

		
			ASCII
SHRUG

			[image: 45500.png]

			An Overview of the History, Basics, and
Challenges of Computer Science

			BING WANG

			With love and thanks to my husband,
daughter, dad, mom, and brother

			[image: 45514.png]

			

	

			ASCII SHRUG
AN OVERVIEW OF THE HISTORY, BASICS, AND
CHALLENGES OF COMPUTER SCIENCE

			

			Copyright © 2022 Bing Wang.

			

			All rights reserved. No part of this book may be used or reproduced by any means, graphic, electronic, or mechanical, including photocopying, recording, taping or by any information storage retrieval system without the written permission of the author except in the case of brief quotations embodied in critical articles and reviews.

			

			

			

			

			

			iUniverse

			1663 Liberty Drive

			Bloomington, IN 47403

			www.iuniverse.com

			844-349-9409

			

			Because of the dynamic nature of the Internet, any web addresses or links contained in this book may have changed since publication and may no longer be valid. The views expressed in this work are solely those of the author and do not necessarily reflect the views of the publisher, and the publisher hereby disclaims any responsibility for them.

			

			Any people depicted in stock imagery provided by Getty Images are models, and such images are being used for illustrative purposes only.

			Certain stock imagery © Getty Images.

			

			ISBN: 978-1-6632-4721-6 (sc)

			ISBN: 978-1-6632-4722-3 (e)

			

			Library of Congress Control Number: 2022919990

			

			

			

			iUniverse rev. date: 06/19/2023

			

	

CONTENTS

			Preface

			Acknowledgment

			I.	Trail Without Shrugging

			II.	Languages Skeleton Shrug

			2.1	Machine Language

			2.2	Assembly Language

			2.3	High-level Language (HLL)

			2.3.1	Imperative Language

			2.3.2	Declarative Language

			2.3.3	Functional Language

			2.3.4	Object-Oriented Language

			2.4	Very high-level language (VHLL)

			III.	Languages Computing Shrug

			3.1	Compiled and Interpreted Languages and JIT Compiler

			3.2	Computer Languages Basics

			3.2.1	Bool

			3.2.2	Numbers

			3.2.2.1	Integer

			3.2.2.2	Floating Point

			3.2.3	Text

			3.2.3.1	Character

			3.2.3.2	String

			3.2.4	Object

			3.2.5	Operator

			3.2.6	Value type and Reference type

			3.2.7	Generic Type

			3.2.8	Type Conversion

			3.2.9	Function Overloading

			3.2.10	Iteration

			3.2.11	Recursive

			3.2.12	Delegate

			IV.	Object-Oriented Programming Shrug

			4.1	Object-Oriented Philosophy

			4.1.1	Object

			4.1.2	Object relations

			4.2	Object-Oriented Programming (OOP)

			4.2.1	Object-oriented programming paradigm

			4.2.2	Object in object-oriented programming

			4.2.3	Class in object-oriented programming

			4.2.4	Object oriented programming principals

			4.3	Object-oriented expression

			4.4	The pitfall of object-oriented programming

			V.	Computing World Development Shrug

			5.1	Data

			5.2	Database

			5.3	SQL Server

			5.3.1	SQL Server Architecture

			5.3.2	SQL error analysis

			5.3.2.1	transaction log

			5.3.2.2	SQL timeout

			5.3.2.3	Deadlock

			5.4	Data Modeling

			5.4.1	Guid

			5.4.2	Binary Large Object (BLOB)

			5.5	OLE DB vs. ODBC vs. ADO

			5.5.1	Data Set to Data Model

			5.5.1.1	Serialization

			5.5.1.2	Linq

			5.5.1.3	Reflection

			5.5.1.4	Attributed Mapping

			5.5.1.5	Entity Framework

			5.6	Windows Desktop Interface

			5.6.1	Windows Form

			5.6.2	Windows Presentation Foundation (WPF)

			5.7	Web Services

			5.7.1	XML-RPC

			5.7.2	SOAP

			5.7.3	WSDL and UDDI

			5.7.4	NET Remoting

			5.7.4.1.	NET Remoting Client and Service

			5.7.4.2	Communication Stack

			5.7.5	ASP.NET Web Service and IIS

			5.7.5.1	ASP.NET Web Service Sample

			5.7.5.2	ASP.NET Web Service Security

			5.8	Secure Communication

			5.8.1	ASP.NET Web Service Authentication

			5.8.2	ASP.NET Pipeline

			5.9	Windows Communication Foundation

			5.9.1	Service Contract

			5.9.2	Data Contract

			5.9.3	Operation Contract

			5.9.4	Message Contract

			5.9.5	Windows Communication Foundation Behaviors

			5.9.5.1	Service Behavior

			5.9.5.2	Endpoint Behavior

			5.9.5.3	Contract Behavior

			5.9.5.4	Operation Behavior

			5.9.6	Communication Stack

			5.9.7	WCF Data Service

			5.9.8	WCF Web Service Model

			5.9.9	WCF AppFabric AutoStart

			5.9.10	WCF Hosting

			5.10	Windows Service, Microservice and Messaging

			5.11	RESTful Service

			5.12	WEB API Service

			5.13	Miscellaneous

			5.13.1	MIME Type and Content Type

			5.13.2	Serialization and Deserialization

			5.13.3	Http Basic Authentication and Digest Authentication

			5.13.4	Bootstrapping

			VI.	Challenges of Tomorrow Programming

			6.1	High-level programming language

			6.2	Database development

			6.3	Windows operating system

			6.4	Windows user interface

			

			References

			Afterword

			

	

			To my dearest, truthiest, kindest and purest ABC daughter, Nali.

			To those old friends who shaped me but I am no longer see them because they moved away and let me move on.

			To those who have learned but constantly question themselves.

			To those expecting yesterday once more and wanting to back starting from zero.

			To those too young to know how the ASCII was born.

			I know one thing: that I know nothing. – Mr. Socrates

			

	

PROVERB

			Computer science has created careers, roles and employment for people that we could never have imagined. As a software engineer, my goal is to join with all company IT professionals to:

			Well done is better than well said. - Benjamin Franklin

			Help both company and company’s customers prosper.

			Act based on believing that everything we do should be simple personal fair.

			Storm, norm and form aspects.

			Fatal production issues to minor ones out.

			Flat out working style, in a blunt or direct manner, black or white, flat out revolution

			

	

PREFACE

			I kept a file called Developer Note when started to work for a new company, or on a new project, or in a new business domain, or in a new industry world. For a long time, I keep an invisible lingering in my mind to crave for a chance to re-learn some basics, some history, some present and some future. Now I think the opportunity is coming, I put all I assimilated in my developer note in a book. I’m learning some history, some basics. I’m reviewing some coding, some problem solutions. I’m expecting tomorrow, continuing to think and work. And at the same time, I am writing, here is my bigger compact of developer note, my book: ASCII Shrug.

			Why call the book name ASCII Shrug? The born of ASCII makes almost every computing feature possible, GUI interface, networking, machines communication, data management and transaction, and many others. The born of ASCII transforms computing and our lives in such an easier way, sometimes we may finish a job with just a shrug. Computer is more friendly to users, and computing is more nature to human being.

			But all these came not easy, countless computing scientists and engineers have devoted to, forgetting day and night, they ever suffered, failed, even went into disaster, just because of these failures created a series of milestones. Chapter I: Trail without shrugging brings you to hundred years ago, even ancient time when civilization just sprouted. How number is generated? How mathematics and algebra developed? How mathematic related with computing? Who implemented the first program in the world? How first computing machine was built? many. many… The trail can shed you some lights to see the history reflections.

			Basically, I am a programmer, after years of programming, I want to pause to review all the languages from a higher-level point of view that how programming languages are classified? Chapter II: Languages Skeleton Shrug touches many basic concepts, and they are very common topics. I explained them from my personal understanding along with the diagrams to illustrate my summaries. Chapter III: Languages Computing Shrug goes into a deep further to explain some basic and popular topics in language computing. For all these topics, all software developers need tackle them during their programming time, but have you ever thought about the basics. For example, you know how to write loop statements, but what exactly is iteration? How computer performs iterative statements? You are very clear about float data type, especially for financial software, we need play a lot with currency represented as decimal number, but have you ever thought about how important floating point is? Why the supercomputing machines speed-competition in the world use floating point calculation speed as a gauge?

			If philosophy can help us understand the world, we can trace back to Before Christ. Over thousand years, philosophy gradually immerse into the life of human being, the power nature, and the abstract sciences. The same apply to computing and programming. Chapter IV: Object-Oriented Programming tries to illustrate the very important programming paradigm from fundamental, from philosophy first. What is object in the world? What is object-oriented way of thinking from philosophical point of view? Is object-oriented programming slow dying?

			Chapter V: Computing Programming Development Shrug is a big chapter, it accumulates all the contents in my developer note, all my study and research. It covers data, database, data modeling, SQL server, and the evolvement of windows interface implementation and web services implementation over the years. We all know these highlights, we all tackle SQL server, GUI or web services almost every day. But have you ever thought about what’s the SQL server architecture? Why the query can run through in SQL server? Have you seen those SQL reported errors before? What are fundamentals of windows form and windows presentation foundation? How to program GUI before those advanced GUI frameworks were born? We all know IIS in Microsoft server machine, have you ever investigated how IIS pipeline works? Why we browse an address sending to the server and can get a web page back?

			We are too busy and have no time to think about tomorrow, the future. But we all know technologies development are quietly silently happening every day, tomorrow is indeed different from today. Chapter VI: Challenges of Tomorrow Programming pictures tomorrow’s technologies in some computing areas, which directions are for programming languages development, big data, and user interface, at the same time, it lays out some challenges in some research areas. If tomorrow comes, we will have something new along with the difficulties, we will have lots of work and challenges, but we are full of hope, we will be looking forward to the coming of each tomorrow.

			October. 1st, 2022

			

	

ACKNOWLEDGMENT

			Before presenting my book to you, my readers, some important words I want to say beforehand, that is expressing my deeply appreciations to someone who live in my life, in my heart.

			My daughter, my flesh and blood, my achievement, your birth first brought me deepest fears, then surprise joyful that I didn’t realize my then slim body was such strong and powerful. Watching you grow up is an unimaginable and indelible journey. You are my mirror teaching me how to be frank, honest, humble and down to the earth. Thank you, my dear daughter! My husband Wei, Dad, Mom and brother, your encouragement and support go with me all the time, your being around color my life with laughs and tears. Thank you, my family members! To those my old friends, some I may no longer see, your compliments enlightened me, your criticizes shaped me, your encouragements strengthened me. Thanks for all your help, on my academic study, and on my career development.

			Time is flitting, the old school days are still vivid in my memory. I want to thank the University of Pittsburgh, all the professors I know, especially those in Graduate School of Computer Science, some are retired, some still stand at the podium happily talk with youth. It is you who opened the gate of computer science dragging me in so that I could extensively learn, explore and fumble in the computing world. I also want to thank you for your wonderful C programming projects that made me glue on the Sun SPARC workstation so much. Today, I code C# in Microsoft Windows 10 operation system, but I don’t have today without my old C days, thank you!

			My career path is a bumpy road, from a fledging C++ programmer to a skilled C# developer, I have learned and worked in many fields of the computing. I want to thank for all the companies I worked and work for, Oil & Gas giants ExxonMobile and BP, historically reputational financial firms Wellsfargo and Santander, real estate authority firms Stewart Lender Service and Aegis, Software service providers GC Service and Cubic, consulting service companies Sogeti and Tata Consultant Service. Thank you for providing the projects and giving me the opportunities to learn and work with different business domain knowledges and different application contexts designed in the Microsoft framework ecosystem. Thanks for all my previous managers, colleagues and my current managers and teammates, I learned a lot from you! My developer notes and my book have your knowledge traces.

			Finally, I want to thank for the iUniverse publisher, your editorial evaluation, your book cover design and interior formatting, going to present my book to the readers. Without your work and help, everything about my book is impossible. Thank you!

			

	

I

			Trail Without Shrugging

			I came, I saw, I conquered.

			– Julius Caesar

			I’VE BEEN TO BRAZIL TAKING the boat flitting on the amazon river. I’ve seen the two-color water clearly distinguished by a zigzag demarcation line. I’ve seen the jungled rainforest besides the river. Walking into the old days of computer world, as if I’m trailing in the ten-thousands years of amazon indigenous forest. I wish I’m rather a naturalist, archeologist, and historian than a computer programmer. I’m approaching the adventure, from see nothing to gradually observe something. The rough narrow road, the extruding branches and leaves, the extreme pitch sounds and the buzzy noises ringing at my ears. I heard the talks from some philosophies, mathematicians, physics and astronomists who built the milestones. I was collecting the variety of forms from the very beginning Sumerian’s number system to powerful floating-point notations, from the embryonic form of calculator calibi to super computer with astronomical figures of calculation speed, from the first equation represented by language to big data machine learning algorithm, from external punch card to omnipresent cloud computing. Computer is not an overgrown human pocket-calculator, it is a revolution history of human being civilization.

			Computing history is not only the collected ancient forms, but also a metaphor of despair and delight. It was such a long-long bumpy road full of puzzle, thoughts, questions, idea strike, failure, even sometimes intrigues and disaster. Incomparable to computing history, what I try to approach is such tiny, even not mention achieved, perhaps that is why I want to trail on the history of computing world to come to my nature of nothing.

			The spirit is the inspiring for human life and the universe, the knowledge is based on the hierarchical levels of organized elements, on the first level, along with language, is to find the number and the calculations. From 3300 BCE, the Sumerians, who settled in Mesopotamia, part of what is now Iraq, started to treat number order based on the size and shape of object. They began to call it calculi to symbolize the object. Thousand years later, we have number machine calculi, further override as calculator. All ancient regions had invented numbers and even some elementary algebra concepts. Babylonians could solve equations with first and second degree. Ancient Chinese invented abacus doing the notational calculations similar to the modern approach of matrix and determinants. We call the Chinese abacus as 算盘，which is so popular in old China time that it passes from generation to generation. Designed by the wooden tabulate frame with at least seven cords. Each cord has seven wooden beads with two at the top deck and five at the bottom. Beads move up and down doing calculation and even carry over. Similarly, the ancient Egyptian counting instrument depicted on the wall, the ancient Greece’s marble count board, the ancient Room’s Jetons, the ancient Russia’s Schoty, the ancient Japanese Soroban, and the Native Americans’ Nepohualtzintzin, they laid out the foundation for number positional notation and computing.

			However, if you think carefully, all the numbers, no matter written in what kind of symbol, you cannot find number zero 0, the ° in Babylonians, Nefer in Egyptian, μηδέν in Greek, 零 and empty space in Chinese, [image: extracted1.jpg] in Arabic, [image: extracted1.jpg] in India, Nulla in Roman. Let’s step on zero’s path walking back to the very origin. You seem to see nothing at the beginning, but actually you see the world after you stepped into the contour. Sumerians recorded used space to be absence, they used one vertical stroke as the unit symbol to represent number one, one wedge as the ten numerical to represent number ten, one wedge and two vertical strokes as twelve, two wedges to represent number twenty. Mesopotamia has first recorded zero around 3 B.C, and the first person documented zero as a number was the astronomer and mathematician Brahmagupta in 628 CE. India first developed the concept of zero as a written digit. How can nothing be something? Everyone knows it plays a crucial role in mathematizing the world. The discovery of zero pushed arithmetic calculation forward. The emerge and development of algebraic symbol and notation set off a new chapter in the history of mathematics.

			The first gnawing bone in my study of Computer Science was reviewing and correcting the Pascal code from students. The dazzle ASCII string repelled me outside the door of computing world. Now I understood why, because at that moment I had no idea that in 1600s, a French mathematician named Blaise Pascal created the first calculator in the world, Pascal Calculator or Pascaline, which is a mechanical machine that can add or subtract two numbers and can also do multiplication through repeated addition and subtraction. I was even completely blind that dozens of years before Pascaline’s born, an English mathematician named William Oughtred invented the slide rule which uses two scales to slide to do multiplication and division, the predecessor of our calculators. There were more before Pascaline, German astronomy Wilhelm Schickard constructed the Rechenuhr, a clock calculator can do six-digit number addition and subtraction even ring with overflow. Scottish mathematician John Napier proposed the idea of logarithmic that can be used as a device to aid the mathematical calculation.

			Now sometimes when I am easily coding C# on top of the most cutting-edge .NET Core platform in the powerful Visual Studio 2022 editor, I shrug myself that programmer is not a hard job. But I’m still not sure if I stepped into the 0 contour to see the world, see the universe, both physical and mental universe, standing from the philosophy point of view, nothing was self-evident. Some computing historians could see the world and universe as a mathematician, as a physicist, as an astronomist, as an engineer, and as a philosopher.

			The first computer programmer, Ada Lovelace, who engaged her whole life to mathematics and finally wrote the first program in the world, an Analyst Engine in 1800s. Ada, a lovely girl easily caught illness at early childhood never stop her keen interests on science and mathematics. When grew to twelve years old, this “Lady Fairy” was so eager to fly that she constructed wings mechanically and materially. Years later, this full blossom flower did not indulge the court dance and romance, on the contrary, she was fascinated to get acquainted with scientists and engineers. She self-purposely educated herself, her devoting to mathematics dominated her whole life. In 1830, her met with Mr. Charles Babbage changed her life completely. Mr. Babbage, the father of modern computers, introduced her his difference engine whose name derived from the mathematical difference. This engine is an auto mechanical calculator that can tabulate polynomial functions. It’s a huge machine pretty like the heat exchanger in the chemical engineering refinery plant and right now sits in the London Science Museum. The No.2 difference engine was completed in 1990s.

			Ada and Charles developed a very intimate relationship, she became fascinated with this difference engine and wrote notes described her thoughts as an analyst engine. She declared that her engine has no pretension from any origin but can follow any order and demand. She also dismissed artificial intelligence saying no engine can predicate analytical relations and truth, which raised questions from many scientists, especially Alan Turning, who objected this statement in his published paper Computing Machinery and Intelligence. Ada in her last note wrote the first program in the world, an algorithm in her analyst engine to compute Bernoulli numbers.

			A flash in an instance, Ada died at young age of 36 from cancer. But her first program manifested to the world that a series of simple instructions can compose to be a program that run in a computer ordered to do complex mathematical calculation. Ada, the first object-oriented language developed in US Department of Defense in 1980s, was named in memory of Ada Lovelace, the perpetual blooming flower.

			More and more young IT professionals today love to talk about fast computing, speedy memory and I/O access. It’s true that today, a typical 7200 RPM HDD could reach read write speed up to about 160 mb/s, and a typical SDD could reach read write speed up to roughly 550 mb/s. But at your leisure, let us flip the computing pages back to 1890 US census, when the first punch cards, 12 rows and 24 columns, size of a dollar bill was the first machine readable media used as data collection. Mr. Herman Hollerith, the data processing pioneer, his tabulating machine opened the window for data reading writing and laid the foundation for IBM. The punch cards, also called IBM cards, can be traced back even as early as 1830s, Mr. Semen Korsakov who worked for the Russia’s government used the cards for information storage and retrieval.

			The punch card was designed to have holes presence or absence at the predefined position to represent digital data. The reader got the card input, reading from top left down to bottom and then went to the next column. The card reader was also the computer input device, it could take optical sensing or electrical sensing. When taking optical, the lighting passed through when there was a hole or not so that represents bit 1 or 0 respectively. When taking electrical, it would break the circuit and reconnect again if there was a hole so that represents bit 0 or 1 respectively. Therefore, in both cases there were timing and sensing resolutions to read card column based on the typical IBM 80 column punch card format.

			Now more than a century has passed, the punch cards are gradually deprecated, but the ideas of reading cards carried on for quite long. Think about our current RFID, the contactless radio frequency identification technology, simply just tap or wave the card in front of the reader. Think about QR code, barcode, many systems now still keep the idea of using passive radio or optical sensor and reader to get data input. With the born of magnetic media, punch cards, the piles of stiff papers were replaced by HDD. Now with faster and faster HDD and SDD, I/O read and write are gradually no longer the bottle neck. With the born of cloud computing and cloud drives, someday I/O will step off from the world computing stage.

			If it is said that war brings catastrophic damage to human being and our earth, from another narrow view, it also pushed for the technology development, especially during world war II, inventions from medical, electrical, mechanical, and computing, changed human life dramatically. Flu vaccines, penicillin, blood plasma transfusion, jet engine, radar, and electronical computing, etc. The world war II brought the computing a leap jump in America and Europe.

			ENIAC, acronym for Electronic Numerical Integrator and Computer, was the first programmable, electronical general-purpose digital computer built in 1943. It is more than 30 short tons and occupies over 1800 square feet. It used IBM card reader as input and an IBM card punch as output, these punch cards were used for external memory storage. Its clock speed is 100KHz doing about 5000 10-digit number addition per second, compared with current fastest supercomputer Fagaku with 2GHz clock speed able to do quadrillions float point calculations within one second. ENIAC was the first electronic simulated machine to run the program of neutron decay during neutron fusion, which cannot be solved through traditional mathematics. At that time, some female programmers emerged such as Klara Dan, Betty Jean Jennings and Fran Bilas, etc. They studied the machine’s logic, physical structure, operation, circuitry, not only able to understand the machine computation but also the ENIAC machine itself. The difficulties and problems with the machine ENIAC served as a catalyst to the research result in a decisive chapter in the history of automation calculation.

			In 1944, a project to create an analytical calculator, given the name of Electronic Variable Automatic Computer (EDVAC). A solution of gradually emerged during this project was the stored program. It was stated in the First Draft of a Report on EDVAC, published by von Neumann, a Hungarian-American mathematician, physicist and computer scientist. This was the first scientific document to highlight an overview related with the new system of programming and the theories of numerical and sequential automata through stored program. Later on, computer scientists predicted the future major components of the computer systems: the arithmetical logic unit (ALU), the control unit, the memory to record the numerical data and instructions, input devices and output devices. As Claude Bernard (a French physiologist) noted: “Sciences are studies analytically, they are taught synthetically… When Science cannot be taught synthetically because it’s not sufficiently developed. A science is not science until it is synthesized.”

			Von Neumann’s essential contribution was to demonstrate a programmable sequential automatic numerical calculator with a stored program. While the Turing Machine, an idealized and abstract model of a computer invented by Alan Turing in 1936, denoted by TM, is a collection of the following things:

			A finite set of conditions q1, q2 … qn, m-configurations, supplied by an one-way infinite or one-dimensional tape divided into a sequence of squared numbered cell, each carrying a symbol.

			
				1.	A tape head, a read write head, can read content of the cell in one step that the machine scanning the content of the cell bearing either a symbol or a blank.

				2.	The machine is automatic, that is, in any given moment the behavior of the machine can be decided by its current state and the symbol it scanned. It typically can do three actions: print symbol Si on the tape-by-tape head, the tape moves one square to the left L and goes to state qj, print symbol Si on the tape-by-tape head, the tape moves one square to right R and goes to state qi.

				3.	A state register stores a finite of states including exactly one Start state when begin execution, one or more Halt state that execution terminates. The other states have no functions except only names: q1, q2, q3, …, qn.

				4.	A set of rules tell machine based on the configuration of the tape head, the active cell: how to change state, what to write on the tape, and where to move the tape. The rules are analogous to the machine code instructions in the computer. The machine is like a black box, given a certain input. The rules decide what kind of operations the black box need to perform.

			
			Alan dedicated his research on computing machine from mathematics. In his famous paper On Computable Numbers with an Application to the Entscheidungsproblem, which was the first to show that there exist classes of problems having no algorithmic solution. After this paper was published, he went to Princeton and got chance to know von Neuman. In his other famous paper Computing Machinery and Intelligence, Alan denoted the idea of digital computer, which is a human computer following a set of fixed rules that human has no authority to deviate from them in any detail. It is analogous to a human who has unlimited paper supply to do the calculations. Alan’s digital computer, as he wrote, consists of the three parts: Store, Executive and Control. It was universally classified as discrete-state machine that in this machine a quite finite of state could jump to another state, even though strictly speaking there is no such machine because everything moves smoothly.

			Characterized the family of analytical calculator with a stored program, this machine is a computer structure that eliminate the defect of Babbage’s machine and external program made the leap from family of analytical calculator to von Neumann’s machine. The revolutionary of artificial logic automata was born, capable, without human intervention, execute any kind of algorithmic program within the physical limit of this machine. The concepts of universal Turing machine possess the large capacity of memory characteristics, it has a limited set of precisely defined instructions that makes the programs translated into machine readable code understanding the algorithm of the program. The instructions are automatic sequential operations with symbol-manipulations capability, large problem-solving capability and the capability to simulate any other Turing machine when programmed. These mathematical notions of Turing’s universal algorithmic automation obviously provide the theoretical model for all the computers in the future.

			The Rube Goldberg Machine, well known throughout the world, fascinates millions of youths to create and image their owns. In United States, there are even Rube Goldberg machine contests in high schools and colleges. The ideas of the event are to encourage youths to invent the fancible machines designed from human imaginations and beyond, the machines also indicate foolable inefficiency at the same time. Counterparts the Rube Goldberg, a famous English cartoonist William Heath Robinson, his masterpiece, or the dictionary recognized term Heath Robinson Contraption, is an inventive machine that is creative, ingenious, and over-complicated. In order to honor Heath Robinson, the first machine engineered to compare all the possible starting positions of the two tapes named Heath Robinson, it was used in world war II to break a high-level German Enigma Code generated by a teletypewriter in-line cipher machine called Lorenz SZ40/42. With the many incredible hindsight, Thomas Harold Flowers, an English engineer, recognized the downsize of a simple batch job. He proposed a more advanced sophisticated replacement using a completely electrical design through thermionic valves, or vacuum tubes. It was a device with the capability to control the electrical current flow in high vacuum between electrodes. This new breakthrough machine is called Colossus. In this machine, the number were stored in bi-quinary registers, the operations were synchronized through an internal clock, the conditional branching logic can be accomplished through hardware. Colossus is the forerunner of the modern computer at that time, it proved to be faster and more efficient than the Lorenz cipher SZ42 machine.

			The Heath Robinson Machine and the Colossus Computer propelled the electrical machine design and engineering. However, they are all programmed through either punched tape, or complex hardwired machine’s basic components. A new chapter of computer design, compute memory systems, has emerged after lots of researches and explorations. More and more computer engineers realized that main memory design was the controlling factor in machine’s architecture, the constructing of large reliable storage devices was one of the hurdles in modern computer design. It was recognized very earlier that computer’s memory should have the following properties: erasable and overwritten by new data, long period of time storage, inexpensive and easy to construct, possible getting the stored data in short period of time.

			The first idea is thermal memory tried by Mr. Andrew Donald Booth, a British electrical engineer, who joined the early developing of magnetic drum memory. This thermal memory consisted of a small drum whose chalk surface can be heated by a series of small wires. It is two inches long and two inches wide and able to hold 10 bits of data per square inch. The cooperation with his father led the production of disk-pin that is able to store the data. Furthermore, during the manufacture process, a simpler system of using fine wired was produced. But ultimately the thermal mechanism memory was replaced for subsequent machines.

			The first reliable memory system gained widespread acceptance was acoustic delay line. It has been used in many early machines. The basic concept is using a circuit designed to delay a series of pulses into the transmission of a signal, the pulse represents a binary number and it fed back to the delay line to store the data for a short period of time. The numerous repetitive short delays add up together to accomplish the long-term storage. Mercury, alcohol and water have been tried as the medium, but finally nickel wire had been detected to have the great advantage of good carrying low frequency sound. A later version of the delay line applies the magnetostrictive effect by transducers, the magnetic core replaced delay line but the device can only apply for short-term memory, and information could not be immediately available, the first high-speed random-access memory designed by Frederic William to overcome this defect. William adopted the idea of cathode ray tubes (CRT) as a memory device. The William tube, or William-Kilburn tube, depends on the effect of second emission happened on CRT, the electron beams strike the phosphor causing illumination. When the beam energy is reaching a certain threshold, the electron is out of phosphor and their travel generates the positive and negative charge, which subsequently accomplishes the write and read operation. The electron beam moves anywhere on the CRT and the compute access at any location, this is the basic concept of random-access-memory. William-Kilburn tube was widely used in early computers and some IBM machines because it can be built from known technologies and component. However, during this process, engineers had noticed the problem that the reading beam focuses on one of the tubes but electron tends to move around over adjacent areas. Another form of electrostatic storage tube of complete digital electrostatic was developed in RCA laboratory, it is called Selectron. It was a vacuum tube with the same design principal as William-Kilburn tube, but it stores the digital data as electron charge in William-Kilburn tube storage device, it had been started massive commercial production after the magnetic core memory becomes universal.

			The magnetic-core memory, or core memory, was the first predominant form of random-access memory proving the foundation for large-scale reliable memory with economic cost. It uses hard magnetic materials as transform coil called toroid, the insulated or enameled wire threads through the core and more wires pass through each core, all the magnetic flux is contained in the core material. The state of each core is remembered by magnetic hysteresis, the smaller cores and wires, the more density of the core memory. With the design and development of the first semiconductor memory chip, static random-access memory (SRAM) was initially created followed by dynamic-random-access-memory (DRAM). The fast development of semiconductor led the rapid increase of storage capacity. Core memory dominated the market in the 1970’s. For example, the mission-critical control system, Apollo Guidance Computer for NASA’s successful moon landing used core rope memory.

			Starting from vacuum tube to solid state transistor to integrated chips, the large-scale integration (LSI) technology drove the development of semiconductor memory and then microprocessor, the computer primary memory was moving away from magnetic memory to solid state and dynamic semiconductor memory. The cost, size and power varied dramatically over the years.

			The real electrical computer development started from World War II. Konrad Zuse, a German civil engineer and computer scientist pioneer, invented and designed electromechanical computer in 1941. It was the world first fully automatic digital and programmed computer. Built with 2600 relays, it could do floating point binary arithmetic with 22-bit word length for aerodynamic calculation. Z3 is Turing complete, it can construct loop but no conditional branch, the simple binary operation coming from the book Principals and Mathematic Logic brought a big success. Z3 was destroyed during World War II, Zuse supervised to reconstruct it to display to the future generation years after the war.

			Conceived by Harvard physics professor Howard Aiken, a pioneer in computing, the Automatic Sequence Controlled Calculator (ASCC) was built also called Harvard Mark 1. It is a room-sized and fully relay-based calculator. Von Neumann used this machine working on Manhattan project, he run the first program on Mark I. Similar to the ancient Analytical Engine designed by computing father Charles Babbage hundreds year ago for example, it used the function library to print a brief extract mathematical functions table, Harvard Mark 1 could calculate massive mathematical tables, a type of table could show various mathematical operation results.

			Years later at the other side of Atlantic Ocean, a Small-Scale-Experimental-Machine (SSEM), initially better known as Manchester baby and later developed as Manchester Mark 1, was born in Manchester University research center. It was developed by Frederic Williams, Tom Kilburn, Geoff Tootill and other research students. As the first fully electronic machine, it had an initial memory of 32 words with each 32 bits stored on a single William’s tube cathode ray tube and can execute stored program. With the more design and evolvement, it can do more complicated calculation with more memory added. The input and output hardware had more improvement with more circuits. The electrostatic memory had more words with more bits stored on CRTs. Kilburn wrote the first program in history consisting of seventeen instructions that can run on the electronic, digital and stored-program machine like Manchester Mark 1. However, during the operation of the Mark I, design problems were gradually emerged like the drum and the power supply.

			By the time the World War II was over, the development of digital electronics in America was advanced in a steady and fast pace. The University of Pennsylvania Moor School has produced an all-electronic calculating machine, the Electronic Numeric Integrator and Computer (ENIAC). It laid out the foundation of stored-program computer. The Turing Complete, a machine given enough time and memory and instructions can solve any computational problems, accomplished extensive numerical problems calculations, especially for United States Army’s ballistic research. ENIAC can do loop, condition and subroutine, except it needs the program originally hard wired into the machine. The Moore School team had conceived the idea of the Electronic Discrete Variable Automatic Computer (EDVAC) while constructing ENIAC. The initial design of EDVAC was constructing a mercury delay-line memory, a binary serial processed bit by bit one bit at a time. Von Neumann proposed the idea of separating memory and computing units that data movement and computing works happen simultaneously, so bits need be processed in parallel to speed up the calculation. But the final decision was to seek a simple version with a serial electronics machine rather than parallel machine. However, Von Neumann submitted a report title as First Draft of a Report on the EDVAC, it lays out the design concept of automatic digital computing system and embodies the stored-program principals.

			The Institute of Advance Study (IAS) computer, the Binary Automatic Computer (BINAC) and the Universal Automatic Computer (UNIVAC), all played very important roles in the computer machine development. The Whirlwind computer developed by MIT could be classified as one of the most important projects. Whirlwind I was a vacuum tube computer with digital electronic computing and real time output. It also was the first computer calculating in parallel on magnetic core memory.

			Whirlwind II was designed to serve United State Air Force Sage air defense system. Whirlwind operated on 16-bit word every cycle in bit parallel mode, it was sixteen times faster than other machines in that era. It laid out foundation for future CPU architected in bit-parallel mode. Years later, IBM developed and was commercial a series computer machines: Model 650 magnetic drum calculator, Model 701 electronic data processing machine, 7000 series of mainframe computers are the company’s first used transistors. 7030 stretch, played a major role in the design of later IBM System/360. It is the most successful computer family in IBM history.

			Look back first before looking forward. The electronic technology revolution and booming during World War II and after the war pushed the computer industry development throughout the world. Wrapped up the computing history trail, as a software developer, let me back to the programming world to depict my understandings and summaries on the programming languages.

			Code for fun! Let me walk down the deep to try to fumble if I can gain something both important and interesting.

			

	

II

			Languages Skeleton Shrug

			There are only two kinds of languages: the ones people complain about and the ones nobody uses.

			- Bjarne Stroustrup

			AS A HUMAN BEING, WE cannot separate from language. Human language is composable, is an aspect of the mind that makes us unique human. It is also the most complex cognitive function that our brain execute. Its main purpose is expressing, “I like C#”, three words jumped out from my mouth yet composing of subject, verb and object. It tells us many: “I” maybe a programmer, “C#” maybe attractive and is not hard to learn, “I” might be enthusiastic on programming, and “I” might not be a dumb person, etc. That’s the powerful of human language, it is creative, it is productive, it is imaginative, it is systematic and it is also abstractive. Human language can be classified as written, oral and nonverbal based on the formality. Based on the geographic region on the earth, they can be categorized into different language families: Indo-European language, Afro-Asiatic languages, Altaic languages, Sino-Tibetan languages, Austro-tai languages, Dravidian languages, Caucasian languages, Niger-Congo languages, Austronesian languages, Amerindian languages, etc. Comparable to human language, computer languages can be categorized as machine languages, assembly languages, and high-level languages from algebraic view.

			2.1	Machine Language

			At the very beginning, machine was built on the hardest way, we can think of CPU is packaged through sets of registers connected by wires, CPU execution is actually the state transition, the electrical switch signals are changed from on to off back to on, or the presence and absence of voltage. The specific on and off states can be represented by corresponding bit 0 and 1, the presence of voltage denoted by 1 and the absence of voltage denoted by 0, this is positive logic or vice versa the negative logic, this is machine language. The language of the machine, which CPU reads, understands and speaks. No matter how basic the machine is built up, as long as we have input devices that can input mixed strings of 0s and 1s, we can control CPU execution to generate the desired output. The long sequence of zeros and ones represent instructions to order the CPU to perform specific tasks, such as load, store, jump, or arithmetic logic unit (ALU) operation on one or more units of data in the registers or memory. Machine language is the oldest, lowest level and the only one language that digital computer can understand. It also called machine code, a string of binary digit or bit of 0 and 1. The ASCII value for letter “A” is 01000001 but displays “A” on the monitor screen. For text “Hello!”, it is “01001000 01100101 01101100 01101100 01101111 00100001”. Different operating systems translate the programming languages to different machine binary code, different digital machine typically “speak” and “understand” different machine language, different computer may have different size of the machine code instructions such as 32-bit still in use and 64-bit is very common now.

			The computer was divided into three basic components by computer scientist von Neumann decades ago but still remains today: The processor is the brain of the computer, the memory is the bones of the computer, and the input output are the arms and legs of the computer. The processor, the CPU, is further divided into the computation, which is the Arithmetic and Logic Unit (ALU) performing the arithmetic and logical operation, and control unit. All these components are wired connected. The below diagram shows the very basic information of the computer components:

			[image: 37001.png]

			Figure 2.1.1: CPU components

			The “arithmetic” organ is datapath, it consists of execution unit like ALU, the registers and communication path between them, it contains most of the states of the processor. The state includes the program counter, interrupt address register, and the program status register. The implementation of the hardware sets the clock cycle time. The clock cycle time is determined by the slowest circuits operating during a clock cycle period within the processor.

			Input bits are fed into one at a time, one per clock cycle, for example: 000111000:

			[image: 37066.png]

			Figure 2.1.2: FSM Bits flow

			The circuit is designed that have output for one clock cycle when input bits changes from 0 to 1. We can draw the below state transition diagram:

			[image: 2.jpg]

			Figure 2.1.3: State transition diagram

			The state transition of 0 and 1 drives machine running, consider the following example:

			constructing a Turing Machine for language L = {0n1n | n≥1}

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
				
				
				
				
			
			
			
			
			

	

OEBPS/OEBPS/image/extracted1-fmt.png

OEBPS/OEBPS/image/extracted1-fmt1.png
et

OEBPS/OEBPS/image/45500.png
_ (YY) [

OEBPS/OEBPS/image/2-fmt.png
fpr® Input 1

Input 1

Input0

OEBPS/cover.jpeg
- An Overview of the History, Basics, and
E!yellenges of Eumpu}er Science
= 4 4, \ '
> .y . . 9,
Vs &) T
/ ~ < £
! C. C
- , , 3

BING WANG

OEBPS/OEBPS/image/45514.png
(®iUniverse

OEBPS/OEBPS/image/37001.png

OEBPS/OEBPS/image/37066.png
| aokcre
Finite State
Bitsin Machine Bits out

