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Preface

The purpose of this book is to provide a review and critical assessment of some
key procedures related in one way or another to the problem of testing for a unit
root in a stochastic process. As is now well known, the presence of a unit root
implies a form of nonstationarity that is considered to be relevant for economic
time series, so that a non-standard inferential and distributional framework is
required.

The research and literature on this topic has grown almost exponentially since
Nelson and Plosser’s seminal article published in 1982. Therein they applied the
framework due to Dickey (1976) and Fuller (1976) to testing for a unit root in a
number of macroeconomic time series. Subsequent key articles by Dickey and
Fuller (DF) (1979, 1981) developed some aspects of the initial testing frame-
work. The basic set-up for a DF unit root test is now familiar enough, being
taught in most intermediate, if not introductory, courses in econometrics; how-
ever, the underlying distribution theory is somewhat more advanced, and the
many complications that have arisen in practice has meant the development of
a voluminous literature that, because of its extent, is difficult to comprehend,
especially for the non-specialist. Indeed, it is probably the case that a simple sur-
vey of the field of methods and applications is virtually infeasible; indeed, the
topic is so extensive that even some 20 years ago Diebold and Nerlove (1990)
noted the scale of the literature on this topic.

The articles on unit root tests are amongst the most cited in economics and
econometrics and have clearly influenced the direction of economic research
at a much wider level than simply testing for a unit root. A citation summary
for articles based on univariate processes is presented in Table P.1. The numbers
shown here clearly indicate that there has been a sustained interest in the topic
over the last 30 years or so and, looking at the wider influence, the unit root
literature led to the concept of cointegration and to some of the most cited
of econometric articles, including Engle and Granger (1987), Johansen (1988,
1991) and Johansen and Juselius (1990) (see the note to Table P.1).

The appropriate prerequisites for this book include some knowledge of econo-
metric theory at an intermediate or graduate level as, for example, in Davidson
(2000), Davidson and Mackinnon (2004) or Mittlehammer et al. (2000), and,
possibly, with some additional directed study, as in good introductory books
such as Gujarati (2006), Dougherty (2007), Ramanathan (2002) and Stock and
Watson (2007). It would also be helpful to have had an introduction to the

xxxiii
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Table P.1 Number of citations of key articles on unit roots.

Author(s) Number of citations

Dickey and Fuller (1979) 1 7,601
Phillips and Perron (1988) 2 4,785
Dickey and Fuller (1981) 3 4,676
Perron (1989) 4 3,371
Kwiatkowski, Phillips, Schmidt, Shin (1992) 5 3,280
Nelson and Plosser (1982) 6 3,035
Phillips (1987a) 7 1,881
Zivot and Andrews 8 1,694
Elliott, Rothenberg and Stock (1996) 9 1,556
Said and Dickey (1984) 10 1,342

Notes: Articles relate to univariate unit root tests. Prominent articles, on a citation
basis, involving largely multivariate methods are: Engle and Granger (1987): 12,366;
Johansen (1988): 8,236; Johansen and Juselius (1990): 4,886; Johansen (1991): 4,150;
and in econometric methods more generally, White (1980), 12,359. (The last article
is the most highly cited on the basis of several citation methods.) On the index of
economics articles since 1970, compiled by Han Kim et al. (2006), Dickey and Fuller
(1979) ranks 7, whilst Engle and Granger (1987) and Johansen (1988) rank 4 and 8,
respectively.
Source: Google Scholar, accessed 22 February 2010.

methods of maximum likelihood and generalised least squares (GLS), for exam-
ple as provided in Greene (2006). An introduction to time series analysis and
mathematical statistics would also be useful; for example, for the former at the
level of Chatfield (2004) and the latter along the lines covered byMittelhammer
(1996). A book designed especially as a primer for this one is Patterson (2010).
Some familiarity with the application of unit root tests would also be helpful to
set the context.

I have taken the brief of this book to include issues that are related to but
theoretically separate from the central concern of testing for a unit root. For
example, one of these is the problem of the bias in estimating the coefficients
in an autoregressive model; whilst this is strictly a finite sample effect, it is of
practical interest and serves as a ‘lead in’ to the problems associated with unit
testing. This book is, therefore, not about listing tests for a unit root. Not only
would there not be enough space for such an enterprise, it is not the best way
to indicate which test statistics, and methods more generally, have been taken
up by practitioners. The main tests are of course presented and their rationale
explained, together with examples to illustrate how they are used. However,
the problem suggested by the presence of a unit root or near-unit root is more
than just the design of a test statistic. There are two other important practical
issues that a researcher has to face. The first is to consider what the appropriate
alternative hypothesis is. In the Dickey-Fuller paradigm, followed by many in
practice, the alternative to a stochastic trend is a deterministic trend, usually
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characterised as a low order polynomial in time. However, the choice of the
order of the polynomial, typically representing reversion to a constant or a lin-
ear trend, has a critical effect on the power of the test if over-specified; on the
other hand, if under-specified, a test will have no power to detect a true alter-
native. The representation of the ‘attractor’ as being generated by a low order
polynomial trend is likely to be a shorthand, or reduced form, for a far more
complex process. In part, the pre-eminent role of a simple deterministic trend
in providing the mean or trend reverting alternative to a non-reverting process
(nonstationary by way of a unit root or roots), is historical and, of itself, deserves
further study and evaluation.

A second key, practical aspect arises from the usual need to choose some
form of a truncation parameter. In the context of the familiar augmented
Dickey-Fuller tests, this is a lag truncation parameter and in the context of the
semi-parametric tests, which require an estimate of the long-run variance, a
parameter limiting the bandwidth in the formation of a sum of autocovariances.
Whilst familiar criteria, such as the AIC, BIC and general-to-specific (g-t-s), rules
are in frequent use, the combination of each one of these with a test statistic
defines test procedures with potentially differing characteristics; their use in
combination then leads to the accumulation of type I error.

Some of the developments covered in this book are as follows.

• The distinction between difference stationary and trend stationary processes
and the implications of this distinction for the permanence or otherwise of
shocks.

• An outline of the autoregressive moving average (ARMA) modelling frame-
work and its role in testing for a unit root.

• The finite sample bias in estimating models and its implications for inference
even when seemingly well into the region of stationarity.

• Forming confidence intervals that are robust to the problem of quantiles that
are not constant.

• The DF unit root tests and developments of them to account for weak serially
correlated processes.

• Bootstrapping confidence intervals and unit root tests.
• Tests that:

– are based on a direct maximum likelihood approach;
– are based on a GLS, or quasi-GLS, approach, including the influential

tests by Elliott, Rothenberg and Stock (1996);
– combine the backward and forward recursions of a random walk;
– are based on recursive estimation of the mean or trend;
– are robust to the initial condition;
– allow for more than one unit root;
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– are based on stationarity as the null hypothesis;
– allow for unit roots in seasonal data.

The results of a number of Monte Carlo studies are reported in various
chapters. Indeed, simulation is a key tool that is used throughout to provide
some guidance on finite sample issues. Consider, for example, the problems
caused by the presence of weakly dependent errors when testing for a unit root.
Then under fairly weak assumptions, the asymptotic properties of several fre-
quently used test statistics are unaffected by such errors, but typically, the finite
sample properties do not reflect the asymptotic properties, an example being
the difficulty caused by the near cancellation of a root, especially a near-unit
root, in the AR and MA components of an ARMA model. To understand the
finite sample nature of such problems, many more simulations were run than
are reported in the various chapters; the results are then typically illustrated for
one or two sample sizes where they are representative of a wider range of sample
sizes.

There are a number of developments and problems not covered in this
volume, but which are included in Volume 2. These include the following.

Nonparameteric tests: the tests that have been considered in this volume, such
as the family of Dickey-Fuller tests, are parametric tests in the sense that they
are concerned with direct estimation in the context of the parametric structure
of an AR or ARMA model. Nonparametric tests use less structure in that no
such explicit parametric framework is required and inference is based on other
information in the data, such as ranks, signs and runs. Semi-parametric tests use
some structure, but it falls short of a complete parametric setting; an example
here is the rank score based test, which is based on ranks.

Fractional integration: this considers the case of fractional values of the integra-
tion parameter. That is, suppose that a stochastic process generates a time series
that is integrated of order d, where d is a fractional number. What meaning can
we attribute to such an operation and how can the parameter d be estimated?
There are two general approaches to the analysis and estimation of fractional
I(d) process, as theymay be either analysed in the time domain or the frequency
domain.

Bounded random walks: the application of random walk models to some eco-
nomic time series can be inappropriate, as where there are natural bounds or
limits to the values that the series can take, such as in the case of unemploy-
ment rates and nominal interest rates. One way of modelling this is to allow
unit root behavior; for example, persistence and the absence of mean reversion
over a range of possible values but reversion at other values. These models have
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in common that they involve some form of nonlinearity. Perhaps the simplest
from of nonlinearity actually arises from piecewise linearity; that is, an overall
model comprises two or more linear models for subperiods where the compo-
nent models differ not in their form, for example all are AR(p), but in their
parameters. A popular class of such models is the smooth transition autoregres-
sive – or STAR – class, of which the exponential and logistic members are the
most frequent in application, giving rise to the acronyms STAR and LSTAR.

Structural breaks: Perron’s (1989) seminal article began another thread of the unit
root literature. What if, instead of a unit root process generating the data, there
was a trend subject to a break due to ‘exceptional’ events? How would standard
unit root tests perform? For example, what would be their power characteris-
tics, if the break was ignored in the alternative hypothesis? The idea of regime
change that could affect led to a fundamental re-evaluation of the simplicity of
the simple ‘opposing’ mechanisms of a unit root process, on the one hand, and
a trend stationary process, on the other. In practice, although there are likely to
be some contemporaneous and, later, historical indications of regime changes,
there is almost inevitably likely to be uncertainty not only about the dating of
such changes but also the nature of the changes. This poses another set of prob-
lems for econometric applications. If a break is presumed, when did it occur?
Which model captures the nature of the break? If multiple breaks occurred,
when did they occur?
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Reading, for her unfailing assistance in the many tasks needed to bring the
manuscript into shape.
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1
Introduction to Random Walks and
Brownian Motion

Introduction

The first part of this chapter introduces the randomwalk initially in a form with
stochastic shocks generated by a random variable with a binomial distribution.
In the simplest version of this process the random variable has two equally likely
outcomes resulting in a symmetric binomial random walk. The idea is simple
enough and the terminology is due to a problem posed by Pearson (see Hughes,
1995, p.53), although the concept dates frommuch earlier, originating in games
of chance. Starting from the origin, at regular intervals a walker takes equally
spaced steps either to the left (north) or to the right (south), with equal prob-
ability. The walker’s progress can be plotted in two dimensions by recording
the distance from the origin on the vertical axis and the elapsed time on the
horizontal axis; for example, one step to the north followed by one step to the
south returns the walker to the origin. Such a graph will look like a series of
equally sized steps, see Figure 1.1; perhaps surprisingly, the resulting path does
not generally oscillate around zero, the theoretical mean of the process. This
lack of ‘mean reversion’ is one of the key characteristics of a random walk. In
this form the process has its origins in gambling, where the gambler gains or
loses an equal amount at each gamble, with equal probability, and intuition
might suggest that the gambler is not systematically losing or winning. The
‘distance from the origin’ corresponds to the gambler’s win/lose tally, which is
one-dimensional and can be represented on the vertical axis.

There are several ways to generalise the randomwalk described above. Indeed,
Pearson’s problem was originally posed in a more general form. In particu-
lar, whilst the walker takes equally spaced steps of length x, he is allowed to
pivot through any angle before taking the next step, not simply going north
or south, which is an angle of ±90◦ to his orientation. For example, taking an
equally spaced step at 45◦ would place the walker in a north-east direction. The

1
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Figure 1.1 Sample paths of a binomial random walk.

walk could therefore be represented as a bird’s-eye view of his progress in two-
dimensional geographic space (with time an implicit third dimension). In this
case starting at the origin, one step in a northward direction followed by one
step in a southward direction will not necessarily return the walker to the ori-
gin, as the step angle may differ from±90◦. By focusing on, say, the north-south
direction, this random walk can be represented in two dimensions with time as
one of the dimensions. The step size in the single dimension will depend on
the pivoting angle and so will no longer be a constant; moreover, the resulting
random variable is continuous as the step size defined in this dimension can
vary continuously between 0 and x.

The random walk is of interest in its own right in economics as it provides a
statistical model that is paired with rational expectations and some versions of
the efficient markets hypothesis. For example, suitably defined, a random walk
has the martingale property that the expected value of the random variable yt
at time t – 1, conditional on the information set Ψ, comprising lagged values
of yt, is yt−1; that is, Et−1(yt|Ψ)=yt−1, where Et−1 is the expectation formed at
time t – 1. An implication of this property is that Et[yt−Et−1(yt|Ψ)]=0, so that
the difference between outturn and expectation, yt −Et−1(yt|Ψ), is ‘news’ rela-
tive to the information contained in Ψ, a property associated with the rational
expectations hypothesis.

An important property of a random walk process arises in the limit as the
time divisions, the time steps, are ‘shrunk’ toward zero. The limiting process is
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Brownian motion, knowledge of which is essential to an understanding of the
distribution of several important unit root test statistics. Hence an introduction
to the random walk also serves as an introduction to Brownian motion.

It is a matter of choice as to the order in which the random walk, and
developments thereof, and the concept of a ‘unit root’ can be introduced. The
preference expressed here is motivated by the fascination often expressed in the
counter-intuitive properties of a simple random walk and how quickly one can
link such processes to economic time series. Given this background, the more
formal testing framework then follows quite naturally, informed by some useful
features of random walk type behaviour that can be illustrated graphically.

Section 1.1 outlines the basic random walk with a number of generalisations
and key properties including, for example, its lack ofmean reversion, sometimes
referred to as mean aversion. Section 1.2 defines Brownian motion (BM) and
sections 1.3 and 1.4 state two key theorems, based on BM, required in unit root
statistics, that is the functional central limit theorem (FCLT) and the continuous
mapping theorem (CMT); these are often used together to obtain the limiting
distribution of a unit root test statistic. Section 1.5 provides a brief background
to the development of unit root and related tests and section 1.6 provides some
selective economic examples in which unit root processes are of interest.

This chapter assumes a basic familiarity with probability and some time series
concepts, which are the more detailed subjects of later chapters. It is, for
example, almost impossible to talk of a unit root without the context of an
autoregressive model, which is itself a special case of the ARMA (autoregres-
sive moving average) class of models, considered in greater detail in Chapter 3.
Similarly, the idea of a unit root is greatly aided by first studying the lag oper-
ator and lag polynomial. The reader may find it useful to review the material
in Appendices 1 and 2: Appendix 1 is a brief introduction to random variables
and Appendix 2 provides some background material on the lag operator. Where
necessary, the ARMA model of Chapter 3 is anticipated in this chapter in just
sufficient detail to make the context self-sufficient.

1.1 Random walks

The concept of a random walk has two roles of interest. First, it is prototypi-
cal model for the representation of the time series of many economic variables,
including real variables such as output and employment and nominal or finan-
cial variables such as price levels, inflation rates and exchange rates. It is often
taken as a ‘default’ or ‘baseline’ model from which other models are evaluated.
Second, random walks, or their limiting forms, appear as partial sum processes,
psp, in econometric estimators, especially in distribution theory for estimators
and test statistics. In the limit, here interpreted as taking smaller and smaller
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steps in a given time interval, the random walk leads to Brownian motion,
which is considered in section 1.7.

1.1.1 The random walk as a partial sum process (psp)

We start with the random variable yt, with a sequence of length T of such
variables written as {yt}Tt=1. Apart from the starting value y0, values of yt are
determined by the following one period recursion:

yt=yt−1+εt t=1, . . . ,T (1.1)

Thus, yt is determined as its previous value, yt−1, plus the intervention of a
random variable denoted εt, usually referred to as a ‘shock’ in the sense that yt
would otherwise just be yt−1. The sequence {εt}Tt=1 is assumed to be indepen-
dent white noise. (White noise, WN, requires E(εt)=0, E(ε2t )=σ2ε for all t, and
E(εtεs)=0 for t �= s; if all members of the sequence {εt}Tt=1 are independently and
identically distributed, then {εt}Tt=1 is referred to as independent or strong white
noise sequence.)

This random walk is a partial sum process (psp) as, by successive back substi-
tution, yt can be expressed as y0 plus the cumulated sum of the sequence, to
that point, of stochastic inputs:

yt=y0+ ∑t
j=1 εj (1.2)

One of the insights in distinguishing the behaviour of a time series generated
by a randomwalk yt=yt−1+εt (and generalisations of this process) is the nature
of its evolution over time. Viewing {εt}t1 as a sequence of ‘shocks’, a particular
sample path of yt is determined by the starting position y0 and the cumulated
shocks, each of which receives an equal weight – in particular, there is no sense
in which the past is forgotten, a feature that is sometimes referred to as infinite
‘memory’.

Such processes occur quite readily in gambling and have been the subject of
considerable study and extension (see, for example, the classic text by Feller,
1968). A simple case that illustrates much of interest is the symmetric, binomial
random walk generated by a sequence of gambles on the outcome of the toss of
a fair coin: a coin is tossed, with the gambler winning one (+1) ‘chip’ if it lands
heads and losing one (–1) ‘chip’ if it lands tails; the game continues sequen-
tially with further tosses of the coin, indexed by the counter t=1, . . . , T. For
simplicity, the games are assumed to be played at the rate of one per period t,
so t increments in units of 1 from 1 to T. Each toss of the coin is referred to as
a ‘trial’, a term that originates from Bernoulli trials, resulting in the binary out-
comes ‘success’ or ‘failure’, with probabilities p and q, respectively. Successive
trials are independent in the sense that the outcome on any one is unaffected
by any of the others.
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To put the process more formally, let xt be the random variable representing
the coin toss on the t-th toss of the coin; the sample space associated with each
single toss of the coin is Ωj= (H, T), and the associated probability measure is
Pxj =(px1,p

x
2); note that an italicised T, T, refers to the outcome that the coin toss

is a tail. Next let εj be the random variable that is derived from xj, such that the
original sample space Ωj is mapped to Ωε

j = (+1, –1). The probability measures
of xj and εj are the same; for example, for a symmetric random walk p=q=1/2,
so that Pxj =Pε

j = (1/2, 1/2); if p �= q then the resulting process is an asymmetric
random walk.

The random variable yt is the partial sum of the derived random variables
εj, j=1, . . . , t, and is usually referred to as the ‘tally’. We assume that there
is no ‘charge’ to enter the game, so that y0=0. The sample space of yt is
the t-dimensional product space of Ω1, that is Ωy

t =(Ωε
1)

t=Ωε
1 × Ωε

1 × . . .× Ωε
1

and, by independence, the probability measure associated with yt is the prod-
uct measure Pyt =(Pε

1)
t=Pε

1 × Pε
1 × . . .× Pε

1. Note that E(εt)=0, t=1, . . . , T and
E(yt)=E(y0)+∑t

i=1 E(εi)=0, so that the theoretical mean of the tally is zero.
The counterpart of the random walk sequence generated by the gambler is

the random walk of the ‘banker’:

yB,t=yB,t−1− εt (1.3)

=yB,0−∑t
j=1 εj

Note that this is an example of a ‘zero sum’ game since yB,t+yt=yB,0
−∑t

j=1 εj+y0+∑t
j=1 εj=yB,0+y0, where the latter equals zero if both parties start

with zero capital. It will occasionally be useful to look at the random walk from
the banker’s perspective.

The random walk of Equation (1.1) was simulated with T=500 and binomial
inputs; ten sample paths were shown in Figure 1.1. These paths tend to con-
found intuition. A line of reasoning that seems attractive is that as the expected
value of each component random variable εj is zero, the expectation of the tally,
E(yt), is zero, hence the sample paths can be expected to fluctuate reasonably
evenly about zero. The figure shows that this line of reasoning is false. There
is very little reversion to the expected value of zero; indeed, once started in
a particular direction, whether that is in the positive or negative half of the
diagram, a sample path only rarely crosses (traverses), or is reflected from, the
zero axis; these are collectively referred to as ‘visits to the origin’ or mean rever-
sions, the number of which is a key characteristic that is considered further in
section 1.1.3.

1.1.2 Random walks: visits to the origin (sign changes and reflections)

As noted in the previous section, one of the characteristics of a random walk is
that there is very little mean reversion; that is, although E(yt)=0, which is the
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‘origin’ for this process, this is not an ‘attractor’ for the sample path. To formalise
this idea, let VT be the number of visits to the origin (including reflections) of a
symmetric binomial randomwalk of length T, then ζT=VT/

√
T is the normalised

number of such visits with distribution function F(ζT) for finite T. It turns out
that F(ζT) has a simple limiting distribution as follows:

F(ζT)⇒D F(ζ)=2Φ(ζ)−1 (1.4)

where Φ(ζ) is the (cumulative) standard normal distribution function. Equally,
one can write in terms of the random variables that ζT ⇒D ζ, where ζ is a random
variable with the half-normal distribution. Thus, the distribution function F(ζ)
is that of the absolute value of a normally distributed random variable with
mean μ=0 and variance σ2 (see Feller, 1968; Burridge and Guerre, 1996; Garciá
and Sansó, 2006). If σ2=1, as in the symmetric binomial random walk, then
E(ζ)=

√
1/2π=0.7979, so that E(VT)=0.7979

√
T, which is to the right of the

median; if T=500, then the integer part of E(V500) is 17. The median of F(ζ)
is 0.674, so that the median number of mean reversions for (large) T trials is
about 0.674

√
T (about because of the need to be an integer); for example, if

T=500, then median is about 15. The distribution function, F(ζ), and its mean
and median are illustrated in Figure 1.2.
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Figure 1.2 Distribution function of visits to the origin.
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1.1.3 Random walk: an example of a stochastic process

Note that a random walk is an example of a stochastic process and, in the lan-
guage of such processes, the realisations in Figure 1.1 are trajectories or sample
paths. Our interest generally lies not in the outcome of a random variable at a
single point in time, but in a sample path, or the distribution of sample paths,
of a sequence of random variables over an interval of time.

To conceptualise how such sample paths arise the idea of a stochastic pro-
cess involves a sample space Ω, a probability space and time. In the case of
the stochastic process defined by the symmetric, binomial random walk then
Ω=Ωy

t , with probability measure Pyt and t=1, . . . , T; note that if T → ∞, then
the sample space and the probability space associated with the product mea-
sure become of infinite dimension. This can also occur if T is fixed and then
partitioned into a grid with ‘mesh’ size Δt and Δt→ 0.
Let Θ be the set of possible values taken by the time index, then in the random

walk of Equation (1.1), time is discrete, so that Θ has a finite or countably infinite
number of elements. Indeed, in this case Θ is the set of positive integers or, if
the process is viewed as starting at t=0, the set of nonnegative integers, t ∈
Θ=N+ = (0, 1, 2, . . . ); equally the process might be viewed as starting in the
infinite past and, hence, t ∈ Θ=N= (0, ±1, ±2, . . .). In the continuous time
case, Θ is an interval, for example Θ=R, or the positive half line Θ=ℜ+ or an
interval on R, for example Θ= [0, 1] or Θ= [0, T].
Stochastic processes may be viewed as taking place in discrete time or in

continuous time, which are represented, respectively, as follows:

Y=(yt(ω) : t ∈ Θ,ω ∈ Ω) discrete time (1.5a)

Y=(y(t,ω) : t ∈ Θ ⊆ ℜ,ω ∈ Ω) continuous time (1.5b)

The continuous-time stochastic process represented at a discrete or countably
infinite number of points is then written either as y(s) or y(t) if only two or
three points in time are being referenced or, more generally, as y(t1),y(t2), . . . . ,
y(tn). Note that reference to ω may be suppressed if it is not material to the
presentation.

For given t ∈ Θ, yt(ω), or y(t,ω), is a function of ω ∈ Ω and is, therefore, a
random variable. A realisation is a single number – the point on the sample path
relating to, say, t=s. By varying the element of Ω, whilst keeping t=s, there is
a distribution of outcomes at that point. For given ω ∈ Ω, yt(ω) is a function
of time, t ∈ Θ. In this case an ‘outcome’ is a complete sample path; that is, a
function of t ∈ Θ, rather than a single number. A description of the sample path
would require a functional relationship rather than a single number. By varying
ω a different complete sample path is obtained; that is, (potentially) different
realisations for all t ∈ Θ.
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The component random variables in the binomial random walk are discrete,
with a simple countable number of outcomes; indeed, just two in this case.
Hence this specification of the random walk is an example of a discrete time,
discrete variable stochastic process. Later we will consider a random walk where
the stochastic inputs, εt, are distributed as N(0, σ2ε ), in which case the stochas-
tic process so generated is an example of a discrete time, continuous variable
stochastic process. A case of particular interest that arises in the context of
Brownian motion is a continuous time stochastic process. One can view this as
the limit of a discrete time process in which a given interval of time is divided
into a finer and finer grid, so that Δt → 0 and Θ=R, or the positive half-line
Θ=ℜ+ or an interval on R, for example, Θ= [0, 1].
As noted, often the reference to ω ∈ Ω is suppressed and a single random

variable in the stochastic process is written yt, but the underlying dependence
on the sample space should be recognised and means that different ω ∈ Ω give
rise to potentially different sample paths.

1.1.4 Random walk: an example of a nonstationary process

A key distinction in econometrics and statistics is between processes that are
stationary and those that are nonstationary. In a time series context, these are
said to generate time series that are, respectively, stationary or nonstationary,
it being understood that it is the underlying generating process that is sta-
tionary or nonstationary. Intuitively, stochastic processes that are stationary
are unchanging in some key aspects, which give rise to several definitions of
stationarity, differences between them depending on what is assumed to be
unchanging. A strong form of stationarity requires that the joint probability
distribution of the random variables that comprise the stochastic process is
unchanging; however, the most often used definition in econometrics relates to
a weakly (or second-order) stationary process. These definitions are considered
in the next two subsections.

1.1.4.i A strictly stationary process

Let τ �= s and T be arbitrary, if Y is a strictly stationary, discrete time process for
a discrete random variable, yt, then:

P(yτ+1,yτ+2, . . . ,yτ+T)=P(ys+1,ys+2, . . . ,ys+T) (1.6)

That is, the joint probability mass function (pmf) for the sequence of length T
starting at time τ+1 is the same for any shift in the time index from τ to s and
for any choice of T. This means that it does not matter which T-length portion of
the sequence we observe. Since a special case of this result in the discrete case is
for T=1; that is, P(yτ)=P(ys), themarginal pmfs must also be the same for τ �= s,
implying that E(yτ)=E(ys). These results imply that other moments, including
joint moments, such as the covariances, are invariant to arbitrary time shifts.
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If the random variables are continuous and also defined in continuous time,
a strictly stationary random process must satisfy the following:

F[y(τ+t1),y(τ+t2), . . . ,y(τ+tN)]=F[y(s+t1),y(s+t2), . . . ,y(s+tN)] (1.7)

where t1 < t2 . . . < tN, τ �= s and F(.) is the joint distribution function, (see
Appendix 1). If the probability density functions (pdfs) exist, then an analogous
condition holds where F(.) is replaced by the joint pdf, denoted f(.):

f[y(τ+t1),y(τ+t2), . . . ,y(τ+tN)]= f[y(s+t1),y(s+t2), . . . ,y(s+tN)] (1.8)

1.1.4.ii Weak or second-order stationarity (covariance stationarity)

A less demanding form of stationarity is weak or second-order stationarity,
which requires that the following three conditions are satisfied for arbitrary τ

and s, τ �= s:

SS1 : E(yτ)=E(ys)=μ (1.9a)

SS2 : var(yτ)=var(ys)=σ2y (1.9b)

SS3 : cov(yτ,yτ+k)=cov(ys,ys+k) (1.9c)

The moments in SS1–SS3 are assumed to exist. The first condition states that the
mean is constant, the second that the variance is constant and the third that
the k-th order autocovariance is invariant to an arbitrary shift in the time origin.
The extension to continuous time is straightforward, replacing yτ by y(τ), and
so on. From these three conditions, it is evident that a stochastic process could
fail to be weakly stationary because its mean is changing; and/or its variance is
changing; and/or the k-th order autocovariances depend on time for some k.

A stochastic process that is not stationary is said to be nonstationary. A non-
stationary process could be: nonstationary in the mean; nonstationary in the
variance; and/or nonstatonary in the autocovariances. Usually it is apparent
from the context whether the stationarity being referred to is strict or weak.
When the word ‘stationary’ is used without qualification, it is taken to refer to
weak stationarity, shortened to WS, but, perhaps, most frequently referred to
as covariance stationarity. (Weak or covariance stationarity is also referred to as
wide-sense stationary, leading to the initials WSS.)

Two particular cases of interest relate to difference stationarity and trend sta-
tionarity, generally referred to as DS and TS, respectively. A process that is DS is
nonstationary in the levels of its component random variables, but stationary
in their first differences. Thus, the stochastic process Y is DS if:

Y=(yt(ω) : t ∈ Θ,ω ∈ Ω) nonstationary process

DY=(Δyt(ω) : t ∈ Θ∗ ⊆ Θ,ω ∈ Ω) stationary process
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The random walk yt=yt−1+εt is an example of a DS process for, as elaborated
below, neither its variance nor its autocovariances satisfy conditions SS2 and
SS3; however, Δyt=εt satisfies these conditions for t ∈ Θ∗ ⊆ Θ. The nonstation-
arity in Y is due to the implied accumulation of shocks, which is evident from
the representation in Equation (1.2).

A TS process is one that is stationary after the removal of a deterministic trend.
Typically, a linear trend is assumed for the generating process, thus observations
that are generated from such a process will tend to have the direction given by
the sign of the trend implying E(yt) �= constant, and will not, therefore, satisfy
SS1, even though they may satisfy SS2 and SS3. However, removal of the trend
gives the detrended series, which will be stationary.

Y=(yt(ω) : t ∈ Θ,ω ∈ Ω) nonstationary process

Ỹ=(ỹt(ω) : t ∈ Θ,ω ∈ Ω) stationary process

ỹt(ω)≡ yt(ω)−μt detrended observation

The deterministic components are captured by the term μt; for example,
μt=β0+β1t, so that ỹt(ω) is the detrended data for period t. For practical
applications, an estimate of μt will be required.

The next two subsections show that the random walk is not a stationary
process by virtue of an increasing variance and autocovariances that are not
invariant to a translation of the time index.

1.1.4.iii The variance of a random walk increases over time

One of the problems for an intuitive understanding of the behaviour of a ran-
dom walk sample path, is that the variance of yt is not constant; indeed, it
increases linearly with t – this means that the range of yt increases with t. This
characteristic reflects the lack of stationarity of the distribution of yt as t varies.
The variance of yt is as follows:

var(yt)= ∑t
j=1 var(εj)+2∑t

i=1∑t
j>i cov(εi,εj) (1.10a)

= ∑t
j=1 var(εj) as cov(εi,εj)=0, i �= j (1.10b)

=tσ2ε as var(εj)=σ2ε for all j (1.10c)

In the case of the symmetric, binomial randomwalk σ2ε =1 and E(yt)=0 for all t;
but the variance increases with t, such that the variance of y1 is 1, the variance
of y100 is 100 and the variance of y500 is 500. Note that provided cov(εi,εj)=0,
i �= j and var(εj)=σ2ε for all j, then, holds, so the result would also hold for
εt ∼ niid(0,σ2ε ) or, weaker still, that εt is white noise.
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1.1.4.iv The autocovariances of a random walk are not constant

The k-th order autocovariance, γ(k), is a measure of the (linear) dependence
between yt and its k-th lag, yt−k, equivalently, the k-th lead, if the process
generating the data is covariance stationary. γ(k) is defined as follows:

γ(k)=E[yt−E(yt)][(yt−k−E(yt−k)] k= ±1,2,3, . . . (1.11)

=cov(yt,yt−k)

Clearly, the expectations in (1.11) must exist for γ(k) to be defined. The variance
γ(0) is given by setting k=0:

γ(0)=E[yt−E(yt)]2 (1.12)

For a stationary process, the k-th order autocorrelation coefficient ρ(k) is γ(k)
scaled by the variance, γ(0) (which is constant on this assumption), so that:

ρ(k)=
γ(k)
γ(0)

(1.13)

The scaling ensures that 0 ≤ |ρk| ≤ 1. Considered as a function of k, γ(k) and
ρ(k) give rise to the autocovariance and autocorrelation functions; the latter
portrayed graphically, with k on the horizontal axis and ρk on the vertical axis,
is referred to as the correlogram. (See equation (1.16) for an adjustment to ρ(k)
for a nonstationary process.)

Covariance (or second-order) stationarity requires that the γ(k) should be
invariant to a translation of the time index, provided that a distance of k periods
is maintained between the random variables. This is not the case for a random
walk. To illustrate, assume for simplicity that y0 is a fixed constant, so that
var(y0)=0, then γ(1) for t=2 and t=3, are, respectively, as follows:

cov(y1,y2)=cov(ε1,ε1+ε2)

=var(ε1)+cov(ε1,ε2)

=σ2ε

cov(y2,y3)=cov(ε1+ε2,ε1+ε2+ε3)

=var(ε1)+var(ε2)+2cov(ε1,ε2)+cov(ε1,ε3)+cov(ε2,ε3)

=2σ2ε

Hence cov(y1,y2) �= cov(y2,y3) although both relate to an index value k=1.
These derivations exploit the properties of white noise E(ε2t )=σ2ε for all t, and



12 Unit Root Tests in Time Series

E(εtεs)=0 for t �= s. In general, γ(1) for arbitrary t is given by:

cov(yt−1,yt)=cov(∑t−1
j=1 εj,∑t

j=1 εj) (1.14)

=(t−1)σ2ε

Hence, γ(1) varies as the time index varies, increasing linearly with t. This result
generalises to γ(k), so that

cov(yt−k,yt)=cov(∑t−k
j=1 εj,∑t

j=1 εj) (1.15)

=(t−k)σ2ε

As noted above, the k-th order autocorrelation coefficient, ρ(k), is the standard-
ised, or scaled, k-th order autocovariance. If the sequence {yt}Tt=1 is stationary,
such that (inter alia) var(yt−k)=var(yt)=γ(0), for all t given k, then the appro-
priate scaling is γ(0). However, in the nonstationary case, such as the random
walk of Equation (1.1), var(yt−k) �= var(yt), leading to the following variation:

ρ(k)=
cov(yt−k,yt)√
var(yt−k)var(yt)

(1.16)

=
(t−k)σ2ε√

((t−k)σ2ε )(tσ2ε )

=
√
(1−k/t)

For finite t, ρ(k) depends on t for a given k and is not, therefore, invariant to
the time index t. Note that ρ(k) → 1 as t → ∞.

1.1.5 A simple random walk with Gaussian inputs

An obvious extension of the symmetric random walk is to generate the stochas-
tic inputs as draws from a normal distribution or some other symmetric continu-
ous distribution. This gives a smother pattern to the sample paths, but otherwise
replicates the pattern of long sojourns of the paths in one half or the other. This
is illustrated in Figure 1.3 where εt ∼ niid(0, 1), but otherwise the details are
as for Figure 1.1. In the case of Gaussian inputs, E(VT)=0.6363

√
T compared

to E(VT)=0.7979
√
T for the binomial inputs. For example, if T=500 then the

integer part of E(VT) is 14, compared to 17 for binomial inputs.

1.1.6 Variations on the simple random walk

There are several interesting variations on the basic or ‘pure’ random walk of
yt=yt−1+εt. One of the most useful imparts a direction to the random walk,
which can be done in one of two ways. First, the random walk can be made
asymmetric. This is very simple to do in the case of binomial inputs, and cor-
responds to p �= q; for example, to continue the gambling example, suppose
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Figure 1.3 Sample paths of a Gaussian random walk.

that p > q, then this will impart a positive direction to the walk. To illustrate,
the simulations underlying Figure 1.1 were repeated but with p=0.55, 0.6, 0.65
and 0.7, with the results shown in Figure 1.4. Even in the case of p=0.55, this
change is sufficient to make the walk almost entirely positive, and as p increases
further the walk has a clear positive direction.

The second and perhaps more familiar way to impart a direction to the
random walk is to introduce ‘drift’, so that the random walk becomes:

yt=μ+yt−1+εt (1.17)

Thus, ceteris paribus, the increment/decrement to the randomwalk each period
is μ, and the sign of μ will determine the direction of the drift subject to the
realisation of εt. As in (1.2), by repeated back substitution yt can be expressed as
y0 plus the cumulated stochastic inputs, but in this case there is an additional
deterministic time trend due to the accumulation of drift:

yt=y0+μt+ ∑t
j=1 εj (1.18)

The direction to the sample path of yt is imparted by the term μt, and the
random walk generated by the cumulated sum of shocks will, depending on the
sign and magnitude of μ, tend to be observed mostly on either the positive or
the negative side of the zero axis. In the context of a gambling game μ> 0 could
be the cost per play if the random walk is viewed from the banker’s perspective,
whereas it is the negative of the cost per play if the random walk is from the
gambler’s perspective.
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Figure 1.4 Sample paths of asymmetric binomial random walks.

The drifted random walk is important because it is a possible characterisation
of economic time series that inherently have a direction, as is usually the case
with macroeconomic aggregates such as the expenditure components of GNP,
employment and price indices. It offers an explanation that is alternative to
serially correlated deviations about a deterministic time trend. To illustrate, ten
sample paths are shown in Figure 1.5 for a symmetric binomial random walk
with μ=0.05, 0.1, 0.15, 0.2. As the standard deviation of εt is unity, the drift
coefficient is in units of σε. The positive drift to the randomwalk becomes clearer
as μ increases.

1.1.7 An empirical illustration

To illustrate random walk-like behaviour in a real time series, we consider the
exchange rate of the Swiss Franc (SWFR) against the UK £, with T=7,347 daily
observations from 2 January 1980. The data are graphed in Figure 1.6, with
the mean of 2.59 superimposed on the figure. Note that the time axis has been
scaled so that its range is from 0 to 1; in effect, each time division is represented
as 1/T units of time. There are just 39 crossings of the sample mean during
the observation period compared to an expected number of 68 for a sample
of this size generated by a random walk with Gaussian inputs. The last 1,000
observations are plotted in Figure 1.7 as a scatter graph of yt and yt−1; this figure
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Figure 1.5 Sample paths of drifted symmetric binomial random walks.
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Figure 1.7 Scatter graph of daily, SWFR:£.

show the observations clustered around a line with a slope of 45◦, which is
suggestive of a random walk, although more formally testing would be required
to assess this hypothesis.

1.1.8 Finer divisions within a fixed interval: towards Brownian motion

The next step in terms of obtaining the limiting process is to fix the length
of the time interval, and then divide it into smaller and smaller parts, so that
in the limit as the size of the divisions tends to zero, the random walk becomes
a continuous process. The random walk is then defined on an interval on the
real line with range zero to unity.

The length of the walk T is fixed and then divided into N small time steps,
so that Δt=T/N; N is then allowed to increase, so that the time divisions
approach 0. There is no loss in setting T=1 and, therefore, Δt=1/N. Within
the unit interval an individual instant of time is denoted tj, which satisfies
tj=tj−1+Δt, so that Θ= [t0=0, t1, . . . , tN−1, tN=1], where tj= j/N. The other
parameter in the random walk is the size of each step, or win/loss amount in
a gamble, which is taken to be Δyt=(

√
Δt)εt. The variance of Δyt is therefore

(Δt)σ2ε , a choice which ensures that if Δt=1 then the step size is εt, as in the
standard random walk.

The random walk is now:

ytj =ytj−1 +(
√

Δt)εt (1.19)

The conditional variance of ytj is var(ytj |ytj−1)=Δtσ2ε , whereas the unconditional

variance of ytj is var(ytj)=tjσ2ε ; and if σ2ε =1, then tjσ2ε =tj.
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Figure 1.8 Gaussian random walk as time divisions approach zero.

To illustrate the sample paths as the time division tend to zero, the Gaussian
random walk was simulated over the unit interval, so that t ∈ Θ= [0, 1], εt ∼
N(0, 1), T=1 and N=25h, for h=1, 2, 3, 4; with these values the unit interval
is first divided into 25 equal parts and finally into 390,625 equal parts, so that
the grid of time divisions is at first very coarse, but becomes finer and finer as N
increases. The resulting sample paths are shown in Figure 1.8.

An interesting question is whether the sample paths generated as Δt→ 0 have
any characteristics of interest. The answer is yes, but we first need a limiting
result. Define a scaled version of ytj as follows:

Ytj ≡
ytj

σε

√
N

(1.20)

If εt ∼ iid(0, σ2ε ) and Ytj is generated as in (1.14) then as N → ∞, with T fixed,
so that Δt → 0, it follows that:

Ytj ⇒D N(0, tj) (1.21)

=
√

tjN(0,1)

This result follows by application of the standard central limit theorem (CLT)
and is an example of an invariance principle in the sense that although εt is
not necessarily normally distributed, in the limit, as N → ∞, a suitably scaled
version of ytj is normally distributed. In fact, the assumption that εt ∼ iid(0, σ2ε )
is sufficient rather than necessary for (1.21) to hold. The CLT still goes through
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if {εt}Tt=1 is a martingale difference sequence (see Billingsley, 1995, p.475; and
for generalisations and references, the interested reader is referred to Merlevède,
Peligrad and Utev, 2006; Ibragimov and Linnik, 1971).

Equation (1.21) states that ytj scaled by σε

√
N has a limiting normal distri-

bution with variance var(ytj)=tj; thus, dividing the scaled partial sum by
√
tj

results in a random variable, denoted Ztj , which is distributed as N(0, 1). In
summary:

Ztj ≡
ytj

σε
√
tj
√
N

⇒D N(0,1) (1.22)

These results, especially (1.22), and the division of a fixed time interval into
smaller and smaller parts, lead naturally to the concept of Brownian motion,
which is considered next.

1.2 Definition of Brownian motion

The stochastic process W(t) defined in continuous time is said to be a Brownian
motion (BM) process if the following three conditions are met:

BM1: W(0)=0.
BM2: the increments are independent and stationary over time.
BM3: W(t) ∼ N(0, tσ2); that is W(t) is normally distributed with mean zero and

variance tσ2.

W(t) is a standard Brownian motion process if σ2=1, when it will be denoted
B(t). If σ2 �= 1 and W(0)=0, then B(t)=W(t)/σ converts the process to have
a unit variance and become standard BM. If W(0)=μ �= 0, and σ2 �= 1, then
B(t)=[W(t)−μ]/σ is standard BM, which implies W(t)=μ+σB(t). A trended BM
is obtained if W(t)=βt+σB(t), so that B(t)=[W(t)−βt]/σ is standard BM. In the
case of standard BM, BM3 above is replaced by B(t) ∼ N(0, t). Given BM2 and
BM3, and assume that we are dealing with standard BM, then two related results
are of interest.

First, the difference between BM at times t and s is normally distributed, thus:

B(t)−B(s)∼N(0, t− s)

=
√

(t− s)N(0,1) (1.23)

where 0 ≤ s< t; this says that the increment of (standard) BM over the interval
t− s is normally distributed with zero mean and variance t− s. A consequence
of this result is that letting Δt be an increment of time, then:

B(t+Δt)−B(t)∼
√

ΔtN(0,1) (1.24)

The connection between the scaled random walk of equation (1.19) and BM
should now be evident: the random walk is specified in discrete time and if
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εt ∼ iid(0, σ2ε ), but is not niid, then Ytj is approximately normally distributed
for finite N; BM is specified in continuous time and W(t) and B(t) are exactly
normally distributed. Both of these differences disappear in the limit as Δt→ 0
a result formalised below as the functional central limit theorem (FCLT). Refer-
ring back to Figure 1.8, which graphs some sample paths of a random walk
with increasingly fine time divisions, Δt → 0, the last of the sub-figures has
Δt=1/254=0.00000256, and thus this could equally be taken to illustrate some
sample paths of BM.

BM provides a mathematical model of the diffusion, or motion over time,
of erratic particles; for example, the biologist Robert Brown’s original observa-
tion in 1827 that pollen grains suspended in water exhibited a ceaseless erratic
motion; being bombarded by water molecules, the pollen seemed to be the
subject of myriad chance movements. A similar phenomenon can be observed
with smoke particles colliding with air molecules. In both examples, the trajec-
tory of the particle over any small period is spiky and seemingly chaotic, but
observed over a longer period the particle traces out a smoother path that has
local trends. In an economic context, it is evident that the behaviour of stock
prices over time, particularly very short periods of time, can be quite erratic –
or noisy; however, over a longer period, a direction is imparted to the level of
the series.

BM is used to model these phenomena: at any one point, or over a small
interval, the movement, as captured by the ‘increments’, is erratic and seem-
ingly without structure, whereas over a longer period, the individual erratic
movements are slight relative to the whole path. Hence a key element of BM
is the way that the erratic increments are built up into the level of the series.
Whilst BM specifies normal increments, it can be generalised to increments
from other distributions, as might be appropriate for some financial asset prices,
whose distributions exhibit much greater kurtosis than is found in a normal
distribution.

1.3 Functional central limit theorem (FCLT)

A result of particular use in establishing the distribution of many unit root test
statistics is the functional central limit theorem. Whereas the standard CLT
applies to a suitably scaled random variable, the FCLT applies to a stochastic
process, which defines a function rather than a single random variable. Below,
for example, the simple random walk of length T, which is an example of a par-
tial sum process, is written as a function of a variable r, such that 0 ≤ r ≤ 1.
Allowing r to vary over this range emphasises that the randomwalk is a random
function of r; this is evident from, for example, Figure 1.8, which plots some
sample paths, or trajectories, from a random walk – the whole paths generally
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differ. As noted above, the device of letting Δt → 0, used in plotting Figure 1.8,
leads, in the limit, to Brownian motion.

Assume, for simplicity that y0=0, then the simple random walk yt=∑T
t=1 εt,

t=1, . . . , T, can be written equivalently as follows:

yT(r)= ∑[rT]
t=1 εt (1.25)

The notation yT(r) emphasises the fixed length T of the sequence and the func-
tional dependence on r. The notation [rT] indicates the integer part of rT; thus
rT is exactly an integer for r= j/T, j=1, . . . , T. (Note that j=0 would follow if the
lower limit of the summation in (1.25) was 0.) The virtue of (1.25) is that yT(r)
can be considered as continuous function of r, albeit it will be a step function;
however, the ‘steps’ become increasingly smaller as T → ∞, so that, in the limit,
yT(r) is a continuous function of r. To consider this limit, yT(r) is first normalised
as follows:

ZT(r)≡
yT(r)

σε

√
T

(1.26)

Let εt ∼ iid(0, σ2ε ), with σ2ε < ∞, then the FCLT states that:

ZT(r)⇒D B(r) (1.27)

This is sometimes stated in slightly abbreviated form as ZT ⇒D B (or with
a variant of the ⇒D notation). Equation (1.27) states that a suitably nor-
malised version of yT(r) converges to standard Brownian motion. If yT(r) is not
normalised by σ2ε , that is, define, say, vT(r) ≡ yT(r)/

√
T, then:

vT(r)⇒D W(r)=σεB(r) (1.28)

The FCLT is another example of an invariance principle in that the conver-
gence result is invariant to the distribution of the stochastic inputs that drive
yT(r) and so ZT(r), in particular they do not have to be Gaussian. Of course,
some assumptions have to be made about these inputs, but these assumptions,
discussed below, are relatively weak, and the FCLT is simply extended to cover
such cases. The nature of Brownian motion B(r) means that it is normally dis-
tributed for all r in its domain, its increments are normally distributed and it is
jointly normally distributed for different values of r. The CLT is in this sense a
by-product of the FCLT.

The notation ⇒D is used here as it would be in the case of conventional
asymptotic results, where it indicates convergence in distribution; however,
here it refers here to the weak convergence of the probability measures (see
Billingsley, 1995; Davidson, 1994, for more detail). The latter is more encom-
passing than convergence in distribution, which just compares the distribution
of one random variable with another. In effect, the convergence relates to the
convergence of one stochastic process to another, rather than of a single random
variable to another.
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1.4 Continuous mapping theorem (CMT)

The FCLT is often used in combination with the CMT applied to function spaces
to establish distributional results for unit root test statistics. We first state the
CMT and then its extension to function spaces.

Consider the random variable xT and the continuous function f(.), then the
CMT states that:

if xT ⇒D x and P(x ∈Dg)=0, then f(xT)⇒D f(x) (1.29)

where Dg is the set of discontinuity points of f(x) and P(.) indicates probability,
(for an elaboration, see Billingsley, 1995, Theorem 25.7; Davidson, 1994, Theo-
rem 22.11, 2000, Theorem 3.1.3). A familiar case from elementary texts is when
xT ⇒D x∼ N(0, 1) and f(x)=x2, then f(x)⇒D χ2(1); thus, if xT is asymptotically
distributed as standard normal, then x2T is asymptotically χ2(1). An example is
provided by the standard regression t test, which has a small sample ‘t’ distri-
bution but converges in distribution to N(0, 1), thus its square converges to
χ2(1).
The next step is to extend the CMT to functionals, that is functions of

stochastic processes which are themselves functions; in this case, interest is in
a function of a stochastic process, ZT(r), such as g(ZT(r))=ZT(r)2, where g(.) is a
continuous mapping, apart from a set of measure zero. The (extended) CMT for
functionals of the stochastic process ZT(r) is as follows (where D is the domain
of the argument of g(.)).

Let g(.) be a functional that maps D to the real line, g: D �→ R, and which is
continuous apart from a set of measure zero, if ZT(r) ⇒D B(r), then:

g(ZT(r))⇒D g(B(r)) (1.30)

An application of the extended CMT for g(ZT(r))=ZT(r)2 yields the following:
if ZT(r) ⇒D B(r), then ZT(r)2 ⇒DB(r)2.
An application of the extended CMT, of particular importance in unit root

tests, relates to the least squares (LS) estimator in the AR(1) model that nests the
simple random walk. Consider estimating the following:

yt=ρyt−1+εt (1.31)

where {εt}Tt=1 is assumed to be a sequence of iid random variables, with zero
mean and constant variance, written εt ∼ iid(0, σ2ε ). Clearly, ρ=1 corresponds
to the simple random walk of Equation (1.1), so that a natural hypothesis test-
ing approach is to set H0: ρ=1 against HA: |ρ|< 1. In the context of (1.31) this
is the unit root hypothesis, of which more in the next section and in particular
a rationalisation of the word ‘root’ in this context. In this framework, equation
(1.31) is the hypothesised data-generating process and the maintained regres-
sion, but more generally these may differ. Implicit in this set-up is that y0 is a
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starting value and is either a constant – for example, y0=0 – or a draw from a
distribution with a finite variance.

One possible test statistic, suggested by Dickey and Fuller (see Fuller, 1976),
is δ̂ ≡ T(ρ̂−1), where ρ̂ is the LS estimator of ρ, large negative values of which
will be inconsistent with H0. The quantities needed to construct δ̂ are given as
follows:

ρ̂=
∑T
t=1 ytyt−1

∑T
t=1 y

2
t−1

(1.32)

ρ̂−1=
∑T
t=1 yt−1(yt−yt−1)

∑T
t=1 y

2
t−1

(1.33)

=
∑T
t=1 yt−1εt

∑T
t=1 y

2
t−1

using yt−yt−1=εt

δ̂≡ T(ρ̂−1)

=T
∑T
t=1 yt−1εt

∑T
t=1 y

2
t−1

=
∑T
t=1 yt−1εt/T

∑T
t=1 y

2
t−1/T

2
(1.34)

Hypothesis testing requires the limiting distribution of δ̂, which is the ratio
of two quantities whose limiting distributions are known (see, for example,
Phillips, 1987; Banerjee et al., 1993; Patterson, 2010). In particular:

T−1∑T
t=1 yt−1εt ⇒D

∫ 1

0
W(r)dW(r)=

1
2

σ2ε [B(1)
2−1] (1.35)

T−2∑T
t=1 y

2
t−1 ⇒D

∫ 1

0
W(r)2dr=σ2ε

∫ 1

0
B(r)2dr (1.36)

The limiting distribution, F(δ̂), then follows from the extended CMT so that:

δ̂⇒D

∫ 1
0 W(r)dW(r)∫ 1
0 W(r)2dr

≡ F(δ̂) (1.37)

=
1
2
[B(1)2−1]∫ 1
0 B(r)2dr

The second line uses (1.35) and (1.36), so that σ2ε cancels from the numerator
and the denominator.

Note that equations (1.35), (1.36) and (1.37) involve integrals of Brownian
motion; however, these are not integrals in the standard sense of Reimann or
Reimann-Stieltjes integrals. Indeed, whilst BM is continuous it is nowhere dif-
ferentiable and so these integrals do not exist. Rather, the integrals are defined
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according to the Itô calculus. To cover this topic here would require quite a
lengthy digression; for an excellent introduction to the topic, the interested
reader is referred to Mikosch (1998); and for an introduction tailored to unit
root tests, see Patterson (2010).

1.5 Background to unit root and related tests

The previous section introduced one of the ‘family’ of Dickey-Fuller (DF) test
statistics for a unit root, which is just one of many tests for a unit root. Much has
been written about the ‘unit root’ hypothesis, with a multiplicity of tests and a
wide range of applications to be found in journal articles, textbooks and theses.
In a selective survey published in 1990, Diebold and Nerlove (1990) noted then
that ‘The unit root literature is vast . . . .’ It is two decades since that survey, with
no abatement in the interest in unit roots, and the topic in some form is still one
of the key areas of interest in journal articles. Additionally, many econometric
software packages, those available both commercially and academically, include
at least one and usually more such test statistics in their programmed options,
and the results of such tests are routinely computed for inclusion in undergradu-
ate and graduate project work, including doctoral theses, and in journal articles.
A section on ‘unit root testing’ is now close to compulsory in all but the most
elementary of econometric courses and textbooks.

1.5.1 What is a unit root?

To gain some understanding of what is meant by a unit root, first consider the
simplest case where a sequence of random variables {yt}Tt=1 is generated by an
AR(1) model so that, as in Equation (1.31), yt=ρyt−1+εt, with εt, t=1, . . . , T. If
ρ=1, then yt=yt−1+εt; that is, Δyt=εt, where Δyt ≡ yt−yt−1, and there is said
to be a unit root, strictly in the generating process, but often loosely referred
to as in yt or in the time series of observations or realisations of yt. The next
section considers how to generalise this idea.

1.5.1.i Generalising the random walk

There is more than one way of representing the generalisation. In the first rep-
resentation the AR(1) model is extended directly with further lags on yt; for
example, the AR(2) model is written as yt=φ1yt−1+φ2yt−2+εt. For consistency,
the AR(1) model would then be written with the coefficient denoted φ1 rather
than ρ. The AR(2) model could, potentially, have a single unit root, which cor-
responds to H0:φ1+φ2=1, or two unit roots, which corresponds to H0:φ1=2
and φ2=–1. In the latter case the model can be written as Δ2yt=εt, so that
Δyt=Δyt−1+εt, where Δ2yt ≡ Δyt −Δyt−1. In this specification, there is a unit
root in the first differences, which necessarily already have a unit root.
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An alternative way of writing an AR model, which at the same time allows a
simple but important generalisation, is to adopt a common factor interpretation
(see Chapter 3, section 3.8.1.ii), in which the possible unit root is isolated, with
any other dynamic effects originating from the error term. This model is, as is
the simple AR model, more easily written with the use of the lag operator and
lag polynomial, considered in detail in Appendix 2, introduced briefly here with
what is sufficient for present purposes.

First define the lag operator L, such that when applied to the variable yt, it
induces the j-th order lag, that is Ljyt ≡ yt−j; if j < 0, then Ljyt is a lead. The lag
operator can be used to define a model with lags, such as an AR model or, when
combined with a moving average (MA) error, an ARMA (autoregressive moving
average) model. For example, the AR(2) model can be written as (1 − φ1L −
φ2L2)yt=εt; and the ARMA(2, 1) model, which is of order 2 in its AR component
and 1 in its MA component, is written as (1 − φ1L − φ2L2)yt=(1+θ1L)εt. In
general the ARMA(p, q) model is represented compactly as follows:

φ(L)(yt−μt)=θ(L)εt (1.38a)

φ(L)=1−∑p
j=1φiL

i (1.38b)

θ(L)=1+ ∑q
j=1 θjL

j (1.38c)

where μt comprises deterministic terms; for example, a constant or a constant
and a linear trend, so that yt is adjusted for a nonzero long-run (deterministic)
component by subtracting μt.

With the benefit of the lag operator and lag polynomial, the common factor
form of the model is written as follows:

yt=μt+zt (1.39a)

φ(L)zt=θ(L)εt (1.39b)

φ(L)=(1− ρL)ϕ(L) (1.39c)

From the perspective of this model, the AR polynomial φ(L) has been factored
as the product of two polynomials (1− ρL) and ϕ(L), one of which is a first-
order polynomial, with a unit root if ρ=1, and the other is a polynomial of
one lower order than φ(L). The unit root null hypothesis can then always be
expressed as H0:ρ=1, whatever the order of φ(L). Contrast this with H0 in the
direct ARMA(p, q) model, which is ∑p

j=1φj=1.
At this point note a convention that should be borne in mind (it is elaborated

on in Appendix 2), which can be briefly illustrated with themodel (1−ρL)yt=εt.
The definition adopted here is that the root of the lag polynomial (1− ρL) is
δ1=ρ−1, with reciprocal δ−1

1 =ρ; hence, strictly, it is δ1 not ρ that is the root.
When ρ=1 there is no contradiction in referring to ρ as the root, since δ1=1
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also. When ρ < 1 but close to 1, this situation is usually referred to as a ‘near’-
unit root; this is correct terminology and a usage we follow, but to be precise
(on the definition adopted here), the root in such a case is δ1=ρ−1 > 1.
The existence of a unit root or roots generates a nonstationary process; that

is, the probability structure is not constant over time. For example, in the first
example above, yt has a variance that increases linearly with time and autoco-
variances and autocorrelations that depend on t (that is they are not invariant
to a translation of the time axis); nevertheless, taking the first difference results
in a stationary process. These properties were demonstrated in sections 1.1.4.iii
and 1.1.4.iv.

1.5.1.ii Integrated of order d: the I(d) notation

The idea that there are some nonstationary stochastic processes that can be
made stationary by applying the differencing operator Δ ≡ (1−L) to the com-
ponent random variables a sufficient number of times leads to a commonly
adopted definition of an I(d) series. The following definition was suggested
by Engle and Granger (EG) (1987): ‘A series with no deterministic component
which has a stationary, invertible, ARMA representation after differencing d
times, is said to be integrated of order d, denoted yt ∼ I(d).’ (EG used the nota-
tion xt, whereas here yt is used throughout.) The reader is very likely to have
encountered expressions such as yt ∼ I(1) or yt ∼ I(0). (For a detailed discus-
sion of what constitutes an I(0) series, see Davidson, 2009.) Although EG focus
on the integer cases d=0 and d=1, they note that their definition applies to
fractional d. One could add, as a clarification, that d is the minimum number
of differences needed to ensure stationarity.

Of particular importance in empirical work is being able to distinguish
between I(0) and I(1) series, and five properties of interest, due to Engle and
Granger (1987), are summarised in Table 1.1.

Given the critical nature of the differences between I(0) and I(1) series, and
more generally, I(d) series with d ≥ 1, it is perhaps not a surprise that a number
of tests have been suggested with this aim in mind. Most of the tests take the
null hypothesis as yt ∼ I(d) with the alternative hypothesis as yt ∼ I(d – 1),
the most frequent case being d=1. However, it is also possible to reverse these
roles so that the null hypothesis is yt ∼ I(d – 1) and the alternative is yt ∼ I(d).
(More precisely, one should refer to the data-generating process as generating
series, or observations, that are I(d).) A brief development of ‘unit root’ tests is
considered in the next section.

1.5.2 The development of unit root tests

In the applications including and immediately following the seminal contri-
bution by Nelson and Plosser (1982), the unit root test statistics were usually
those due to Dickey and Fuller (see Fuller, 1976), which have come to be known
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Table 1.1 Contrasting properties of I(0) and I(1) series.

I(0) I(1)

variance, var(yt) var(yt) is finite var(yt) → ∞ as t → ∞

autocorrelations, ρ(k) invariant to
translation of time
axis
ρ(k) → 0 for k large
enough; finite sum

not invariant to transla-
tion of time axis
ρ(k)→ 1 for all k as t→ ∞;
not summable

innovation effect transient permanent

spectrum, f(λ), at
zero, f(0)

0< f(0)< ∞ f(0) → ∞ as λ→ 0

expected time between
crossings of E(yt)

finite infinite

Note: See Engle and Granger (1987); yt is either I(0) with zero mean or I(1) with y0=0.

as DF or, in their augmented form, ADF statistics. Subsequently, the Phillips
and Perron (1988) developments of these statistics in a semi-parametric form,
known collectively as PP tests, became popular and it was not unusual to see
joint reporting of the ADF and PP tests. However, several other test statistics
were suggested and the battery of such tests started to grow after Nelson and
Plosser’s article.

The development of further unit root test statistics continued in the 1990s,
with a significant contribution by Elliott, Rothenberg and Stock (ERS, 1996) and
an allied paper by Elliott (1999); both papers were available in discussion paper
form several years before their publication dates. These articles noted that whilst
it was not possible to obtain a single test statistic that was uniformly most pow-
erful across the entire parameter space of interest, it was possible to develop a
test statistic that was most powerful against a particular point in the parameter
space, hence the terminology of a ‘point-optimal’ test. The problem with this
approach was that it seemed to require an infinity of test statistics, one for each
point in the parameter space under the alternative hypothesis. However, ERS
were able to show that very little, if any, power was lost by, in effect, choos-
ing just one value of the root in the stationary region as representative of all of
those near to the unit root and then computing the test statistic using that value.
Moreover, a variation of the approach led to the use of quasi-differenced data
in standard tests such as the DF/ADF tests, so that ERS-type tests became easy to
apply and popular – and familiar from the quasi-differencing approach to deal
with weakly dependent errors in a regression model, as in the Cochrane-Orcutt
procedure.
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ERS-type tests joined the set of DF tests as those to which practitioners would
most readily turn, partly because they were quickly incorporated into com-
mercially available software. Indeed, they were often preferred because of their
superior power under the assumptions of their derivation.

At the risk of simplification, the next important development came in exploit-
ing the difference between the assumptions in ERS (1996) and Elliott (1999).
In essence, the difference was quite simple: what was the nature of the start-
ing point or initial condition in a time series process? For example, consider a
trended series that is adequately modelled under the alternative hypothesis as
stationary around a linear trend. Does it makemuch difference to the test results
if the starting point is close to or far away from the trend (in some well-defined
measure)? For example, consider one of the data sets used in this book compris-
ing US industrial production with 1,044 observations for 1919m1 to 2005m12:
would it matter if the observations were taken as starting in 1925, which was
relatively close to trend, or in 1935, which was relatively a long way from a lin-
ear trend? With about 1,000 observations one might be tempted into thinking
that this would not make a difference. However, it transpires that it does make
a difference (both in this case and in general) and the test results are markedly
affected by the relative scale of the initial observation. What this means is that
it is possible for contradictory test results to be obtained on the same data set
either by using the same test statistic but with starting points with different
characteristics, or by using different test statistics with different characteristics
but at the same starting point.

In a revival of use, it turns out that the DF tests, which were dominated by
the ERS-type tests, in terms of power, for an initial observation that was close
to trend (or a constant mean in the non-trended case), are more robust as the
initial observation departs from trend.

Given the importance of calibrating the trend to this result, the question
of the appropriate specification of the trend, an issue that had been largely
sidelined, returns to have importance. However, to continue the précis of devel-
opments, the next task was to seek a unit root test statistic that was robust to
the initial condition. One way of doing this was to combine test statistics with
different characteristics. Simple linear combinations seem to work well, offer-
ing protection against an unknown initial condition at not too much cost in
terms of power. Alternatively, as demonstrated by Elliott and Müller (2006), it
is possible to construct a unit root test that is robust to the scale of the initial
condition. For a discussion of current issues in unit root testing, including the
specification of the trend, the role of initial conditions, see the special issue of
Econometric Theory (2009), starting with Harvey et. al. (2009), and followed by
a number of commentaries.

Of course, there are many variations and complications that occur in practice
and which have attracted attention. Perhaps the simplest practical considera-
tion arises where a time series has a seasonal pattern, which characterises many
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production, employment and consumption series. It is not surprising, therefore,
that this area attracted attention not long after the Nelson and Plosser article.
In some ways it is more natural to use the seasonally unadjusted rather than
the seasonally adjusted data, as the latter necessarily involve some assumptions
about the form of the seasonality. There is the risk in the latter of inducing pat-
terns that are not present in the unadjusted series. However, it soon became
clear that the presence of a seasonal period allowed the possibility of unit roots
at frequencies other than at the zero frequency associated with the conventional
unit root tests, and thus the tests became apparently quite complicated due to
the need to consider the possibility of unit roots occurring at different seasonal
frequencies.

Another significant development that affected the course of unit root testing
was to swap the null and alternative hypotheses, so that the null hypotheses
became that of stationarity whilst the alternative became that of nonstation-
arity. This development was not entirely straightforward because the null
hypothesis is not now that of a point but of a region in the parameter space.
One of the key contributions was a test due to Kwiatkowski, Phillips, Schmidt
and Shin (1992), referred to as the KPSS test. This test exploited the duality
between a structural model of a time series and its reduced form to solve the
testing problem. In the former, the time series is viewed as being built up from
components; for example, an unobservable level plus an irregular component.
In turn, a number of other stationarity tests were suggested, including those for
seasonally unadjusted time series.

Notwithstanding the duality between confidence interval construction and
hypothesis testing, the emphasis in much of the early empirical literature was
on hypothesis testing, that is, coming to a decision with two possible outcomes:
either to reject or not to reject the null hypothesis of a unit root. Of course, it
was well known that this dichotomy was often too simple: surely a confidence
interval would be more informative? To some extent reporting a p-value, as in
the elementary textbook case, would help, but in fact it was rarely done, partly
because the quantiles generally had to be obtained by simulation rather than
reference to a standard set of tables.

Two developments eased this case. The hypothesis testing/confidence interval
approaches were ‘re-connected’; for example, by Stock (1991), Hansen (1999)
and Elliott and Stock (2001). Constructing a confidence interval by inverting
a test statistic is familiar from the standard ‘t’ statistic and the approach can
be carried across to unit root tests. Indeed, as Elliott and Stock (2001) demon-
strated, advantage can be taken of the more powerful unit root test statistics to
invert one of these to get a shorter interval for a given confidence level.

Indeed, the circle was in a sense completed as a point-optimal test of the unit
root hypothesis, along the lines of ERS (1996) and Elliott (1999), was equally a
point-optimal test if the null and alternative hypotheses were swapped, so that
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a point-optimal stationary test, but of a null close to the unit root, could be
obtained by using the other tail of the corresponding unit root test.

The second development was encouraged by the increasing capacity of per-
sonal computers, so that large-scale simulations could be undertaken at little
cost. This enabled bootstrapping to be applied to unit root tests and confidence
interval construction, and a straightforward outcome of the former was the
p-value associated with a particular sample value of a test statistic.

1.6 Are unit root processes of interest?

There have been a very large number of studies addressed to the issue of whether
a particular series has been generated by a stochastic process with a unit root,
and the question arises as to why there is such an (enduring) interest. This ques-
tion is answered more fully in the next chapter, the present intention being to
give an idea of some of the topics that have been studied. Nelson and Plosser
(1982) considered 14 macroeconomic time series, such as GNP, industrial pro-
duction, some price indices, and employment and bond yields. Subsequent
research included a more detailed analysis of a number of these series, with par-
ticular interest focusing on aggregate measures of output, such as GDP or GNP,
especially for industrialised countries (see, for example, Campbell and Mankiw,
1987a, 1987b; Cochrane, 1988; Rudebusch, 1992, 1993; Harvey, 1985). How-
ever, interest widened andmany articles that involved the use of economic time
series included a test of some form on the unit root hypothesis, in part because
there was an underlying theoretical base for the distinction between unit root
and non-unit root processes from an economic perspective (that is, it was not
just a matter of the econometric aspects of the application). To give an idea of
the underlying motivation, three areas of application are considered below.

1.6.1 Are there constant ‘great ratios’?

An area of interest for the importance of unit roots relates to the implications
of some growth models for the ratios of economic variables, sometimes referred
to as the ‘great ratios’. In a seminal article, Klein and Kosobud (KK) (1961),
suggested five celebrated ratios of economics, namely the savings-income (or
consumption-income) ratio, the capital-income ratio, labour’s share of income,
the income velocity of circulation and the capital-labour ratio (see also Kaldor,
1957), to which other, monetary ratios, such as the real money supply and
the real interest rate (not strictly a ratio) have been added. KK constructed
a small macroeconomic model which showed the connections between their
five ratios. Later research developed the balanced growth implications of neo-
classical growth models (see, for example, Brock and Mirman, 1972; King,
Plosser and Rebelo, 1988a, 1988b; and King and Rebelo, 2000).
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Of course, whether such constancy of the great ratios, which would anyway
only be approximate, held empirically is another matter, and on examining
these ratios for the US economy, by regressing them on a constant and a time
trend, KK concluded that only one of the ratios, that for labour’s share of
income, could be considered approximately constant. On the other hand, at
a descriptive level and with a more recent data set, King and Rebolo (2000) sug-
gested that for US data the ratios of investment and labour income to output
fluctuated about a constant mean, and whereas there was an upward trend for
the ratio of consumption to income (since 1952), the trend was relatively slight.

We can interpret KK’s interest in the possible existence of approximately con-
stant ratios, where the individual components are themselves trended, in the
followingway. Consider two time series, eachwith a stochastic trend of the form
generated by the accumulation of shocks, as in Equation (1.2); then, in general,
the stochastic trends will be unrelated, so that the ratio of the two series, or
the logarithmic difference, will also have a stochastic trend. The exception to
this rule is when the stochastic trends are annihilated, resulting in a trendless
ratio; in such a case the time series are said to have a common trend and are
cointegrated. For example, consider consumption, c, and output, q, on a per
capita basis, and suppose each of these to have a stochastic trend, but this trend
is common to each variable, such that the log difference c – q; that is, the log
of the consumption-output ratio, is trendless. Similarly, extending the analysis
to include per capita investment, i, so that each of c, i and q, have a stochastic
trend, but balanced growth implies there is a single stochastic trend, such that
the log ratios c – q and i – q are trendless.

There are (at least) two ways to assess whether there is evidence to support the
stability of the great ratios. The first is to consider each (log) ratio separately and
carry out a unit root test (or swap the null hypothesis and carry out a station-
arity test); non-rejection of the null hypothesis would then be evidence against
the stability of the ratio. Tests of this kind have been reported by Harvey et al.
(2003) for the G7 countries; earlier work includes Kunst and Neusser (1990). An
alternative is to consider a system approach in which several series are jointly
modelled, and then tested for the extent of cointegration in the system. Both the
references cited above also use this approach; additionally, Mills (2001) extends
the analysis to consider whether there are not only common trends but also
common cycles.

1.6.2 Purchasing power parity

The theory of purchasing power parity (PPP) is fundamental to the theory of
the real exchange rate and is a cornerstone of international economics. It is the
macroeconomic analogue of the law of one price (LOOP). At themicroeconomic
level, the idea is that the price of a homogeneous good should be the same when
converted to units of a common currency; in this case the nominal exchange
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rate is regarded as a variable exogenous to the firm’s decision, whereas at the
macroeconomic level it is an endogenous variable determined by the ratio of
(aggregate) price levels for the domestic and foreign economies.

To consider this aspect, the following notation is adopted. The nominal
exchange rate Et is defined as the domestic currency price of a unit of foreign cur-
rency; and the prices of a homogeneous good in domestic and foreign currencies
are denoted Pdg,t and Pfg,t, respectively. Then LOOP implies Pdg,t=Et×Pfg,t; that is,
the domestic price equals the foreign price expressed in units of the domestic
currency; expressing the price in the units of the foreign currency would give
the same result. From the perspective of an individual producer, who has no
market power, the right-hand-side variables are exogenous. In a perfect, fric-
tionless market (without tariffs or transaction costs), setting Pdg,t to be greater

than Et × Pfg,t means that the domestically produced good is not competitive
with its foreign counterpart and will not attract any market share.

At the macroeconomic level, Et is the endogenous variable, determined by
the aggregation of individual market decisions, rather than exogenous as at the
microeconomic level. Let Pdt and Pft be suitably defined aggregate price indices
for the domestic and foreign countries, respectively, then PPP states that the
following relationship should hold:

Et=A

(
Pdt
Pft

)
(1.40)

where A is a constant. In the simplest version of PPP, A=1, but A differing from
unity is permissible within the general theory; for example, A �= 1 could arise
from the use of different base years in the construction of the indices Pdt and
Pft. If A=1, then PPP implies Pdt =EtPft, so that the price levels are equalised in
units of a common currency (here the domestic currency), which is the direct
analogue of LOOP.

In a weaker version of PPP, the elasticity of the nominal exchange rate with
respect to relative prices is allowed to differ from unity. That is:

Et=A

(
Pdt
Pft

)δ

(1.41)

Allowing δ �= 1 is weaker in the sense that a 1% change in relative prices results
in a δ% change in the nominal exchange rate, so that Pdt �= EtPft even if A=1.
The weak form of PPP results in:

lnEt= lnA+δ ln

(
Pdt
Pft

)

= lnA+δ(lnPdt − lnPft) (1.42)

et=a+δ(pdt −pft) (1.43)
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where a lower-case letter denotes the logarithm of the corresponding upper-case
variable. If δ=1, so that the elasticity of the nominal exchange rate with respect
to relative prices is unity, then taking the term in relative prices to the left-hand
side gives the log of the real exchange rate:

et− (pdt −pft)=a (1.44)

Thus, this equation states that the real exchange rate is constant. In terms of
the level of the real exchange rate:

REt ≡ Et
Pft
Pdt

(1.45a)

=A (1.45b)

In practice, the real exchange rate is not expected to be constant, but rather
stochastic and mean-reverting. For convenience of notation, define ret ≡
et − (pft−pdt ), then the stochastic version of this equation is:

ret ≡ et− (pft−pdt ) (1.46a)

=a+ut (1.46b)

where ut is I(0), hence some dependency is allowed in the structure of ut, but it
must be weak in the sense of allowing the log of the real exchange rate to return
to its mean given a shock; the lack of an immediate return to the PPP rate,
following a shock, has been variously attributed to sticky prices, incomplete
information and incomplete arbitrage. However, notwithstanding these ‘short
run’ impediments, the argument goes, in the long run the real exchange rate
reverts to the rate implied by PPP, although that reversion may be quite slow.
One often-cited measure of the speed of return is the half-life of a shock; that
is, when 50% of the overall adjustment to as shock has been reached.

One way of testing this property is by way of a test for a unit root on ret, the
presence of which is not compatible with mean reversion. Early studies used
data from the post-Bretton Woods period of floating exchange rates for indus-
trialised countries and one or more of the Dickey-Fuller tests or the Phillips
and Perron (1988) semi-parametric versions of these tests, largely finding that
the null hypothesis of a unit root in the generating process for ret could not be
rejected. One of the difficulties in establishing the robustness of this finding was
that measures of the persistence of shocks suggested that they had very long life,
with estimated half-lives of five years or more (see, for example, Rogoff, 1996).
Thus a key problem was seen as distinguishing a unit root from a very near-
unit root, highlighting the problem of the power of unit root tests, which is
the ability of a test to find in favour of the alternative when the alternative is
true.


