΔI(I)

I
. (3.25)

From the signal detection theory premise that
ΔI = d′σI [3.17], J is just the reciprocal of an effective
signal-to-noise ratio defined as

SNRI(I)≡ I

σI(I)
(3.26)

since

J = d′ σI

I
= d′

SNRI
. (3.27)

One conceptual difficulty with the Weber fraction J
is that it is an effective signal-to-noise ratio, expressed
in the Φ (physical) domain, but determined by a Ψ

(psychophysical) domain mechanism (internal noise),
as may be seen from Fig. 3.11.

Loudness JND ΔL. Any suprathresholdΨ -domain incre-
ments may be quantified by corresponding Φ domain
increments. The loudness JND ΔL(I) is defined as the
change in loudness L(I) corresponding to the intensity
JND ΔI(I). While it is not possible to measure ΔL
directly, we assume that we may expand the loudness
function in a Taylor series (Fig. 3.11), giving

L(I +ΔI)= L(I)+ ΔI
dL

dI

∣∣∣∣
I
+HOT ,

where HOT represents higher-order terms, which we
shall ignore. If we solve for

ΔL ≡ L(I +ΔI)− L(I) (3.28)
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Fig. 3.11 Summary of all historical ideas about psy-
chophysics and the relations between theΦ andΨ variables.
Along the abscissa we have the physical variable, intensity,
and along the ordinate, the psychological variable loud-
ness. The curve represents the loudness, on a log-intensity
log-loudness set of scales. A JND in loudness is shown as
ΔL and it depends on loudness, as described by the Poisson
internal noise (PIN) model shown in the box on the left.
Fechner assumed that ΔL was constant, which we now
know to be incorrect. The loudness JND is reflected back
into the physical domain as an intensity JND ΔI , which
also depends on level. Weber’s law, is therefore not true
in general (but is approximately true for wide-band noise).
Our analysis shows that the loudness SNR and the intensity
SNR must be related by the slope of the loudness growth
function, as given by (3.32). These relations are verified in
Fig. 3.12, as discussed in detail in Allen and Neely [3.127]

we find

ΔL = ΔI
dL

dI

∣∣∣∣
I
. (3.29)

We call this expression the small-JND approximation.
The above shows that the loudness JND ΔL(I) is related
to the intensity JND ΔI(I) by the slope of the loudness
function, evaluated at intensity I . According to the signal
detection model, the standard deviation of the single-trial
loudness is proportional to the loudness JND, namely

ΔL = d′σL . (3.30)

A more explicit way of expressing this assumption is

ΔL

ΔI
= σL

σI
, (3.31)

where d′ in both the Φ and Ψ domains is the same and
thus cancels.

Loudness SNR. In a manner analogous to the Φ-do-
main SNRI, we define the Ψ -domain loudness SNR as
SNRL(L)≡ L/σL(L). Given (3.30), it follows that

SNRI = νSNRL , (3.32)

where ν is the slope of the log-loudness function with
respect to log-intensity. If we express the loudness as
a power law

L(I)= Iν

and let x = log(I) and y = log(L), then y = νx. If the
change of ν with respect to dB−SPL is small, then
dy/dx ≈Δy/Δx ≈ ν. Since d log(y)= dy/y we get

ΔL

L
= ν

ΔI

I
. (3.33)

Equation (3.32) is important because

1. it tells us how to relate the SNRs between the Φ and
Ψ domains,

2. every term is dimensionless,
3. the equation is simple, since ν ≈ 1/3 is approxi-

mately constant above 40 dB−SL (i. e., Stevens’
law), and because

4. we are used to seeing and thinking of loudness, in-
tensity, and the SNR, on log scales, and ν as the slope
on log–log scales.

Counting JNDs. While the concept of counting JNDs
has been frequently discussed in the literature, starting
with Fechner, unfortunately the actual counting formula
(i. e., the equation) is rarely provided. As a result of a lit-
erature search, we found the formula in Nutting [3.143],
Fletcher [3.21], Wegel and Lane [3.20], Riesz [3.75],
Fletcher [3.144], and Miller [3.133].

To derive the JND counting formula, (3.29) is rewrit-
ten as

dI

ΔI
= dL

ΔL
. (3.34)

Integrating over an interval gives the total number of
intensity JNDs

N12 ≡
I2∫

I1

dI

ΔI
=

L2∫
L1

dL

ΔL
, (3.35)

where L1 = L(I1) and L2 = L(I2). Each integral counts
the total number of JNDs in a different way between I1
and I2 [3.75,144]. The number of JNDs must be the same
regardless of the domain (i. e., the abscissa variable), Φ
or Ψ .
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3.3.2 Empirical Models

This section reviews some earlier empirical models of
the JND and its relation to loudness relevant to our
development.

Weber’s Law
In 1846 it was suggested by Weber that J(I) is indepen-
dent of I . According to (3.21) and (3.25)

J(I)= 2α∗ +α2∗ .
If J is constant, then α∗ must be constant, which
we denote by α∗( I) (we strike out I to indicate that
α∗ is not a function of intensity). This expectation,
which is called Weber’s law [3.145], has been success-
fully applied to many human perceptions. We refer the
reader to the helpful and detailed review of these ques-
tions by Viemeister [3.129], Johnson et al. [3.146], and
Moore [3.147].

Somewhat frustrating is the empirical observation
that J(I) is not constant for the most elementary case of
a pure tone [3.75, 136]. This observation is referred to
as the near miss to Weber’s law [3.148].

Weber’s law does make one simple prediction that is
potentially important. From (3.35) along with Weber’s
law J0 ≡ J( I) we see that the formula for the number
of JNDs is

N12 =
I2∫

I1

dI

J0 I
= 1

J0
ln

(
I2

I1

)
. (3.36)

It remains unexplained why Weber’s law holds as
well as it does [3.149, 150, p. 721] (it holds approxi-
mately for the case of wide band noise), or even why
it holds at all. Given the complex and NL nature of the
transformation between the Φ and Ψ domains, coupled
with the belief that the noise source is in the Ψ domain,
it seems unreasonable that a law as simple as Weber’s
law could hold in any general way. A transformation of
the JND from the Φ domain to the Ψ domain greatly
clarifies the situation.

Fechner’s Postulate
In 1860 Fechner postulated that the loudness JND ΔL(I)
is a constant [3.125,130,151,152]. We are only consid-
ering the auditory case of Fechner’s more general theory.
We shall indicate such a constancy with respect to I as
ΔL( I) (as before, we strike out the I to indicate that
ΔL is not a function of intensity). As first reported by
Stevens [3.153], we shall show that Fechner’s postulate
is not generally true.

The Weber–Fechner Law
It is frequently stated [3.152] that Fechner’s postulate
(ΔL( I)) and Weber’s law (J0 ≡ J( I)) lead to the con-
clusion that the difference in loudness between any two
intensities I1 and I2 is proportional to the logarithm of
the ratio of the two intensities, namely

L(I2)− L(I1)

ΔL
= 1

J0
log

(
I2

I1

)
. (3.37)

This is easily seen by eliminating N12 from (3.36)
and by assuming Weber’s law and Fechner’s hypoth-
esis. This result is called Fechner’s law (also called
the Weber–Fechner law). It is not true because of the
faulty assumptions, Weber’s law and Fechner’s postu-
late.

3.3.3 Models of the JND

Starting in 1923, Fletcher and Steinberg studied loud-
ness coding of pure tones, noise, and speech [3.21,
154–156], and proposed that loudness was related to
neural spike count [3.41], and even provided detailed
estimates of the relation between the number of spikes
and the loudness in sones [3.42, p. 271]. In 1943 De
Vries first introduced a photon-counting Poisson pro-
cess model as a theoretical basis for the threshold
of vision [3.157]. Siebert [3.140] proposed that Pois-
son point-process noise, resulting from the neural rate
code, acts as the internal noise that limits the fre-
quency JND [3.136, 150]. A few years later [3.158],
and independently [3.159] McGill and Goldberg [3.160]
proposed that the Poisson internal noise (PIN) model
might account for the intensity JND, but they did not
find this to produce a reasonable loudness growth func-
tion. Hellman and Hellman [3.134] further refined the
argument that Poisson noise may be used to relate the
loudness growth to the intensity JND, and they found
good agreement between the JND and realistic loudness
functions.

Given Poisson noise, the variance is equal to the
mean, thus

ΔL(L)∝√L . (3.38)

This may also be rewritten as σ2
L ∝ L . We would expect

this to hold if the assumptions of McGill [3.148] (i. e.,
the PIN model) are valid.
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Fig. 3.12a–d In 1947 Miller measured the JNDI and the loudness level for two subjects using wide-band modulated
noise (0.15–7 kHz) for levels between 3 and 100 dB−SL. The noise (dashed line) and pure tone (solid line) loudness
are shown in (a). The similarity between ΔL/L derived from the loudness curves for pure tones and for noise provide an
almost perfect fit to the SPIN model which results from assuming the noise is neural point-process noise. See the text for
a summary of these results. The direct derivation of ΔL based on pure tone JND and loudness data from Miller [3.133],
Riesz [3.75], Fletcher and Munson [3.41].

In the following we directly compare the loudness–
growth function of Fletcher and Munson to the number
of JNDs N12 from Riesz [3.75, 127] to estimate ΔL/L .

3.3.4 A Direct Estimate of the Loudness JND

Given its importance, it is important to estimate ΔL
directly from its definition (3.28), using Riesz’s ΔI(I)
and Fletcher and Munson’s 1933 estimate of L(I).

Miller’s 1947 famous JND paper includes wide-
band-noise loudness-level results. We transformed these
JND data to loudness using Fletcher and Munson [3.41]
reference curve (i. e., Fig. 3.12a).

Loudness Growth, Recruitment, and the OHC
In 1924 Fletcher and Steinberg published an important
paper on the measurement of the loudness of speech sig-
nals [3.155]. In this paper, when describing the growth
of loudness, the authors state

the use of the above formula involved a summation
of the cube root of the energy rather than the energy.

This cube–root dependence had first been described by
Fletcher the year before [3.21].

In 1930 Fletcher [3.27] postulated that there was
a monotonic relationship between central nerve firings
rates and loudness. Given a tonal stimulus at the ear

Part
A

3
.3



Nonlinear Cochlear Signal Processing and Masking in Speech Perception 3.3 Neural Masking 53

� 2� -� "� 6� ��� � 2� -� "� 6� ���

����

��<

��6

��.

��"

��#

����

�
����

��

�%��*$���4
�	���%�
���		
��"

���

�

��

��2
��3
��-
��#

2� -� "� 6� ��� �
��3

�����	�����������

� � ��

�����	�����������

� � ��
�����	�����������

��
���		���;� �� �� �

�����	�����������
2� -� "� 6� ���

��-

��
���		�	%���

 �5����	���1��$����	,  �5����	���1��$�=�	�����&�����%�

���

�

��

��7�5���%
=�	����������%���)�
=�	����������%������

����

���

�

��

��7�5���%
���	,��)�
���	,�����

��

�� ��

Fig. 3.13a–d Test of the SPIN model against the classic results of Riesz [3.75], Jesteadt et al. [3.136]. Test of the model
derived on the left based on a comparison between loudness data and intensity JND data at 1 kHz, using the SPIN model

drum, Stevens’ law says that the loudness is given by

L ≡ L( f, x, I)∝ Iν , (3.39)

where ( f, x, I) are the frequency, place, and intensity of
the tone, respectively. The exponent ν has been experi-
mentally established to be in the range between 1/4 and
1/3 for long duration pure tones at 1 kHz. Fletcher and
Munson [3.41] found ν ≈ 1/4 at high intensities and ap-
proximately 1 near threshold. Although apparently it has
not been adequately documented, ν seems to be close to
1 for the recruiting ear [3.15].

Recruitment. What is the source of Fletcher’s cube-
root loudness growth (i. e., Stevens’ law)? Today
we know that cochlear outer hair cells are the
source of the cube-root loudness growth observed by
Fletcher.

From noise trauma experiments on animals and hu-
mans, we may conclude that recruitment (abnormal
loudness growth) occurs in the cochlea [3.3, 96]. Stein-
berg and Gardner described such a loss as a variable
loss (i. e., sensory neural loss) and partial recruitment as
a mixed loss (i. e., having a conductive component) [3.3,
161]. They and Fowler verified the conductive compo-
nent by estimating the air–bone gap. In a comment to
Fowler’s original presentation on loudness recruitment
in 1937, the famous anatomist Lorente de Nó theorized
that recruitment is due to hair cell damage [3.14]. Stein-
berg and Gardner clearly understood recruitment, as is
indicated in the following quote [3.3, p. 20]

Owing to the expanding action of this type of loss
it would be necessary to introduce a corresponding
compression in the amplifier in order to produce the
same amplification at all levels.
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This compression/loss model of hearing and hear-
ing loss, along with the loudness models of Fletcher
and Munson [3.41], are basic to an eventual quantita-
tive understanding of NL cochlear signal processing and
the cochlea’s role in detection, masking and loudness in
normal and impaired ears. The work by Fletcher [3.162]
and Steinberg and Gardner [3.3], and work on modeling
hearing loss and recruitment [3.122] support this view.

In summary, many studies conclude that the cube-
root loudness growth starts with the NL compression
of basilar membrane motion due to stimulus-dependent
voltage changes within the OHC.

3.3.5 Determination of the Loudness SNR

In Fig. 3.12 we show a summary of L(I), ν(I), J(I) and
ΔL/L = d′/SNRL for the tone and noise data.

The pure-tone and wide-band noise JND results may
be summarized in terms of the loudness SNRL(L) data
shown in Fig. 3.12d where we show ΔL/L = d′/SNRL,
as a function of loudness.

For noise below 55 dB−SL (L < 5000 LU) the
loudness signal-to-noise ratio SNRL ≡ L/σL decreases
as the square root of the loudness. For a loudness greater
than 5000 LU (N ≈ 5 sones), ΔL/L ≈ 0.025 fn both
tones and noise (Fig. 3.12d)

In the lower-right panel (Fig. 3.12d) we provide
a functional summary of ΔL/L for both tones and noise
with the light solid line described by

ΔL(L)

L
= h [min(L, L0)]−1/2 , (3.40)

where h =√2 and L0 = 5000 LU (≈ 5 sone). We call
this relation the saturated Poisson internal noise (SPIN)
model. With these parameter values, (3.40) appears to
be a lower bound on the relative loudness JNDL for both
tones and noise. From (3.33) ΔL/L = ν(I)J(I). Note
how the product of ν(I) and J(I) is close to a constant
for tones above 5000 LU.

In Fig. 3.12b the second top panel shows the ex-
ponent ν(I) for both Fletcher and Munson’s and
Miller’s loudness growth function. In the lower-left
panel (Fig. 3.12c) we see ΔI/I versus I for Miller’s
subjects, Miller’s equation, and Riesz’s JND equation.

Near miss to Stevens’ Law
For tones the intensity exponent ν(I) varies systemati-
cally between 0.3 and 0.4 above 50 dB−SL, as shown
by the solid line in the upper-right panel of Fig. 3.12b.
We have highlighted this change in the power law with
intensity for a 1 kHz tone in the upper-right panel with

a light solid straight line. It is logical to call this effect
the near miss to Stevens’ law, since it cancels the near
miss to Weber’s law, giving a constant relative loudness
JND ΔL/L for tones.

Figure 3.13a shows the Fletcher–Munson loudness
data from Table III in [3.41]. The upper-right panel
(Fig. 3.13b) is the slope of the loudness with respect
to intensity (LU cm2/W).In the lower–right (Fig. 3.13d)
we compare the SPIN model relative JND (3.43) (with
h = 3.0), and the relative JND computed from the
Jesteadt et al. [3.136] formula (dashed line) and data
from their Table B-I (circles). They measured the JND
using pulsed tones for levels between 5 and 80 dB.
The Jesteadt et al. data were taken with gated stimuli
(100% modulation) and 2AFC methods. It is expected
that the experimental method would lead to a differ-
ent value of h than the valued required for Riesz’s
data set. The discrepancy between 0 and 20 dB may
be due to the 100% modulation for these stimuli. The
fit from 20 to 80 dB−SL is less than a 5% maxi-
mum error, and much less in terms of RMS error.
Note the similarity in slope between the model and the
data.

3.3.6 Weber–Fraction Formula

In this section we derive the relation between the Weber
fraction J(I) given the loudness L(I) starting from the
small-JND approximation

ΔL =ΔIL ′(I) , (3.41)

where L ′(I)≡ dL/dI . If we solve this equation for ΔI
and divide by I we find

J(I)≡ ΔI

I
= ΔL

IL ′(I)
. (3.42)

Finally we substitute the SPIN model (3.40)

J(I)= hL(I)

IL ′(I)
[min(L(I), L0)]−1/2 . (3.43)

This formula is the same as that derived by Hellman
and Hellman [3.134], when L ≤ L0. In Fig. 3.13c we
plot (3.43) labeled SPIN-model with h = 2.4 and L0 =
10 000 LU. For levels between 0 and 100 dB−SL, the
SPIN model (solid curve) fit to Riesz’s data and Riesz’s
formula is excellent. Over this 100 dB range the curve
defined by the loudness function fits as well as the curve
defined by Riesz’s formula [3.127]. The excellent fit
gives us further confidence in the basic assumptions of
the model.
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3.4 Discussion and Summary

Inspired by the Poisson internal noise (PIN)-based
theory of Hellman and Hellman [3.134], we have de-
veloped a theoretical framework that can be used to
explore the relationship between the pure-tone loud-
ness and the intensity JND. The basic idea is to
combine Fletcher’s neural excitation response pattern
model of loudness with signal detection theory. We
defined a random decision variable called the single-
trial loudness. The mean of this random variable is
the loudness, while its standard deviation is propor-
tional to the loudness JND. We define the loudness
signal-to-noise ratio SNRL as the ratio of loudness
(the signal) to standard deviation (a measure of the
noise).

3.4.1 Model Validation

To evaluate the model we have compared the loudness
data of Fletcher and Munson [3.41] with the intensity
JND data of Riesz [3.75], for tones. A similar comparison
was made for noise using loudness and intensity JND
data from Miller [3.133]. We were able to unify the tone
and noise data by two equivalent methods in Fig. 3.12d.
Since the loudness SNR is proportional to the ratio of the
loudness to the JND L/ΔL , the SNR is also a piecewise
power-law function which we call the SPIN model. All
the data are in excellent agreement with the SPIN model,
providing support for the validity of this theory.

The above discussion has

• drawn out the fundamental nature of the JND,• shown that the PIN loudness model holds below
5 sone (5000 LU) (the solid line in the lower right
panel of Fig. 3.11 below 5000 LU obeys the PIN
model, and the data for both tones and wide band
noise fall close to this line below 5000 LU) (one sone
is 975 LU [3.127, p. 3631], thus 5000 LU= 5.13 LU.
From the loudness scale this corresponds to a 1 kHz
pure tone at 60 dB−SL),• shown that above 5 sone the PIN model fails and the
loudness SNR remains constant.

3.4.2 The Noise Model

The SPIN Model
Equation (3.40) summarizes our results on the relative
loudness JND for both tones and noise. Using this for-
mula along with (3.32), the JND may be estimated for
tones and noise once the loudness has been determined,

by measurement, or by model. Fechner’s postulate, that
the loudness JND is constant, is not supported by our
analysis, in agreement with Stevens [3.153].

The PIN Model
The success of the PIN model is consistent with the
idea that the pure-tone loudness code is based on neural
discharge rate. This theory should apply between thresh-
old and moderate intensities (e.g., < 60 dB) for frozen
stimuli where the JND is limited by internal noise.

CNS Noise
Above 60 dB−SL we find that the loudness signal-
to-noise ratio saturated (Fig. 3.12d) with a constant
loudness SNR between 30 and 50 for both the tone
and noise conditions, as summarized by Ekman’s
law [3.163]. We conclude that the Hellman and Hellman
theory must be modified to work above 5 sones.

Weber’s Law
It is significant that, while both J(I) and ν(I) vary
with intensity, the product is constant above 60 dB−SL.
Given that J = d′/νSNRL, the saturation in SNRL ex-
plains Weber’s law for wideband signals (since ν and
SNRL for that case are constant) as well as the near miss
to Weber’s law for tones, where ν is not constant (the
near miss to Stevens’ law, Fig. 3.12a).

Generalization to Other Data
If σL(L,  I) depends on L , and is independent of I ,
then the SNRL(L) should not depend on the nature
of the function L(I) (i. e., it should be true for any
L(I)). This prediction is supported by our analysis
summarized by (3.40). It will be interesting to see
how SNRL depends on L and I for subjects hav-
ing a hearing-loss-induced recruitment, and how well
this theory explains other data in the literature, such
as loudness and JNDs with masking-induced recruit-
ment [3.126].

Conditions for Model Validity
To further test the SPIN model, several conditions must
be met. First the loudness and the JND must have been
measured under the same stimulus conditions. Second,
the internal noise must be the dominant factor in de-
termining the JND. This means that the stimuli must be
frozen (or have significant duration and bandwidth), and
the subjects well trained in the task. As the signal uncer-
tainty begins to dominate the internal noise, as it does in
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the cases of roving the stimulus, the intensity JND will
become independent of the loudness.

As discussed by Stevens and Davis [3.164, pp. 141-
143], JND data are quite sensitive to the modulation
conditions. The Riesz [3.75] and Munson [3.165] data
make an interesting comparison because they are taken
under steady–state conditions and are long duration tonal
signals. Both sets of experimental data (i. e., Riesz and
Munson) were taken in the same laboratory within a few
years of each other. In 1928 Wegel, Riesz, and Munson
were all members of Fletcher’s department. Riesz [3.75]
states that he used the same methods as Wegel and
Lane [3.20], and it is likely that Munson [3.165] did
as well.

Differences in the signal conditions are the most
likely explanation for the differences observed in the
intensity JND measurements of Riesz and Jesteadt
shown in Fig. 3.13d. One difference between the data
of Riesz [3.75] and Jesteadt et al. [3.136] is that Riesz

varied the amplitude of the tones in a sinusoidal man-
ner with a small (i. e., just detectable) modulation index,
while Jesteadt et al. alternated between two intervals of
different amplitude, requiring that the tones be gated on
and off (i. e., a 100% modulation index).

The neural response to transient portions of a stim-
ulus is typically larger than the steady-state response
(e.g., neural overshoot) and, therefore, may dominate
the perception of stimuli with large, abrupt changes in
amplitude. The fact that the intensity JND is sensitive to
the time interval between two tones of different ampli-
tude [3.164] is another indication that neural overshoot
may play a role.

It would be interesting to check the SPIN model
on loudness and JND data taken using gated signals,
given the observed sensitivity to the modulation. While
these JND data are available [3.136], one would need
loudness data taken with identical (or at least similar)
modulations. We are not aware of such data.
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Perception of4. Perception of Speech and Sound

B. Kollmeier, T. Brand, B. Meyer

The transformation of acoustical signals into
auditory sensations can be characterized by psy-
chophysical quantities such as loudness, tonality,
or perceived pitch. The resolution limits of the
auditory system produce spectral and tempo-
ral masking phenomena and impose constraints
on the perception of amplitude modulations.
Binaural hearing (i. e., utilizing the acoustical dif-
ference across both ears) employs interaural time
and intensity differences to produce localization
and binaural unmasking phenomena such as the
binaural intelligibility level difference, i. e., the
speech reception threshold difference between
listening to speech in noise monaurally versus
listening with both ears.

The acoustical information available to the
listener for perceiving speech even under adverse
conditions can be characterized using the arti-
culation index, the speech transmission index, and
the speech intelligibility index. They can objectively
predict speech reception thresholds as a function
of spectral content, signal-to-noise ratio, and
preservation of amplitude modulations in the
speech waveform that enter the listener’s ear. The
articulatory or phonetic information available to
and received by the listener can be characterized
by speech feature sets. Transinformation analysis
allows one to detect the relative transmission error
connected with each of these speech features. The
comparison across man and machine in speech
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recognition allows one to test hypotheses and
models of human speech perception. Conversely,
automatic speech recognition may be improved by
introducing human signal-processing principles
into machine processing algorithms.

Acoustically produced speech is a very special sound
to our ears and brain. Humans are able to extract the
information contained in a spoken message extremely
efficiently even if the speech energy is lower than any
competing background sound. Hence, humans are able
to communicate acoustically even under adverse lis-
tening conditions, e.g., in a cafeteria. The process of
understanding speech can be subdivided into two stages.
First, an auditory pre-processing stage where the speech
sound is transformed into its internal representation in
the brain and special speech features are extracted (such

as, e.g., acoustic energy in a certain frequency channel
as a function of time, or instantaneous pitch of a speech
sound). This process is assumed to be mainly bottom-up
with no special preference for speech sounds as com-
pared to other sounds. In other words, the information
contained in any of the speech features can be described
quite well by the acoustical contents of the input signal
to the ears. In a second step, speech pattern recognition
takes place under cognitive control where the internally
available speech cues are assembled by our brain to con-
vey the underlying message of the speech sound. This
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process is assumed to be top-down and cognitive con-
trolled, and is dependent on training, familiarity, and
attention. In the context of this handbook we primarily
consider the first step while assuming that the second
step operates in a nearly perfect way in normal hu-
man listeners, thus ignoring the vast field of cognitive
psychology, neuropsychology of speech, and psycholin-

guistics. Instead, we consider the psychoacoustics of
transforming speech and other sounds into its internal
representation. We will concentrate on the acoustical
prerequisites of speech perception by measuring and
modeling the speech information contained in a sound
entering the ear, and finally the speech features that are
presumably used by our brain to recognize speech.

4.1 Basic Psychoacoustic Quantities

The ear converts the temporally and spectrally fluctuat-
ing acoustic waveform of incoming speech and sound
into a stream of auditory percepts. The most important
dimensions of auditory perception are:

• the transformation of sound intensity into subjec-
tively perceived loudness,• the transformation of major frequency components
of the sound into subjectively perceived pitch,• the transformation of different temporal patterns and
rhythms into subjectively perceived fluctuations,• the transformation of the spectro-temporal contents
of acoustic signals into subjectively perceived timbre
(which is not independent of the dimensions listed
above),• the transformation of interaural disparities (i. e.,
differences across both ears) and spectro-temporal
contents of acoustical signals into the perceived
spatial location and spatial extent of an auditory
object.
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A basic prerequisite for being able to assign these dimen-
sions to a given sound is the ear’s ability to internally
separate acoustically superimposed sound sources into
different auditory streams or objects.

Psychoacoustics is the scientific discipline that
measures and models the relation between physical
acoustical quantities (e.g., the intensity of a sinusoidal
stimulus specified by sound pressure level, frequency,
and duration) and their respective subjective impression
(e.g., loudness, pitch, and perceived temporal extent).

4.1.1 Mapping of Intensity into Loudness

The absolute threshold in quiet conditions for a con-
tinuous sinusoid is highly dependent on the frequency
of the pure tone (Fig. 4.1). It shows highest sensitivity
in the frequency region around 1 kHz, which also car-
ries most speech information, and increases for low and
high frequencies. The normalized threshold in quiet at
1 kHz averaged over a large number of normal hearing
subjects is defined as 0 dB sound pressure level (SPL),
which corresponds to 20 μPa. As the level of the si-
nusoid increases, the perceived loudness increases with
approximately a doubling of perceived loudness with
a level increase by 10 dB. All combinations of sound
pressure levels and frequencies of sinusoid that pro-
duce the same loudness as a reference 1 kHz sinusoid
of a given level (in dB SPL) are denoted as isophones
(Fig. 4.1). Hence, the loudness level (in phon) can only
be assigned to a sinusoid and not to a multi-frequency
mixture of sounds such as speech. This difference is
due to the fact that a broadband sound is perceived as
being louder than a narrow-band sound at the same

Fig. 4.1 Auditory field described by the threshold in quiet,
the isophones, and the uncomfortable listening level of
a continuous sinusoid as a function of tone frequency. Also
given is an average speech spectrum for male and female
speech plotted as a power density
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Perception of Speech and Sound 4.1 Basic Psychoacoustic Quantities 63

sound pressure level, which puts all of its energy
into one critical band. In order to express the speech
sound pressure level in a way that approximates the
human loudness impression, there are several options
available:

• Unweighted root-mean-square (RMS) level: the to-
tal signal intensity over the audio frequency range
is averaged within a certain time window (denoted
as slow, fast, or impulse, respectively, for standard-
ized sound level meters, or as the RMS value for
a digitized speech signal) and is expressed as dB
SPL, i. e., as 10 log(I/I0) where I denotes the sig-
nal intensity and I0 denotes the reference signal
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Fig. 4.3 Example plot of a speech sample, 1 kHz sinusoidal tone and a continuous speech-shaped noise sample represented
as a waveform, spectrogram, partial loudness pattern and resulting value in dB SPL, dBA and loudness in sone
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Fig. 4.2 Block diagram of a loudness model

intensity at auditory threshold. The usage of the dB
scale already takes into account the Weber–Fechner
law of psychophysics: roughly, a sound intensity
difference of 1 dB can be detected as the just notice-
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able intensity difference irrespective of the reference
level.• A-weighted signal level: in order to account for the
higher sensitivity of the ear to mid-frequencies at
low levels, a spectral weighting function that ap-
proximates the isophones between 20 and 30 phon
(denoted as A-weighting) is applied to the spectral
components of the sound before they are summed up
to give the total sound level. The B- and C-weighting
curves are available for higher signal levels. Note
that the A-, B-, and C-weighted speech levels do not
differ too much from the unweighted speech level be-
cause the long-term average spectral shape of speech
includes most energy in the frequency range close
to 1 kHz where the weighting curves coincide. Since
none of these definitions include the psychophysi-
cal effect of loudness summation across frequency
and the temporal integration performed by our ear,
a speech sound at a given sound pressure level does
not necessarily produce the same perceived loudness
as a 1 kHz signal at this level.• Loudness in sone. A more exact measure of per-
ceived loudness for sounds that differ in frequency
contents is given by a loudness calculation scheme
based on the sone scale. For a narrow-band sound
(like a sinusoid), the loudness in sone is expressed
as

N[sone] = (I/I0)α , (4.1)

where I0 is the reference intensity which is set to
40 dB SPL for a sinusoid at 1 kHz. Since the ex-
ponent α amounts to ≈ 0.3 according to Stevens
and Zwicker [4.1], this yields a compression of
sound intensity similar to the nonlinear compression
in the human ear. For broadband sounds (such as
speech), the same compressive power law as given
above has to be applied to each critical frequency
band (see later) before the partial loudness contri-
butions are summed up across frequencies, which
results in the total loudness. The detailed loud-
ness calculation scheme (according to ISO 532b)
also accounts for the spread of spectral energy of
a narrow-band sound into adjacent frequency bands
known from cochlear physiology (Sect. 4.1.2). This
leakage of spectral energy can also be modeled
by a bank of appropriately shaped bandpass fil-
ters with a limited upper and lower spectral slope
(Fig. 4.2).

To account for the time dependency of loudness percep-
tion, a temporal integration process is assumed that sums

up all intensity belonging to the same auditory object
within a period of approximately 200 ms. This roughly
models the effect that sounds with a constant sound level
are perceived as being louder if their duration increases
up to 200 ms while remaining constant in loudness if
the duration increases further. For fluctuating sounds
with fluctuating instantaneous loudness estimates, the
overall loudness impression is dominated by the respec-
tive loudness maxima. This can be well represented by
considering the 95 percentile loudness (i. e., the loud-
ness value that is exceeded for only 5% of the time) as
the average loudness value of a sequence of fluctuat-
ing sounds [4.1]. For illustration, Fig. 4.3 displays the
relation between waveform, spectrogram, partial loud-
ness pattern and resulting value in dB SPL, dBA and
loudness in sone for three different sounds.

4.1.2 Pitch

If the frequency of a sinusoid at low frequencies up
to 500 Hz is increased, the perceived tone height (or
pitch, also denoted as tonality) increases linearly with
frequency. At higher frequencies above 1 kHz, however,
the perceived pitch increases approximately logarith-
mically with increasing frequency. The combination
of both domains yields the psychophysical mel-scale
(Fig. 4.4).

This relation between frequency and subjective
frequency perception also represents the mapping of
frequencies on the basilar membrane (Sect. 4.2.1 and
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Fig. 4.4 Tonality in bark and in mel over frequency (one
bark equals 100 mel). For comparison the (hypothetical)
place of maximum excitation on the basilar membrane and
the psychoacoustical frequency scale based on equivalent
rectangular bandwidth (ERB) is plotted
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Fig. 4.4), where frequencies up to approximately 2 kHz
occupy half of the basilar membrane and those between
2 kHz and 20 kHz the remaining half. The slope of this
function relates to the just noticeable difference (JND)
for frequency. The frequency JND is about 3 Hz for
frequencies below 500 Hz and about 0.6% for frequen-
cies above 1000 Hz, which is approximately 3 mel. This
value amounts to 1/30 of the frequency-dependent band-
width of the critical band which plays a role both in
loudness summation (see above) and in the psychophys-
ical effect of spectral masking. All spectral energy that
falls into one critical band is summed up and masks
(or disables) the detection of a sinusoidal tone centered
within that critical band as long as its level is below
this masked threshold. According to Zwicker et al. [4.2]
the auditory critical bandwidth is expressed in bark af-
ter the German physicist Barkhausen as a function of
frequency f0 (in Hz) as:

1 bark= 100 mel

≈ 100 Hz for frequencies below 500 Hz

≈ 1/5 f0 for frequencies above 500 Hz .
(4.2)

The psychophysical frequency scale resulting from inte-
grating the critical bandwidth over frequency is denoted
as bark scale Z and can be approximated [4.4] by the
inverse function of the hyperbolical sinus

Z[bark] = 7 · arcsinh( f0/650) (4.3)

More-refined measurements of spectral masking per-
formed by Moore and Patterson [4.5] resulted in the
equivalent rectangular bandwidth (ERB) as a measure
of the psychoacoustical critical bandwidth. It deviates
slightly from the bark scale, especially at low frequen-
cies (Fig. 4.4).

It should be noted, however, that the pitch strength of
a sinusoid decreases steadily as the frequency increases.
A much more distinct pitch perception, which is also re-
lated to the pitch of musical instruments and the pitch
of voiced speech elements, can be perceived for a peri-
odic, broad band sound. For such complex sounds, the
term pitch should primarily be used to characterize the
(perceived) fundamental frequency while tone height or
tonality refers to the psychophysical equivalence of fre-
quency and coincides with pitch only for sinusoids. The
perception of pitch results both from temporal cues (i. e.,
the periodicity information within each critical band)
primarily at low frequencies, and from spectral pitch
cues, i. e., the regular harmonic structure/line spectrum
of a periodic sound primarily dominating at high fre-
quencies. Several theories exist about the perception

and relative importance of temporal and spectral pitch
cues [4.6]. For the perception of the pitch frequency
range of normal speech with fundamental frequencies
between approximately 80 Hz and 500 Hz, however, pre-
dominantly temporal pitch cues are exploited by our ear.
In this range, the pitch JND amounts to approximately
1 Hz, i. e., better resolution occurs for the fundamental
frequency of a complex tone than for the audio frequency
of a single sinusoid at the fundamental frequency.

4.1.3 Temporal Analysis
and Modulation Perception

When perceiving complex sounds such as speech that
fluctuate in spectral contents across time, the ear can
roughly be modeled as a bank of critical-band wide
bandpass filters that transform the speech signal into
a number of narrow-band time signals at center fre-
quencies that are equally spaced across the bark scale.
Hence, the temporal analysis and resolution within each
of these frequency channels is of special importance
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Fig. 4.5 Model of the effective signal processing in the
auditory system (after [4.3])
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66 Part A Production, Perception, and Modeling of Speech

for the overall function of our auditory system. For the
within-channel analysis, the following phenomena are
relevant.

• For center frequencies below≈ 1000 Hz, the tempo-
ral fine structure of the bandpass channel is coded
in the auditory nerve and is therefore accessible
to the brain. Hence the signal’s phase can be ex-
ploited during the central processing stages, e.g. for
a comparison between different frequency bands to
produce a difference in perceived timbre and for
a comparison between ears to produce a difference
in perceived localization as the phase characteristic
is changed. The latter results from extracting the in-
teraural phase difference of a sound signal arriving
from a point in space with a certain travel time to
either ear (see later).• For center frequencies above 1 kHz, primarily the
envelope of the signal is extracted and analyzed.
This makes the ear comparatively phase-deaf above
1 kHz. This envelope extraction is due to the asym-
metry between depolarization and hyperpolarization
at the synapses between inner hair cells and the
auditory nerve as well as due to the temporal inte-
gration observed in auditory nerve fibers (Chap. 3).
In auditory models this can be modeled to a good
approximation by a half-wave rectifier followed by
a low-pass filter with a cut-off frequency of≈ 1 kHz.• The resulting envelope is subject to a compression
and adaptation stage that is required to map the
large dynamic range of auditory input signals to the
comparatively narrow dynamic range of the nervous
system. It is also necessary to set the operation point
of the respective further processing stages according
to some average value of the current input signal.
This compression and adaptation characteristic can
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Fig. 4.6a,b Schematic plot of a masked threshold (a) of a short
probe tone in the presence of (or following) a masking noise burst
that extends across a variable amount of time (b) (simultaneous and
forward masking)

either be modeled as a logarithmic compression in
combination with the temporal leaky integrator using
an effective auditory temporal integration window
or, alternatively, by a series of nonlinear adaptation
loops (Fig. 4.5).

Such an adaptation stage produces the temporal inte-
gration effect already outlined in Sect. 4.1.1, i. e., all
temporal energy belonging to the same acoustical object
is summed up within a time window with an effective
duration of up to 200 ms. In addition, temporal masking
is due to this integration or adaptation circuit. A short
probe signal (of an intensity higher than the threshold
intensity in quiet) will become inaudible in the presence
of a masking signal if the probe signal is presented either
before, during, or after the masker. Hence, the masker ex-
tends its masking property both back in time (backward
masking, extending to approximately 5 ms prior to the
onset of the masker), simultaneously with the probe sig-
nal (simultaneous masking, which becomes less efficient
if the masker duration is decreased below 200 ms) and
subsequent to the masker (forward masking, extending
up to 200 ms, Fig. 4.6).

Note that forward masking in speech sounds can
prevent detection of soft consonant speech components
that are preceded by high-energy vocalic parts of speech.

An important further property of temporal analysis
in the auditory system is the perception and analysis
of the incoming temporal envelope fluctuations. While
slow amplitude modulations (modulation frequencies
below approximately 4 Hz) are primarily perceived as
temporal fluctuations, amplitude modulations between
approximately 8 Hz and 16 Hz produce a rolling, R-
type roughness percept. Modulations between 16 Hz
and approximately 80 Hz are perceived as roughness
of a sound. Higher modulation frequencies may be
perceived as spectral coloration of the input signal with-
out being resolved in the time domain by the auditory
system.

The auditory processing of sounds that differ in their
composition of modulation frequencies is best described
by the modulation spectrum concept which can be
modeled by a modulation filter bank (Fig. 4.5). The sep-
aration of different modulation frequencies into separate
modulation frequency channels (similar to separating the
audio frequencies into different center frequency chan-
nels in the inner ear) allows the brain to group together
sound elements that are generated from the same sound
source even if they interfere with sound elements from
a different sound source at the same center frequency.
Natural objects are usually characterized by a common
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modulation of the emitted frequency components as
a function of time. By grouping those sound compo-
nents that exhibit the same modulation spectrum across
different center frequencies, the brain is able to recom-
bine all the sound components of a certain object that
are spread out across different audio frequencies. This
property of the auditory system is advantageous in per-
forming a figure-background analysis (such as required
for the famous cocktail-party phenomenon, i. e., a talker
can be understood even in the background of a lively
party with several interfering voices).

A way of quantitatively measuring the auditory
grouping effect is the so-called co-modulation masking
release (CMR) depicted in Fig. 4.7.

A probe tone has to be detected against a narrow-
band, fluctuating noise at the same frequency (on-
frequency masker). If the adjacent frequency bands are
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Fig. 4.7a–d Schematic plot of co-modulation masking
release (after [4.7]). (a) Denotes the temporal-spectral dif-
ference in the unmodulated condition (flanking bands are
modulated in an uncorrelated way) whereas (b) shows the
pattern for co-modulated sidebands. In the latter case, the
detection of a sinusoid at the on-frequency masking band
is facilitated. (c), (d) Shows typical psychophysical data
for a band-widening experiment with unmodulated (open
symbols) and co-modulated masker (filled symbols). A con-
siderable difference in masked threshold for the sinusoidal
signal is observed

stimulated with uncorrelated noise samples, the thresh-
old of the tone in the modulated noise is comparatively
high. However, if the masking noise in the adjacent
bands fluctuates with the same amplitude modulations
across time (this is usually done by duplicating the
on-frequency masker and shifting its center frequency
appropriately), the probe tone becomes better audible
and a distinct threshold shift occurs. This is called
co-modulation masking release. It is mainly due to
within-channel cues, i. e., the modulation minima be-
come more distinct with increasing noise bandwidth and
hence allow for a better detection of the continuous probe
tone at a certain instant of time. It is also due to some
across-channel cues and cognitive processing, i. e., the
co-modulated components at different frequencies are
grouped to form a single auditory object which is distinct
from the probe tone. Since speech is usually character-
ized by a high degree of co-modulation across different
frequencies for a single speaker, the co-modulation
masking release helps to detect any irregularity which
is not co-modulated with the remainder of the speech
signal. Such detectable irregularities may reflect, e.g.,
any speech pathology, a second, faint acoustical object
or even speech processing artefacts. The CMR effect is
most prominent for amplitude modulation frequencies
between approximately 4 Hz and 50 Hz [4.7], which is
a region where most of the modulation spectrum energy
of speech is located. Hence this effect is very relevant
for speech perception.

4.1.4 Binaural Hearing

Binaural processing, i. e., the central interaction between
signal information entering the right and the left ear
contributes significantly to

• suppression of subjectively perceived reverberation
in closed rooms,• localization of sound sources in space,• suppression of unwanted sound sources in real
acoustical environments.

To perform these tasks, our brain can utilize

• interaural time (or phase) cues, i. e., the central
auditory system extracts the travel time difference
between the left and right ear,• interaural intensity difference, i. e., our brain can
utilize the head-shadow effect: sound arriving at the
ear pointing towards the sound source in space is not
attenuated, while the sound arriving at the opposite
ear is attenuated,
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68 Part A Production, Perception, and Modeling of Speech

• spectral changes (coloration) of the sound reaching
the inner ear due to interference and scattering ef-
fects if the direction of the incoming sound varies
(Fig. 4.8).

Normal listeners can localize sound sources with a pre-
cision of approximately 1◦ if sound arrives at the head
from the front. This relates to a just noticeable difference
(JND) in interaural time difference as small as 10 μs and
an interaural level difference JND as low as 1 dB. This
remarkable high resolution is due to massive parallel
processing at the brain-stem level where the first neu-
ral comparison occurs between activation from the right
and left ear, respectively.

The binaural performance of our auditory system
is extremely challenged in complex acoustical every-
day situations characterized by several nonstationary
sound sources, reverberation, and a continuous change
of the interaural cues due to head movements in space.
For perceiving, localizing, and understanding speech
in such situations, the following phenomena are rele-
vant:

• Spectral integration of localization cues. Continu-
ous narrow-band signals are hard to localize because
their respective interaural time and level difference
achieved at the ear level are ambiguous: they can
result from any direction within a cone of confu-
sion, i. e., a surface that includes all spatial angles
centered around the interaural axis that yield the
same path difference between right and left ear. For
a broadband signal, the comparison across different
frequency channels helps to resolve this ambiguity.
Also, the onset cues in strongly fluctuating, broad-
band sounds contain more reliable localization cues
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Fig. 4.8 Schematics of interaural cues due to interference
and scattering effects that can be utilized by the auditory
system

than the running cues in the steady-state situation for
continuous sounds.• Precedence effect or the law of the first wavefront.
The direct sound (first wavefront) of a sound source
hitting the receiver’s ears determines the subjec-
tive localization percept. Conversely, any subsequent
wavefront (that is due to reflections from surround-
ing structures in a real acoustical environment and
hence carries the wrong directional information) is
not used to create the subjective localization impres-
sion. Even though reflections arriving approximately
5–20 ms after the first wavefront are perceivable
and their energetic contribution to the total stimu-
lus percept is accessible to the brain, their respective
directional information seems to be suppressed. This
effect is utilized in some public address loudspeaker
systems that deliberately delay the amplified sound
in order for the small, unamplified direct sound to
reach the listener prior to the amplified sound with
the wrong directional information.

4.1.5 Binaural Noise Suppression

The localization mechanisms described above are not
only capable of separating the perceived localization of
several simultaneously active acoustical objects. They
are also a prerequisite for binaural noise suppression,
i. e., an enhancement of the desired signal and a suppres-
sion of undesired parts of the input signals that originate
from a different spatial direction. This enhancement is
also denoted as binaural release from masking. It can be
demonstrated by a tone-in-noise detection experiment
where in the reference condition tone and noise are the
same at both ears (i. e., exhibit the phase difference 0).
The detection threshold can be compared to the thresh-
old using the same noise, but inverting the signal on one
side (i. e., a phase difference of π for the signal), which
yields a higher detectability. This difference in thresh-
old is denoted as binaural masking level difference and
amounts up to 20 dB for short probe tones at frequencies
below 1000 Hz.

For speech signals, the binaural unmasking can be
measured by comparing the speech reception thresh-
old (i. e., the signal-to-noise ratio required to understand
50% of the presented speech material, see later) for dif-
ferent spatial arrangements of target speech sound and
interfering noise: in the reference condition, speech and
noise are presented directly in front of the subject, while
in the test condition speech comes from the front, but
the interfering sound source from the side. The gain
in speech reception threshold is called the intelligibil-
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Fig. 4.9 Intelligibility level difference (ILD, filled circles) and binaural intelligibility level difference (BILD, filled
squares) averaged across a group of normal and impaired listeners that differ in the shape of their respective audiogram
(high-frequency hearing loss abbreviated as HF-hearing loss). The difference in speech reception threshold across both
situations plotted on the left-hand side is plotted as average value and intersubject standard deviation

ity level difference. (The abbreviation ILD is used for
this difference, but is also used for interaural level differ-
ence.) Intelligibility level difference is due to a monaural
effect (i. e., improved signal-to-noise ratio at the ear op-
posite to the interfering sound source) and a binaural
effect. To separate this latter effect, another threshold in
the same spatial situation is used where the worse ear is
plugged and the speech reception threshold is obtained
using only the better ear, i. e., the ear with the better
signal-to-noise ratio. The difference in speech reception
threshold (SRT= between the latter two situations (i. e.,
the difference due to adding the worse ear) is a purely
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Fig. 4.10 Sketch of a multichannel
binaural noise canceling model de-
scribing the binaural release from
masking for speech in complex
environments (after [4.8])

binaural effect, called the binaural intelligibility level
difference (BILD). Figure 4.9 gives an example of the
ILD and BILD at an incidence angle for the interfer-
ing noise of 90◦ in an anechoic condition for different
groups of listeners that vary in their hearing loss.

A basic model which describes binaural unmasking
phenomena quite well for speech signals in complex
acoustical environments is a multichannel equalization
and cancelation (EC) model such as that depicted in
Fig. 4.10 [4.8].

Within each frequency band, an equalization and
cancelation mechanism [4.9] is used that first delays
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Fig. 4.11 SRT data (filled symbols) and predictions for three dif-
ferent acoustical conditions and normal listeners. The triangles
denote model predictions without introducing appropriate process-
ing errors, whereas the open symbols denote predictions employing
internal processing errors, that have been taken from average values
in other psychoacoustical tasks (after [4.8])

and amplifies one or both input channels to yield an
approximate match (equalization) of the composite in-
put signal within each frequency band. In a second,
the cancelation stage, the signals from both respec-
tive sides of the head are (imperfectly) subtracted from

each other. Hence, if the masker (after the equaliza-
tion step) is approximately the same in both ears, the
cancelation step will eliminate the masker with the ex-
ception of some remaining error signal. Conversely, the
desired signal, which differs in interaural phase and/or
intensity relation from the masker, should stay nearly
unchanged, yielding an improvement in signal-to-noise
ratio. Using an appropriate numerical optimization strat-
egy to fit the respective equalization parameters across
frequency, the model depicted in Fig. 4.11 can predict
human performance quite well even under acoustically
difficult situations, such as, e.g., several interfering
talkers within a reverberant environment. Note that
this model effectively corresponds to an adaptive spa-
tial beam former, i. e., a frequency-dependent optimum
linear combination of the two sensor inputs to both
ears that yields a directivity optimized to improve the
signal-to-noise ratio for a given target direction and
interfering background noise. If the model output is
used to predict speech intelligibility with an appropri-
ate (monaural) speech intelligibility prediction method
[such as, e.g., the speech intelligibility index (SII),
see later], the binaural advantage for speech intelligi-
bility in rooms can be predicted quite well (Fig. 4.11
from [4.8]).

Note that in each frequency band only one EC cir-
cuit is employed in the model. This reflects the empirical
evidence that the brain is only able to cancel out one
direction for each frequency band at each instant of
time. Hence, the processing strategy adopted will use
appropriate compromises for any given real situation.

4.2 Acoustical Information Required for Speech Perception

4.2.1 Speech Intelligibility
and Speech Reception Threshold (SRT)

Speech intelligibility (SI) is important for various fields
of research, engineering, and diagnostics for quantify-
ing very different phenomena such as the quality of
recordings, communication and playback devices, the
reverberation of auditoria, characteristics of hearing im-
pairment, benefit using hearing aids, or combinations of
these topics. The most useful way to define SI is: speech
intelligibility SI is the proportion of speech items (e.g.,
syllables, words, or sentences) correctly repeated by (a)
listener(s) for a given speech intelligibility test. This op-
erative definition makes SI directly and quantitatively
measurable.

The intelligibility function (Fig. 4.12) describes the
listener’s speech intelligibility SI as a function of speech
level L which may either refer to the sound pressure level
(measured in dB) of the speech signal or to the speech-
to-noise ratio (SNR) (measured in dB), if the test is
performed with interfering noise.

In most cases it is possible to fit the logistic function
SI (L) to the empirical data

SI(L)= 1

A

⎛
⎝1+SImax

A−1

1+ exp
(
− L−Lmid

s

)
⎞
⎠ , (4.4)

with Lmid: speech level of the midpoint of the intelligi-
bility function; s: slope parameter, the slope at Lmid is
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Fig. 4.12 Typical example of SI function (solid line) for
word intelligibility test (closed response format with five
response alternatives). The dashed line denotes Lmid. The
dotted lines denote the lower limit (1/A) and the asymptotic
maximum SIasymp of the SI function. Parameters: Lmid =
−3.5 dB SNR, SImax = 0.9(SIasymp = 0.92), A= 5, slope=
0.05/dB (s = 3.6 dB)

given by SImax(A−1)
4As ; SImax: parameter for maximum in-

telligibility which can be smaller than 1 in some cases
(e.g., distorted speech signals or listeners with hearing
impairment). The asymptotic maximum of SI is given by
SImax+ (1−SImax)/A. A is the number of response al-
ternatives (e.g., A= 10 when the listener should respond
in a closed response format for instance using digits be-
tween ‘0’ and ‘9’). In SI tests with open response format,
like word tests without limiting the number of response
alternatives, A is assumed to be infinite, that means

SI= SImax
1

1+ exp
(
− L−Lmid

s

) and

slope= SImax

4s
. (4.5)

The primary interest of many applications is the speech
reception threshold (SRT) which denotes the speech
level (measured in dB), which belongs to a given in-
telligibility (e.g., SI= 0.5 or 0.7).

The accuracy of SI measurements is given by the
binomial distribution. Consequently, the standard error
SE(SI) of an SI estimate based on n items (e.g., words)
is given by

SE(SI)=
√

SI(1−SI)

n
. (4.6)

A further increase of this standard error is caused by
the fact that SI tests consist of several items (e.g., 50
words) which unavoidably differ in SI. Therefore, SI
tests should be constructed in a way that the SI of all
items is as homogeneous as possible.

To a first approximation, the standard error of the
SRT is equal to SE(SISRT) (the standard error of the
SI estimate at the SRT) divided by the slope of the
intelligibility function at the SRT. Thus

SE(SRT)= SE(SISRT)

slopeSRT
. (4.7)

4.2.2 Measurement Methods

Speech Materials
A speech material (i. e., a set of speech items like words
or sentences) is suitable for SI tests when certain require-
ments are fulfilled: the different speech items have to be
homogeneous in SI to yield high measurement accuracy
and reproducibility in a limited measuring time, and the
distribution of phonemes should be representative of the
language being studied. Only speech materials that have
been optimized properly by a large number of evaluation
measurements can fulfill these requirements.

A large number of SI tests using different materials
are available for different languages. An overview of
American SI tests can be found in Penrod [4.10]. There
are different formats, i. e., nonsense syllables, single
words, and sentences. Sentences best represent a realistic
communication situation. Nonsense syllables and words
allow assessing of confusion matrices and analyzing
transmission of information. Furthermore, the intelli-
gibility functions of most sentence tests [4.11–16] show
slopes between 0.15 and 0.25 per dB, which are consid-
erably steeper than the values obtained with nonsense
syllables or single-word tests.

Since the standard deviation of SRT estimates is
inversely proportional to the slope of the intelligibility
function (see Sect. 4.2.1), these sentence tests are better
suited for efficient and reliable SRT measurements than
single-word tests.

Presentation Modes
Signals can be presented either via loudspeakers (free
field condition) or via headphones. The free field
condition is more natural. Drawbacks are a larger experi-
mental effort and difficulties in calibration. Especially
in spatial speech/noise situations (see Sect. 4.2.3), small
movements of the listener’s head may influence the
result of the SI measurement.
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The advantages of presentation via headphones are:
very good reproducibility for each individual listener,
smaller experimental effort, and spatial speech/noise
conditions can easily be realized using virtual acoustics.
Drawbacks are the individual calibration is complicated
because headphones may produce different sound pres-
sures in different ears. Measurements with hearing aids
are not possible.

Adaptive procedures can be used to concentrate pre-
sentation levels near the SRT, which yields highest
efficiency for SRT estimates. In sentence tests, each
word can be scored independently, which allows one
to design adaptive procedures which converge more
efficiently than adaptive procedures usually used in
psychoacoustics [4.17].

4.2.3 Factors Influencing Speech
Intelligibility

Measuring Method
The various speech materials mentioned above generate
different results. Therefore, only standardized speech
materials or speech materials with well known reference
intelligibility functions should be used.

Noise and Room Acoustics
Noise and reverberation reduce SI. Therefore, if SI in
silence is to be measured, environmental noise and re-
verberation have to be minimized (e.g., using sound
insulated cabins and damping headphones). On the other
hand, SI measurements can be used to investigate the
influence of different noises and room acoustics on
SI, which is important for the so called cocktail-party
phenomenon (see later).

Cocktail-Party Phenomenon
The human auditory system has very impressive abil-
ities in understanding a target talker even if maskers,
i. e., competitive sound sources like different talkers,
are present at the same time. An interesting review of
research on this so-called cocktail-party phenomenon
can be found in Bronkhorst [4.18]. The SI in these
multi-talker conditions is influenced by many masker
properties such as sound pressure level, frequency spec-
trum, amplitude modulations, spatial direction, and the
number of maskers. The spatial configuration of target
speaker and masker plays a very important role. Binaural
hearing (hearing with both ears) produces a very effec-
tive release from masking (improvement of the SRT) of
up to 12 dB compared to monaural hearing (hearing with
one ear) [4.18].

Hearing Impairment
An introduction to SI in clinical audiology can be found
in Penrod [4.10]. Hearing impairment can lead to an in-
crease of the SRT, a decrease of the maximum reachable
intelligibility SIasymp and a flatter slope of the intelligi-
bility function. The most difficult situations for hearing
impaired listeners are noisy environments with many
interfering sound sources (cocktail-party situation).
Therefore, SI tests in noise are important diagnostic
tools for assessing the daily-life consequences of a hear-
ing impairment and the benefit of a hearing aid. SI plays
a very important role for the research on and the fitting
of hearing aids.

4.2.4 Prediction Methods

Articulation Index (AI),
Speech Intelligibility Index (SII),
and Speech Transmission Index (STI)

The most common methods for the prediction of speech
intelligibility are the articulation index (AI) [4.19–
21] which was renamed the speech intelligibility in-
dex (SII) [4.22], and the speech transmission index
(STI) [4.23, 24] [Table 4.1]. The strength of these mo-
dels is the large amount of empirical knowledge they
are based on. All of these models assume that speech is
coded by several frequency channels that carry indepen-
dent information. This can be expressed by

AI=
∑

i

AIi , (4.8)

with AI denoting the cumulative articulation index of all
channels and AIi denoting the articulation index of the
single channels (including a weighting of the respective
channel).

AI and SII are derived from the speech signal by
calculating the signal to noise ratio SNR in the different
frequency channels:

AI=
∑

i

Wi (SNRi +15)

30
, (4.9)

with Wi denoting a frequency channel weighting factor
and SNRi denoting the signal-to-noise ratio in channel
i. Wi depends on the speech material used and takes into
account that high frequencies are more important for
the recognition of consonants than for the recognition of
meaningful sentences. The main differences between the
different versions of AI and SII are the way they include
nonlinearities like distortion, masking, and broadening
of frequency bands.
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The speech transmission index (STI) uses the mod-
ulation transfer function instead of the SNR and is
especially successful for predicting SI in auditoria and
rooms, because it explicitly takes into account the flat-
tening of the information-carrying speech envelopes due
to reverberation.

The transformation of AI, SII, or STI to speech
intelligibility requires a nonlinear transformation that
has to be fitted to empirical data. The transforma-
tion depends on the kind of speech material used
and is usually steeper at its steepest point for mater-
ials with context (e.g., sentences) compared to single
words.

Statistical Methods
The assumption of independent information in differ-
ent frequency channels does not hold in all situations
because synergetic as well as redundant interactions

Table 4.1 Examples of methods for the prediction of speech intelligibility (SI)

Method Signal parameters Comments

Articulation index, AI
[4.19]

Levels and frequency spectra of
speech and noise, kind of speech
material

Macroscopic model that describes
the influence of the frequency con-
tent of speech on intelligibility

Articulation index, AI
[4.20]

Levels and frequency spectra of
speech and noise, kind of speech
material

More complex than French and
Steinberg version, describes more
nonlinear effects, seldom used

Articulation index, AI [4.21] Levels and frequency spectra of
speech and noise

Simplified version based on
[4.19], not in use anymore

Speech intelligibility index, SII
[4.22]

Levels and frequency spectra of
speech and noise, kind of speech
material, hearing loss

Revision of ANSI S3.5-1969,
includes spread of masking, stan-
dard speech spectra, relative im-
portance of frequency bands

Speech transmission index, STI
[4.24]

Modulation transfer function Predicts the change of intelligibil-
ity caused by a speech transmis-
sion system (e.g., an auditorium)
based on the modulation transfer
function of the system

Speech recognition sensitivity
model, SRS [4.25, 26]

Levels and frequency spectra of
speech and noise, number of re-
sponse alternatives

Alternative to SII, handles fre-
quency band interactions and is
better suited for unsteady fre-
quency spectra

Holube and Kollmeier [4.27] Speech and noise signals, hearing
loss

Microscopic modeling of signal
processing of auditory system
combined with simple automatic
speech recognition

between different channels occur. The speech recogni-
tion sensitivity model [4.25,26] takes these interactions
into account using statistical decision theory in order to
model the linguistic entropy of speech.

Functional Method
These methods are based on relatively rough pa-
rameterizations of speech (i. e., long-term frequency
spectrum and sometimes modulation transfer func-
tion). The method (Table 4.1) proposed by Holube
and Kollmeier [4.27], however, is based on physio-
logical and psychoacoustical data and is a combination
of a functional model of the human auditory system
(Sect. 4.1) and a simple automatic speech recognition
system (Sect. 4.3). A drawback of this approach is that
there is still a large gap between recognition rates of
humans and automatic speech recognition systems (for
a review see [4.28], Sect. 4.3).
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4.3 Speech Feature Perception

The information-theoretic approach to describing
speech perception assumes that human speech recog-
nition is based on the combined, parallel recognition of
several acoustical cues that are characteristic for certain
speech elements. While a phoneme represents the small-
est unit of speech information, its acoustic realization
(denoted as phone) can be quite variable in its acoustical
properties. Such a phone is produced in order to de-
liver a number of acoustical speech cues to the listener
who should be able to deduce from it the underlying
phoneme. Each speech cue represents one feature value
of more- or less-complex speech features like voicing,
frication, or duration, that are linked to phonetics and
to perception. These speech feature values are decoded
by the listener independently of each other and are used
for recognizing the underlying speech element (such as,
e.g., the represented phoneme). Speech perception can
therefore be interpreted as reception of certain values of
several speech features in parallel and in discrete time
steps.

Each phoneme is characterized by a unique com-
bination of the underlying speech feature values. The
articulation of words and sentences produces (in the
sense of information theory) a discrete stream of infor-
mation via a number of simultaneously active channels
(Fig. 4.13).

The spoken realization of a given phoneme causes
a certain speech feature to assume one out of several dif-
ferent possible values. For example, the speech feature
voicing can assume the value one (i. e., voiced sound) or
the value zero (unvoiced speech sound). Each of these
features is transmitted via its own, specific transmission
channel to the speech recognition system of the listener.
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Fig. 4.13 Schematic representation
of speech recognition using speech
features. Each speech sound is char-
acterized by a combination of speech
features that are modeled to be trans-
mitted independently of each other
by specialized (noisy) transmission
channels

The channel consists of the acoustical transmission
channel to the listener’s ear and the subsequent decoding
of the signal in the central auditory system of the receiver
(which can be hampered by a hearing impairment or
a speech pathology). The listener recognizes the actually
assumed values of certain speech features and combines
these features to yield the recognized phoneme.

If p(i) gives the probability (or relative frequency)
that a specific speech feature assumes the value i and
p′( j) gives the probability (or relative frequency, re-
spectively) that the receiver receives the feature value
j, and p(i, j) gives the joint probability that the value
j is recognized if the value i is transmitted, then the
so-called transinformation T is defined as

T =−
N∑

i=1

N∑
j=1

p(i, j) log2

(
p(i)p′( j)

p(i, j)

)
. (4.10)

The transinformation T assumes its maximal value for
perfect transmission of the input values to the output
values, i. e., if p(i, j) takes the diagonal form or any
permutation thereof. T equals 0 if the distribution of
received feature values is independent of the distribu-
tion of input feature values, i. e., if p(i, j)= p(i)p′( j).
The maximum value of T for perfect transmission (i. e.,
p(i, j)= p(i)= p′( j)) equals the amount of informa-
tion (in bits) included in the distribution of input feature
values H , i. e.,

H =
N∑

i=1

p(i)H(i)=−
N∑

i=1

p(i) log2[p(i)] . (4.11)

In order to normalize T to give values between 0 and
1, the so-called transinformation index (TI) is often
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used, i. e.,

TI= T/H . (4.12)

For speech perception experiments, the distribution
p(i, j) can be approximated by a confusion matrix, i. e.,
a matrix denoting the frequency of a recognized speech
element j for all different presented speech elements i.
This confusion matrix can be condensed to a confusion
matrix of each specific speech feature if for each speech
element the corresponding value of the respective feature
is assigned. For example, a 20 × 20 confusion matrix of
consonants can be reduced to 2 × 2 matrix of the feature
voicing if for each consonant the feature value voiced or
unvoiced is given. The transinformation analysis of this
feature-specific confusion matrix therefore allows ex-
tracting the transmission of all respective speech features
separately and hence can be used to characterize a certain
speech information transmission channel. Note however,
that such an analysis requires a sufficiently high num-
ber of entries in the confusion matrix to appropriately
sample p(i, j), which requires a large data set. Also,
it is not easy and straightforward to assign appropriate
speech features to all of the presented and recognized
speech sounds that will allow an adequate analysis of
the acoustical deficiencies in the transmission process.
From the multitude of different features and feature sets
that have been used in the literature to describe both
human speech production and speech perception, only
a very limited set of the most prominent features can be
discussed here ([4.29], for a more-complete coverage).

4.3.1 Formant Features

Vowels are primarily discriminated by their formant
structure, i. e., the resonance frequencies of the vocal
tract when shaping the vowels. For stationary vowels, the
relation between the first and second formant frequen-
cies (F1 and F2), respectively, and the perceived vowel
is quite well established (Fig. 4.14 and the introduction).

The classical theory of vowel perception has the ad-
vantage of being linked to the physical process of speech
production (i. e., the formant frequencies are closely
linked to the position and elevation of the tongue in
the vocal tract). However, modern theories of speech
perception no longer assume that vowel identification is
based solely on the position of the formant frequencies,
for the following reasons.

• For short vowels and for vocalic segments of run-
ning speech the perceived vowel often differs from
the expected spectral shapes, which are based on
long, isolated vowels. This indicates that the map-
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Fig. 4.14 Schematic plot of the perceived vowels as a func-
tion of F1 and F2 in the vowel triangle (sometimes plotted
as a quadrangle) for stationary vowels. Note that the vowel
boundaries overlap and that for short vowels and for seg-
ments of vowels in real speech these boundaries can vary
significantly

ping between formants and perceived vowels shows
different boundaries and different regions of overlap
depending on the respective speech context.• The spectral shape of speech in real-life environ-
ments varies considerably due to large spectral vari-
ations of the room transfer function, and due to the
presence of reverberation and background noise. The
pure detection and identification of spectral peaks
would yield a much less robust perception of vowels
than can actually be observed in human listeners.• Vowel discrimination and speech understanding is
even possible under extreme spectral manipulations,
such as, e.g., flat spectrum speech [4.30] and slit-
filtered speech (i. e., listening to speech through very
few spectral slits, [4.31]).

These findings indicate that speech perception is at least
partially based on temporal cues rather than purely on the
detection of spectral peaks or formants. Modern speech
perception theories therefore assume that our brain mon-
itors the temporal intensity pattern in each frequency
band characterized by a critical band filter (Sect. 4.1).
By comparing these temporal patterns across a few cen-
ter frequencies that are not too closely spaced, a reliable
estimate of the presented vowel is possible. Such princi-
ples are both implemented in state-of-the-art perception
models (Sect. 4.1) and in preprocessing/feature extrac-
tion strategies for automatic speech recognition systems
(Sect. 4.2.3 and the chapters in part E).
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4.3.2 Phonetic and Distinctive Feature Sets

The classical theory of consonant perception assumes
that several phonetically and acoustically defined fea-
tures are used by the auditory system to decode the
underlying, presented consonant. A distinctive feature
set combines all binary features that characterize all
available consonants in a unique way [4.32]. Both articu-
latory and (to a lesser degree) acoustical features can be
employed to construct such a feature set (see Table 4.2
for an example of a feature set and resulting confusion
matrices).

These feature sets where extended and used by
Miller and Nicely [4.33], by Wang and Bilger [4.34]
and subsequently by a large number of researchers
to characterize the listeners’ ability to discriminate
across consonants using, e.g., transinformation analysis
(Sect. 4.2.4). Using this approach, the amount of infor-

Table 4.2 Example for a consonant feature set and the
construction of confusion matrices for speech-in-noise
recognition data with normal-hearing listeners. Top right
panel: phonetic feature values for eleven consonants. Voic-
ing is a binary feature (with feature values 0 and 1), while
manner and place are ternary features. Middle: matrix of
confusion for consonants, obtained from human listening
tests, where noisy speech was presented at an SNR of
-10 dB. Matrix element (i, j) denotes how often the conso-
nant in row i was confused with the consonant in column j.
Bottom panels: confusion matrices for the phonetic features
place and voicing, derived from the matrix of confusion for
consonants

p t k b d g s f v n m

p 379 20 131 45 7 31 49 46 4 5

t 3 658 16 33 1 1

k 42 14 484 10 8 117 1 16 12 6

b 58 4 51 260 35 88 18 143 16 25

d 5 28 7 21 424 93 1 3 19 49 6

g 11 5 44 43 27 449 9 73 18 7

s 2 702 3

f 23 3 4 88 556 38

v 19 7 16 78 22 43 7 51 398 9 30

n 1 5 3 13 51 12 2 23 364 78

m 7 1 4 43 20 25 8 62 95 346

Anterior Medail Posterior

Anterior 2691 335 392
Medail 179 2317 131
Posterior 223 79 1094

mation carried by the specific feature that the receiving
side was able to use can be characterized quite well. For
example, the confusion matrix listed in Table 4.2 yields
a total information transmission index of 0.53 with the
features voicing assumed to be 0.53 and place 0.46.

However, these phonetic features show only a very
weak link to the auditory features actually used by
human listeners. From the view point of modern audi-
tory models that assume multichannel temporal energy
recording and analysis, most of the phonetic features
listed above can be regarded as special prototypes of
temporal-spectral patterns that are used by our cognitive
system to perform a pattern match between actually pre-
sented speech and a stored speech reference database in
our brain. Hence, they represent some complex combi-
nation of basic auditory perception features that might
be defined psychoacoustically or physiologically rather
than phonetically.

Voicing Manner Place

p 0 0 0

t 0 0 1

k 0 0 2

b 1 0 0

d 1 0 1

g 1 0 2

s 0 1 1

f 0 1 0

v 1 1 0

n 1 2 2

m 1 2 1

Voiced Unvoiced

Voiced 3508 375

Unvoiced 367 3191
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Fig. 4.15 Schematic diagram of
a model of the effective auditory
processing using a front end to trans-
form the incoming speech signal into
and internal representation and a sub-
sequent back end, ideal recognition
stage which is only limited by the
internal noise

4.3.3 Internal Representation Approach
and Higher-Order
Temporal-Spectral Features

The internal representation approach of modeling
speech reception assumes that the speech signal is
transformed by our auditory system with some non-
linear, parallel processing operations into an internal
representation. This representation is used as the in-
put for a central, cognitive recognition unit which can
be assumed to operate as an ideal observer, i. e., it
performs a pattern match between the incoming inter-
nal representation and the multitude of stored internal
representations. The accuracy of this recognition pro-
cess is limited by the external variability of the speech
items to be recognized, i. e., by their deviation from
any of the stored internal templates. It is also limited
by the internal noise that blurs the received internal
representation due to neural noise and other physiolog-
ical and psychological factors. The amount of internal
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Fig. 4.16a–c Auditory spectrogram representation of the German word Stall. It can be represented by a spectrogram
(a), a bark spectrogram on a log-loudness scale (b) or as a contrast-enhanced version using nonlinear feedback loops
(after [4.3, 35]) (c)

noise can be estimated quite well from psychoacoustical
experiments.

Such an internal representation model puts most
of the peculiarities and limitations of the speech
recognition process into the nonlinear, destructive trans-
formation process from the acoustical speech waveform
into its internal representation, assuming that all trans-
formation steps are due to physiological processes that
can be characterized completely physiologically or by
psychoacoustical means (Fig. 4.15).

Several concepts and models to describe such an
internal representation have been developed so far. Some
of the basic ideas are as follows.

1. Auditory spectrogram: The basic internal represen-
tation assumes that the speech sound is separated
into a number of frequency bands (distributed evenly
across a psychoacoustically based frequency scale
like the bark or ERB scale) and that the compressed
frequency-channel-specific intensity is represented
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over time. The compression can either be a loga-
rithmic compression or a loudness-derived power
law compression that is also required to represent
human intensity resolution and loudness mapping.
The temporal representation can also include some
temporal contrast enhancement and sluggishness in
order to represent forward and backward masking
and temporal integration (Sect. 4.1). An example of
such a representation is given in Fig. 4.16.

Note that speech intelligibility in noise can be mod-
eled quite well with such an approach [4.27]. In addition,
such a transformation into the internal representation
can be implemented as a robust front end for automatic
speech recognition (e.g., [4.35]). Finally, it can be used
to predict any perceived deviations of the (coded) speech
from the original speech [4.36].

2. Modulation spectrogram: one important property of
the internal representation is the temporal analy-
sis within each audio frequency band using the
modulation filter bank concept. Temporal envelope
fluctuations in each audio frequency channel are
spectrally analyzed to yield the modulation spec-
trum in each frequency band, using either a fixed
set of modulation filters (modulation filter bank) or
a complete spectral analysis (modulation spectrum).
This representation yields the so-called amplitude
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Fig. 4.17 Amplitude modulation spectrogram of a vowel I (fundamental frequency approx. 110 Hz) in comparison to
a modulation spectrogram of speech-simulating noise. The modulation spectrum in each audio frequency band is displayed
as color (or greyscale, respectively) in the two-dimensional plane given by audio center frequency versus modulation
frequency

modulation spectrogram for each instant of time,
i. e., a two-dimensional representation of modu-
lation frequency across center audio frequencies
(Fig. 4.17).

The physiological motivation for this analysis is
the finding of amplitude modulation sensitivity in
the auditory brain:adjacent cells are tuned to differ-
ent modulation frequencies. Their arrangement seems
to yield a perpendicular representation of modulation
frequencies across center frequencies [4.37]. In addi-
tion, psychoacoustical findings of modulation sensitivity
can best be described by a set of modulation filter
banks [4.3]. The advantage of the modulation spectro-
gram is that the additional dimension of modulation
frequency allows separation of acoustical objects that
occupy the same center frequency channel, but are mod-
ulated at different rates (considering either the syllabic
rate at low modulation frequencies or temporal pitch
at higher modulation frequencies). Such a more-refined
model of internal representation has been used to pre-
dict psychoacoustical effects [4.3] and was also used in
automatic speech recognition [4.38].

3. Temporal/spectral ripple or Gabor feature approach:
A generalization of the modulation frequency fea-
ture detectors in the temporal domain outlined above
also considers the spectral analysis of ripples in
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Fig. 4.18 Sample representation of a Gabor feature that detects a certain speech feature. The two-dimensional Gabor
feature (lower left panel) that extends both in the time and frequency domain is cross-correlated with the mel spectrogram
(upper-left panel) to yield the temporal and spatial position of a best match (middle panel). In each audio frequency band,
the time-dependent output of the cross correlation is used as the input feature to an automatic speech recognizer [4.38]

the frequency domain as well as a ripple frequency
analysis for combined temporal and spectral mod-
ulations. Such a temporal-spectral ripple analysis
is motivated by physiological findings of the au-
ditory receptive fields in ferrets [4.39] as well as
psychoacoustical findings by Kaernbach [4.40] who

demonstrated a sensitivity towards combinations of
spectral variations and temporal variations. An ele-
gant way to formalize the sensitivity to joint temporal
and spectral energy variations is the Gabor feature
concept [4.38] that considers features with a limited
spectro-temporal extent tuned to a certain combina-
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Table 4.3 Recognition rates (in percent correct) for human speech recognition (HSR) at a signal-to-noise ratio (SNR) of
−10 dB, compared to automatic speech recognition (ASR) accuracies at several signal-to-noise ratios. The recognition
task for ASR and for human listeners was to classify the middle phoneme in simple nonsense words, which were
combinations of either consonant–vowel–consonant or vowel–consonant–vowel. The average rates are broken down into
consonant and vowel recognition. At +10 dB SNR, ASR reaches an overall performance that is comparable to HSR at
−10 dB SNR. If the same SNR of −10 dB is employed for ASR, error rates are almost 50% higher than for HSR

Condition Average Consonants Vowels

HSR −10 dB 74.5 67.7 80.5

ASR

clean 80.4 85.2 76.2

15 dB 76.1 77.7 74.6

10 dB 74.6 75.6 73.7

5 dB 69.8 69.5 70.0

0 dB 59.2 55.4 62.5

−5 dB 49.8 41.0 57.5

−10 dB 28.4 20.8 35.0

tion of temporal modulation frequency and spectral
ripple frequency (Figure 4.18).

The advantage of such a second-order receptive
field (i. e., the sensitivity to a certain combination of
a spectral and a temporal cue) is the ability to detect spe-
cific spectro-temporal structures, e.g., formant glides or
changes of fundamental frequency. It can also be con-
sidered as a generalization of the concepts outlined in
this section. Even though this approach has successfully
been implemented to improve the robustness of auto-
matic speech recognizers [4.38], it has not yet been used
to model human speech perception.

4.3.4 Man–Machine Comparison

Despite enormous technical advances in recent years,
automatic speech recognition (ASR) still suffers from
a lack of performance compared to human speech recog-
nition (HSR), which prevents this technology from being
widely used. Recognition accuracies of machines drop
dramatically in acoustically adverse conditions, i. e., in
the presence of additive or convolutive noise, which
clearly demonstrates the lack of robustness. For com-
plex tasks such as the recognition of spontaneous speech,
ASR error rates are often an order of magnitude higher
than those of humans [4.28]. If no high-level gram-
matical information can be exploited (as in a simple
phoneme recognition task), the difference in perfor-
mance gets smaller, but still remains very noticeable.
For example, the HSR consonant recognition rate de-
rived from the confusion matrix in Table 4.2 is 67.7%.

The ASR score for the very same task (i. e., the same
speech signals at an SNR of −10 dB), obtained with
a common recognizer is 20.8%, which corresponds
to a relative increase of error rates of 144% (Ta-
ble 4.3).

This large gap underlines that current state-of-the-art
ASR technology is by far not as capable as the human
auditory system to recognize speech. As a consequence,
the fields of ASR and speech perception modeling in
humans may benefit from each other. Since the human
auditory system results from a long biological evolution
process and seems to be optimally adjusted to perform
robust speech recognition, ASR may profit from au-
ditory front ends which are based upon physiological
findings and incorporate principles of our hearing sys-
tem. Ideally, the feature matrix extracted from a speech
sound which is used to classify the respective speech
element should resemble the internal representation of
that speech sound in our brain as closely as possible.
Since this internal representation can be approximated
by an auditory model, such an auditory model seems
to be a good preprocessing stage for a speech recog-
nizer [4.35].

On the other hand, models of the signal processing
in the human auditory system can be evaluated using
ASR, because–under ideal conditions–human speech
perception and its model realization as anthropomor-
phic ASR system should yield a similar recognition
performance and error pattern in well-defined acoustical
conditions. Thus, modeling human speech perception
can benefit from the computational methods developed
in ASR.
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Speech Quali5. Speech Quality Assessment

V. Grancharov, W. B. Kleijn

In this chapter, we provide an overview of meth-
ods for speech quality assessment. First, we define
the term speech quality and outline in Sect. 5.1
the main causes of degradation of speech quality.
Then, we discuss subjective test methods for quality
assessment, with a focus on standardized meth-
ods. Section 5.3 is dedicated to objective algorithms
for quality assessment. We conclude the chapter
with a reference table containing common quality
assessment scenarios and the corresponding most
suitable methods for quality assessment.
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The rapid deployment of speech processing applications
increases the need for speech quality evaluation. The
success of any new technology (e.g., network equipment,
speech codec, speech synthesis system, etc.) depends
largely on end-user opinion of perceived speech quality.
Therefore, it is vital for the developers of a new service
or speech processing application to assess its speech
quality on a regular basis.

In addition to its role for services and speech process-
ing, speech quality evaluation is of critical importance
in the areas of clinical hearing diagnostics and psy-
choacoustical research. Although this chapter addresses
speech quality mainly from the viewpoint of telecom-
munication applications, it is also of general interest
for researchers dealing with speech quality assessment
methods.

When the speech signal reaches the human auditory
system, a speech perception process is initiated. This
process results in an auditory event, which is internal
and can be measured only through a description by the
listener (the subject). The subject then establishes a re-
lationship between the perceived and expected auditory
event. Thus, the speech quality is a result of a perception
and assessment process.

Since the quality of a speech signal does not exist
independently of a subject, it is a subjective measure.
The most straightforward manner to estimate speech
quality is to play a speech sample to a group of listen-
ers, who are asked to rate its quality. Since subjective
quality assessment is costly and time consuming, com-
puter algorithms are often used to determine an objective
quality measure that approximates the subjective rating.
Section 5.2 provides an overview of subjective tests for
speech quality assessment, while Sect. 5.3 is dedicated
to objective quality assessment measures.

Speech quality has many perceptual dimensions.
Commonly used dimensions are intelligibility, nat-
uralness, loudness, listening effort, etc., while less
commonly used dimensions include nasality, graveness,
etc. However, the use of a multidimensional metric for
quality assessment is less common than the use of a sin-
gle metric, mainly as a result of cost and complexity.
A single metric, such as the mean opinion score scale,
gives an integral (overall) perception of an auditory
event and is therefore sufficient to predict the end-user
opinion of a speech communication system. However,
a single metric does not in general provide sufficient de-
tail for system designers. Multidimensional-metric tests
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are discussed in Sect. 5.2.2 and single-metric tests are
discussed throughout the remainder of Sect. 5.2.

In some applications, it is desirable or historically
accepted to measure only specific quality dimensions,
such as intelligibility, listening effort, naturalness, and
ability for talker recognition. The most popular among
these measures are covered in Sect. 5.2.3.

The true speech quality is often referred to as con-
versational quality. Conversational tests usually involve
communication between two people, who are ques-
tioned later about the quality aspects of the conversation,
see Sect. 5.2.1. However, the most frequently meas-
ured quantity is listening quality, which is the focus
of Sect. 5.2.1. In the listening context, the speech qual-
ity is mainly affected by speech distortion due to speech
codecs, background noise, and packet loss. One can also

distinguish talking quality, which is mainly affected by
echo associated with delay and sidetone distortion.

The distorted (processed) signal or its parametric
representation is always required in an assessment of
speech quality. However, based on the availability of
the original (unprocessed) signal, two test situations
are possible: reference based and not reference based.
This classification is common for both the subjective
and objective evaluation of speech quality. The absolute
category rating (ACR) procedure, popular in subjective
tests, does not require the original signal, while in the
degradation category rating (DCR) approach the original
signal is needed. In objective speech quality assessment,
the historically accepted terms are intrusive (with origi-
nal) and non-intrusive (without original). These two test
scenarios will be discussed throughout the chapter.

5.1 Degradation Factors Affecting Speech Quality

The main underlying causes of degradation of speech
quality in modern speech communication systems are
delay (latency), packet loss, packet delay variation (jit-
ter), echo, and distortion introduced by the codec. These
factors affect psychological parameters such as intelligi-
bility, naturalness, and loudness, which in turn determine
the overall speech quality.

In this section, we briefly list the most common
impairment factors. We divide them into three classes:

1. factors that lead to listening difficulty
2. factors that lead to talking difficulty
3. factors that lead to conversational difficulty

The reader can find more-detailed information in
International Telecommunication Union, Telecommuni-
cation Standardization Sector (ITU-T) Rec. G.113 [5.1].
The effect of transmission impairments on users is dis-
cussed in ITU-T Rec. P.11 [5.2].

Degradation factors that cause an increase in listen-
ing difficulty include packet loss, distortion due to speech
codecs, speech clipping, and listener echo. Packet loss
corresponds to the percentage of speech frames that do
not reach their final destination. If no protective mea-
sures are taken, a packet loss rate of 5% results in
significant degradation of the speech quality. Bursts of
packet loss also affect speech quality. In systems with-
out error concealment, speech clipping occurs at any
time when the transmitted signal is lost. Speech clipping
may temporarily occur when the connection suffers from
packet loss or when voice activity detectors are used. Lis-

tener echo refers to a transmission condition in which
the main speech signal arrives at the listener’s end of the
connection accompanied by one or more delayed ver-
sions (echoes) of the signal. The intelligibility decreases
as the loudness loss increases. On the other hand, if the
loudness loss decreases too much, customer satisfaction
decreases because the received speech is too loud.

Degradation factors that cause difficulty while talk-
ing are talker echo and an incorrectly set sidetone. Talker
echo occurs when some portion of the talker’s speech
signal is returned with a delay sufficient (typically more
than 30 ms) to make the signal distinguishable from the
normal sidetone. The sidetone of a telephone set is the
transmission of sound from the telephone microphone
to the telephone receiver in the same telephone set. Too
little sidetone loss causes the returned speech levels to
be too loud and thus reduces customer satisfaction. Ex-
cessive sidetone loss can make a telephone set sound
dead as one is talking. In addition, the sidetone path
provides another route by which room noise can reach
the ear.

Conversation difficulties are caused by a third class
of degradation factors. Delay is defined as the time it
takes for the packet to arrive at its destination. Long de-
lays impair a conversation. Intelligible crosstalk occurs
when the speech signal from one telephone connection
is coupled to another telephone connection such that the
coupled signal is audible and intelligible to one or both
of the participants on the second telephone connection.
The background noise in the environment of the tele-
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phone set may have a substantial effect on the ease of
carrying on a conversation.

The study of degradation factors is important in the
design of a speech quality assessment test. The set of
degradation factors present in a communication sys-
tem determines the type of test to be performed. If the

degradation factors cause only an increase in listening
difficulty, it is sufficient to perform relatively inexpen-
sive and simple tests that measure listening quality. If the
degradation factors cause difficulty while talking, or dif-
ficulty while conversing, it is recommended to perform
the more-complex conversational quality tests.

5.2 Subjective Tests
Speech quality is a complex psychoacoustic outcome of
the human perception process. As such, it is necessarily
subjective, and can be assessed through listening test
involving human test subjects that listen to a speech
sample and assign a rating to it. In this section, we cover
the most commonly used subjective quality tests.

5.2.1 Single Metric
(Integral Speech Quality)

Users of new speech processing applications are often
unaware of the underlying technology. Their main crite-
rion for assessing these applications is based on overall
speech quality. Therefore, we start our discussion with
single-metric subjective tests. In these tests, speech is
played to a group of listeners, who are asked to rate
the quality of this speech signal based on their overall
perception.

Listening Quality
In an ACR test, a pool of listeners rate a series of au-
dio files using a five-level impairment scale, as shown
in Table 5.1. After each sample is heard, the listeners

Table 5.1 Grades in the MOS scale. Listeners express their
opinion on the quality of the perceived speech signal (no
reference presented)

Excellent 5

Good 4

Fair 3

Poor 2

Bad 1

Table 5.2 Grades in the detectability opinion scale. Listen-
ers give their opinion on the detectability of some property
of a sound

Objectionable 3

Detectable but not objectionable 2

Not detectable 1

express an opinion, based only on the most recently
heard sample. The average of all scores thus obtained
for speech produced by a particular system represents
its mean opinion score (MOS). The ACR listening qual-
ity method is standardized in [5.3], and is the most
commonly used subjective test procedure in telecom-
munications. The main reason for the popularity of this
test is its simplicity.

A good method for obtaining information on the
detectability of a distortion (e.g., echo) as a function of
some objective quantity (e.g., listening level) is to use
the detectability opinion scale (Table 5.2). The decisions
on a detectability scale are not equivalent to responses on
a continuous scale. It is therefore recommended to use
as a method of analysis the probability of response [5.3].

A disadvantage of ACR methods is that for some ap-
plications the resolution of their quality scale is not suffi-
cient. In such cases the DCR method is appropriate. DCR
methods provide a quality scale of higher resolution, due
to comparison of the distorted signal with one or more
reference/anchor signals. In a DCR test, the listeners are
presented with the unprocessed signal as a reference be-
fore they listen to the processed signal. The task for the
listener is to rate the perceived degradation by compar-
ing the second stimulus to the first on the scale presented
in Table 5.3. The quantity evaluated from the scores
is referred to as the degradation mean opinion score
(DMOS). DCR methods are also standardized in [5.3].

ABX is another popular method for speech quality
assessment [5.4]. It consists of presenting the listener

Table 5.3 Grades in the DMOS scale. Listeners are asked
to describe degradation in the second signal in relation to
the first signal

Inaudible 5

Audible but not annoying 4

Slightly annoying 3

Annoying 2

Very annoying 1
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