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Preface

Linear-quadratic optimal control theory (LQ theory, for short) has a long history, and
most people feel that the LQ theory is quite mature. Three well-known relevant issues
are involved: existence of optimal controls, solvability of the optimality system (which
is a two-point boundary value problem), and solvability of the associated Riccati
equation. A rough impression is that these three issues are somehow equivalent.

In the past few years, we, together with our collaborators, have been
re-investigating the LQ theory for stochastic systems with deterministic coefficients.
A number of interesting delicate issues have been identified, including:

• For finite-horizon LQ problems, open-loop optimal controls and closed-loop
optimal strategies should be distinguished because the existence of the latter
implies the existence of the former, but not vice versa. Whereas, for
infinite-horizon LQ problems, under proper conditions, the open-loop and
closed-loop solvability are equivalent.

• For finite-horizon two-person (not necessarily zero-sum) differential games, the
open-loop and closed-loop Nash equilibria are two different concepts. The
existence of one of them does not imply the existence of the other, which is
different from LQ optimal control problems.

• The closed-loop representation of an open-loop Nash equilibrium is not nec-
essarily the outcome of a closed-loop Nash equilibrium.

Our investigations also revealed some previously unknown facts concerning
two-person differential games. A partial list is:

• For two-person (not necessarily zero-sum) differential games in finite horizons,
the existence of an open-loop Nash equilibrium is equivalent to the solvability
of a system of coupled FBSDEs, together with the convexities of the cost
functionals; the existence of a closed-loop Nash equilibrium is equivalent to the
solvability of a Lyapunov-Riccati type equation.
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• For two-person zero-sum differential games, both in finite and infinite horizons,
if closed-loop saddle points exist, and an open-loop saddle point exists and
admits a closed-loop representation, then the representation must be the outcome
of some closed-loop saddle point. Such a result also holds for LQ optimal
control problems.

• For two-person zero-sum differential games over an infinite horizon, the exis-
tence of an open-loop and a closed-loop Nash equilibrium are equivalent.

• Some of the results concerning LQ optimal control problems can further be
extended to the case when expectations of the state and the control are involved.
This kind of LQ problems is referred to as the mean-field problem.

The purpose of this book is to systematically present the above-mentioned
results concerning LQ differential games and mean-field LQ optimal control
problems. We assume that readers are familiar with basic stochastic analysis and
stochastic control theory.

This work is supported in part by NSFC Grant 11901280 and NSF Grants
DMS-1406776, DMS-1812921.

The authors also would like to express their gratitude to the anonymous referees
for their constructive comments, which led to this improved version.

Shenzhen, China Jingrui Sun
Orlando, USA
March 2020

Jiongmin Yong
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Frequently Used Notation

I. Notation for Euclidean Spaces and Matrices

1. R
n�m: the space of all n� m real matrices.

2. R
n ¼ R

n�1; R ¼ R
1; R ¼ ½�1;1�.

3. S
n: the space of all symmetric n� n real matrices.

4. S
n
þ : the subset of Sn consisting of positive definite matrices.

5. �S
n
þ : the subset of Sn consisting of positive semi-definite matrices.

6. In: the identity matrix of size n, which is also denoted simply by I if no
confusion occurs.

7. M>: the transpose of a matrix M.
8. My: the Moore-Penrose pseudoinverse of a matrix M.
9. trðMÞ: the sum of diagonal elements of a square matrix M, called the trace of

M.
10. h�; �i: the inner product on a Hilbert space. In particular, the usual inner product

on R
n�m is given by M;Nh i 7! tr M>N

� �
.

11. jMj, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðM>MÞp

: the Frobenius norm of a matrix M.
12. RðMÞ: the range of a matrix or an operator M.
13. NðMÞ: the kernel of a matrix or an operator M.
14. A>B: A� B is a positive semi-definite symmetric matrix.
15. QðPÞ,PAþA>PþC>PCþQ.
16. SðPÞ,B>PþD>PCþ S.
17. RðPÞ,RþD>PD.
18. bA,Aþ �A, bB,Bþ �B, bC ,Cþ �C, bD,Dþ �D.
19. bQ,Qþ �Q, bS, Sþ �S, bR,Rþ �R, bG,Gþ �G.

20. bQðP;PÞ,PbAþ bA>Pþ bC>PbC þ bQ.

21. bSðP;PÞ, bB>Pþ bD>PbC þ bS.
22. bRðPÞ, bRþ bD>PbD.
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II. Sets and Spaces of Functions and Processes

Let H be a Euclidian space (which could be R
n, Rn�m, etc.).

1. Cð½t; T �;HÞ: the space of H-valued, continuous functions on ½t; T �.
2. Lpðt; T;HÞ: the space of H-valued functions that are pth ð16 p\1Þ power

Lebesgue integrable on ½t; T �.
3. L1ðt; T ;HÞ: the space of H-valued, Lebesgue measurable functions that are

essentially bounded on ½t; T�.
4. L2F t

ðX;HÞ: the space of F t-measurable, H-valued random variables n such that

Ejnj2\1.
5. L2

F
ðX; L1ðt; T;HÞÞ: the space of F-progressively measurable, H-valued pro-

cesses u : ½t; T� � X ! H such that E
R T
t juðsÞjds

h i2
\1.

6. L2
F
ðt; T;HÞ: the space of F-progressively measurable, H-valued processes u :

½t; T � � X ! H such that E
R T
t juðsÞj2ds\1.

7. L2
F
ðHÞ: the space of F-progressively measurable, H-valued processes u :

½0;1Þ � X ! H such that E
R1
0 juðtÞj2dt\1.

8. L2
F
ðX;Cð½t; T�;HÞÞ: the space of F-adapted, continuous, H-valued processes

u : ½t; T� � X ! H such that E sups2½t;T � juðsÞj2
h i

\1.

9. X t ¼ L2F t
ðX;RnÞ.

10. X½t; T� ¼ L2
F
ðX;Cð½t; T�;RnÞÞ.

11. U½t; T� ¼ L2
F
ðt; T ;RmÞ.

12. X loc½0;1Þ ¼ T
T [ 0 X½0; T�.

13. X½0;1Þ: the subspace of X loc½0;1Þ consisting of processes u which are
square-integrable: E

R1
0 juðtÞj2dt\1.
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Chapter 1
Some Elements of Linear-Quadratic
Optimal Controls

Abstract This chapter is a brief review on the stochastic linear-quadratic optimal
control. Someuseful concepts and results,whichwill be needed throughout this book,
are presented in the context of finite and infinite horizon problems. These materials
are mainly for beginners and may also serve as a quick reference for knowledgeable
readers.

Keywords Linear-quadratic · Optimal control · Finite horizon · Infinite horizon ·
Riccati equation · Open-loop · Closed-loop
In this chapter, we briefly review the stochastic linear-quadratic (LQ, for short) opti-
mal control problem and present some useful concepts and results in the context
of finite and infinite horizon problems. Most of the results recalled here are quoted
from the book [48] by Sun and Yong, where rigorous proofs can be found. In the
sequel, (Ω,F , P) denotes a complete probability space on which a standard one-
dimensional Brownian motion W = {W (t); 0 � t < ∞} is defined, and F denotes
the usual augmentation of the natural filtration {Ft }t�0 generated by W . For a ran-
dom variable ξ, we write ξ ∈ Ft if ξ is Ft -measurable, and for a stochastic process
ϕ, we write ϕ ∈ F if it is F-progressively measurable.

1.1 LQ Optimal Control Problems in Finite Horizons

Consider the following controlled linear stochastic differential equation (SDE, for
short) on a finite horizon [t, T ]:

⎧
⎪⎨

⎪⎩

dX (s) = [A(s)X (s) + B(s)u(s) + b(s)]ds
+ [C(s)X (s) + D(s)u(s) + σ(s)]dW (s),

X (t) = x,

(1.1.1)

where A,C : [0, T ] → R
n×n , B, D : [0, T ] → R

n×m , called the coefficients of the
state equation (1.1.1), and b,σ : [0, T ] × Ω → R

n , called the nonhomogeneous
terms, satisfy the following assumption.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020
J. Sun and J. Yong, Stochastic Linear-Quadratic Optimal Control Theory:
Differential Games and Mean-Field Problems, SpringerBriefs in Mathematics,
https://doi.org/10.1007/978-3-030-48306-7_1
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2 1 Some Elements of Linear-Quadratic Optimal Controls

(H1) The coefficients and the nonhomogeneous terms of (1.1.1) satisfy

{
A ∈ L1(0, T ; R

n×n), B ∈ L2(0, T ; R
n×m), b ∈ L2

F
(Ω; L1(0, T ; R

n)),

C ∈ L2(0, T ; R
n×n), D ∈ L∞(0, T ; R

n×m), σ ∈ L2
F
(0, T ; R

n).

In the above assumption we have adopted the following notation: For a subset H of
some Euclidean space (which could be R

n , R
n×m , etc.),

L p(t, T ; H) =
{
ϕ : [t, T ] → H

∣
∣

∫ T

t
|ϕ(s)|pds < ∞

}
(1 � p < ∞),

L∞(t, T ; H) =
{
ϕ : [t, T ] → H

∣
∣ ϕ is essentially bounded

}
,

L2
F
(t, T ; H) =

{
ϕ : [t, T ] × Ω → H

∣
∣ ϕ ∈ F, E

∫ T

t
|ϕ(s)|2ds < ∞

}
,

L2
F
(Ω; L1(t, T ; H)) =

{
ϕ : [t, T ] × Ω → H

∣
∣ ϕ ∈ F, E

[ ∫ T

t
|ϕ(s)|ds

]2
< ∞

}
.

The process u = {u(s); t � s � T } in (1.1.1) belongs to the space

U[t, T ] ≡ L2
F
(t, T ; R

m)

and is called a control.

The cost functional associated with the state equation (1.1.1) is of the quadratic
form

J (t, x; u) = E

{
〈GX (T ), X (T )〉 + 2〈g, X (T )〉

+
∫ T

t

[〈(
Q(s) S(s)�
S(s) R(s)

) (
X (s)
u(s)

)

,

(
X (s)
u(s)

)〉

+ 2

〈(
q(s)
ρ(s)

)

,

(
X (s)
u(s)

)〉]

ds

}

. (1.1.2)

In the above, 〈 · , · 〉 stands for the Frobenius inner product of two matrices that have
the same size. That is, for M, N ∈ R

n×m , 〈M, N 〉 is equal to the trace of M�N . The
superscript � denotes the transpose of matrices. In the sequel, the identity matrix of
size n will be denoted by In , and the Frobenius norm of a matrix M will be denoted
by |M |. Let S

n (respectively, S
n+) be the space of all symmetric n × n real matrices

(respectively, positive definite matrices), and let

L2
Ft

(Ω; R
n) = {

ξ : Ω → R
n | ξ isFt -measurable with E|ξ|2 < ∞}

.

The weighting matrices in the cost functional are assumed to satisfy the following
condition.


