Panos Konstantin Margarete Konstantin

The Power Supply Industry

Best Practice Manual for Power Generation and Transport, Economics and Trade

The Power Supply Industry

The Power Supply Industry

Best Practice Manual for Power Generation and Transport, Economics and Trade

Panos Konstantin Burgstetten, Baden-Württemberg Germany Margarete Konstantin Burgstetten, Baden-Württemberg Germany

ISBN 978-3-319-72304-4 ISBN 978-3-319-72305-1 (eBook) https://doi.org/10.1007/978-3-319-72305-1

Library of Congress Control Number: 2017964251

© Springer International Publishing AG, part of Springer Nature 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG part of Springer Nature

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

My first book of the series "Best Practice Manual" with the title "**Power & Energy Systems Engineering Economics**" was dedicated to provide a concise yet very comprehensive coverage of engineering economics required for techno-economic evaluation of investments in the energy supply business.

This book of the same series with the title "**The Power Supply Industry**" mainly deals with technologies used for power and energy supply and evaluates their economics by applying concepts and knowledge built in the first book.

Core aim of the books is to transfer know-how of power and energy systems in a practical way rather than pure theoretical knowledge, thereby avoiding the detail of voluminous reference texts as needed by experts in specific fields. This is also demonstrated in numerous application examples and case studies derived from experience of real world projects. The examples and case studies are also available as softcopies on my website to assist readers practicing the books' contents.

The books are neither scientific papers nor literature research. In writing these books, I have drawn on my cumulative knowledge gained from more than 35 years of experience as a consultant in engineering and power economics for energy business projects worldwide and also from delivering numerous training courses to junior utilities' staff in several countries. It is my ambition after retirement to make my knowledge and experience available through practically oriented books applicable to real world scenarios.

Target audience of the books are primarily international consultants, staff members of engineering companies, utility personnel, energy economists and lawyers, as well as employees of government agencies entrusted with regulating the energy and utility sector and, finally, students in related fields of engineering and economics.

Although being a non-native English speaker, I have written these books in English because this is the most suitable language in this field among others as most techno-economic terms are available in English only. I ask native English readers for their understanding for any linguistic shortcomings.

Comments and recommendations for improvements from readers are highly appreciated and will be thankfully considered in forthcoming editions.

Burgstetten, Germany, October 2017

Panos Konstantin

Other practical books of the author:

Power and Energy Systems – **Engineering Economics Springer**Vieweg, Germany, 2018

The book provides practical knowhow for appraisal and technical-economic evaluation of investments in the power and energy sector.

The book comprises eight chapters: Financial Mathematics, Inflation/Interest and Cost of Capital, Investment Appraisal, Financial and Economic Analysis, Introduction of Cost Allocation to Cogeneration Projects, Project Analysis under Uncertainties, Overview of Energy Markets and Price Mechanisms and finally case studies. The text part is supported by about 36 tables, 105 figures, 53 application examples and 13 case studies.

For German readers: **Praxisbuch Energiewirtschaft**¹, 4th Edition 2017, SpringerVieweg, Germany, ISBN 978-3-642-37264-4

Der Inhalt: Der Primärenergiemarkt, Beschaffung leitungsgebundener Energien, energierechtliche Rahmenbedingungen, Investitionsrechnung in der Energiewirtschaft, Physikalisch-technisches Grundwissen, Energieumwandlung und Emissionen, Kraftwerke – Technik & Kosten, Kraft-Wärme-Kopplung – Technik, Kostenaufteilung, Energietransport- und -verteilung, Abwicklung von Energieprojekten.

Der Textteil wird möglichst knapp gehalten und durch ca. 140 Tabellen und rund 160 Abbildungen ergänzt. Zum besseren Verständnis enthält das Buch auch ca. 80 praxisbezogene Beispiele.

For German readers: **Praxisbuch Fernwärmeversorgung.** In Bearbeitung, geplante Veröffentlichung Anfang 2018, SpringerVieweg.

Der Inhalt: Das Buch beginnt mit einem kurzen historischen Überblick und umfasst den Fernwärmenetzaufbau sowohl mit Heißwasser als auch mit Dampf als Wärmeträger, Leitungs-Verlegeverfahren, Fernwärme-Erzeugung durch Kraft-Wärme-Kopplung (KWK) in Kombination mit Spitzenlastkesseln, eine eingehende Behandlung der Kosten- und Aufwandaufteilung bei KWK, bis hin zur Fernwärme-Preisgestaltung für den Endkunden. Die Anwendungsbeispiele und Fallstudien im Buch stehen auch auf der Website des Autors als Softkopien in MS-Excel® zum Download zur Verfügung.

English Version "District Heating" forthcoming in 2018.

¹) In English: "Practice Oriented Book on Energy Economy"

Acknowledgments

First and foremost I am particularly thankful **to Fichtner GmbH & Co KG** in Stuttgart, Germany for their support and the opportunity to have access to their technical and human resources during my employment and beyond. The book mainly reflects the cumulative knowledge I have acquired and further developed from over 35 years' experience working for the Company as a consultant and trainer for energy business projects worldwide.

Many thanks are also due to the colleagues of **HelpDesk Görlitz GmbH**, Germany for their help in properly formatting the book.

I am grateful to Markus Groissböck, who has developed and maintains my Website and is always available for support.

I also acknowledge the support of many of my Fichtner colleagues, friends and clients for their advice and contribution to the development of this and previous books.

In particular, I wish to mention the following persons for reviewing chapters of the book: Adriana Mejia Gomez (Application examples and case studies), Dr. Ursula Haller (Modelling and development of KPRO[®]), Christian Mayr (Project development), Johannes Kretschmann and Christoph Scherer (Concentrated Solar Power), Ursula Mayr (Photovoltaics), Markus Schüller (Wind power), Dr. Liliana Oprea (Transmission & Distribution of Power), Till Aldinger (Electricity trading) and Arcady Greeshpoon (Nuclear power).

Many thanks also to Amy Gooderum and Maggie Konstantin for proofreading and linguistic revision of the book's text.

All my professional life as a consultant, I wrote hundreds of reports for projects and attained a certain routine in writing. I have furthermore greatly benefited from the experience in writing my first book "Praxisbuch Energiewirtschaft",² first published by Springer in 2006, and now available in its 4th edition in 2017 published by SpringerVieweg.

Last but not least I wish to thank Maggie Konstantin, my wife, for her support in editorial design and proofreading, and for her understanding for the long hours and evenings we have been spending in front of the computer.

² In English: "Practice Oriented Book on Energy Industry"

Downloads

Readers of the book can access the author's website under the addresses
<u>www.PK-Energy-Practical-Knowhow.com</u> or
www.PK-Energie-Praxiswissen.com
and download the following items and software tools¹:

Softcopies in Excel[®] of all **Application Examples** and **Case Studies** included in the book

Software tool **FluidEXL**, for calculations of water/steam properties.

The developer, University for Applied Sciences - Zittau/Goerlitz/Germany,

Department of Thermodynamics, Prof. Hans-Joachim Kretzschmar and his coworker Matthias Kunick, make available the software tool exclusively for readers of this book, free of charge.

You will find a link for download on the example page on the author's website, along with the installation instruction and read me file. A license code is automatically sent by email after registration.

Use of the software for purposes other than for the book or commercial use requires a special license from the developer.

Software tool **KPRO®**, for modelling and performance simulation of power generation thermodynamic cycles and power & steam supply systems. The German Consulting Company Fichtner, Stuttgart, announced that they will make available the software tool for registered readers of the book for a period of six months, upon direct request. Note, however, that this is a highly professional tool and requires a strong background on thermodynamics of cycle calculations and in information technology. Again, commercial use requires a special license from Fichtner.

Note: Purchasers of the book are highly advised to register in the author's website in order to be kept informed about updates and changes in the software

¹) Brief instructions of the tools are available in the toolbox chapter of the book. Detailed instructions are available for download on the author's website.

Important notes on the chapters

Examples: All chapters contain numerous practical application examples. The examples as well as the case studies are intended to practice the contents of the book only and are not applicable for commercial use.

Download examples: Website <u>www.pk-energy-practical-knowhow.com</u>

Almost all examples and case studies are developed in MS-Excel[®] spreadsheets and inserted into the text as pictures. We tried to keep them relatively simple; nevertheless, it is not always easy to retrace the calculation steps because they often include complex calculation formulas. However, it is not possible to include these in the examples depicted in the chapters due to limited space. Readers have the opportunity to download softcopies of the examples from my website above.

Currencies: The book is written for an international audience in countries with different currencies. In formulas which are generally applicable, the term "CU" (currency unit) is used. In application examples, which are mainly derived from projects, either \notin (Euro) or US\$ are used, depending on the origin of the projects. The real origin of the projects, however, is not disclosed.

Unit system: Throughout the book, the Standard International Unit System is used (based on MKS system: meter, kilogram, second). This system is based on physics, includes only a few basic units, and all the other units are derived from the basic units. The units are easy to handle in calculations without the need for conversions. In the European Union, its use is obligatory for public projects and in most countries it is the standard unit system.

Heating values: For energy balances, price references etc. the lower heating values LHV are used (also referred to in literature as net calorific values NCV or inferior heating value Hi). Worth mentioning is that natural gas is commonly traded based on its HHV and is to be converted in LHV.

Table of Main Chapters and Contents

Pref	ace	V
Ack	nowledgments	VII
Dow	vnloads	IX
1	Basics of Technical Thermodynamics	1
2	Basics Techno-economics of Power Systems	
3	Thermal Power Plants Fired by Fossil Fuels	47
4	Nuclear Power Plants	77
5	Power Generation from Renewable Energies	89
6	Cogeneration of Power and Heat	
7	Cost Allocation to Cogeneration Products	157
8	Transmission and Distribution of Power	
9	Electricity Trading	221
10	Development and Implementation of Projects	
11	Case Studies	
Bibl	iography and References	
Too	lbox	
Ann	exes	
Glos	ssary	
Acro	onyms, Abbreviations and Symbols	
Inde	2X	

Table of Contents

Preface		V
Acknowledg	ments	VII
Downloads		IX
1 Basics o	of Technical Thermodynamics	1
1.1 Ke	y Thermodynamic Concepts and Definitions	1
1.1.1	Energy, work and power	
1.1.2	Thermodynamic systems	
1.1.3	The Standard International Unit System	2
1.1.4	Definitions and rules	
1.1.5	Properties and quantities, definitions, symbols and units	5
1.1.6	Mass, weight and acceleration of gravity	6
1.1.7	Normal reference conditions	6
1.2 The	e Principal Laws of Thermodynamics	7
1.2.1	The First Law of thermodynamics	7
1.2.2	The Second Law of thermodynamics	
1.3 Ga	s Thermodynamics	10
1.3.1	The equation of state of the ideal gas	10
1.3.2	Mixtures of ideal gases	
1.3.3	Thermodynamic processes	
1.4 The	ermodynamic Cycles	
1.4.1	Definitions	
1.4.2	The Carnot Cycle	
1.5 Co	mbustion Thermodynamics	
1.5.1	Combustion	
1.5.2	The heating values	
1.5.3	Combustion air and flue gas volumes	
1.5.4	Oxygen and carbon dioxide in the flue gas	
1.5.5	Maximum CO2 content and CO2 emission factors	
1.6 Wa	ater and Steam Thermodynamics	

	1.6.1	States of water	25
	1.6.2	The steam generation process	25
	1.6.3	Thermodynamic properties of steam	26
	1.6.4	Steam generation in boilers	
2	Basics 7	Fechno-economics of Power Systems	31
	2.1 Ty	pes of Power Plants	31
	2.2 Ke	y Performance Parameters of Power Generation	32
	2.2.1	Capacity related performance parameters	32
	2.2.2	Energy related performance parameters	33
	2.3 Te	chnical-economic Evaluation of Projects	35
	2.3.1	Overview of Investment appraisal methods	35
	2.3.2	Integrated model for levelized cost calculation	39
	2.3.3	Capacity cost, energy cost and composite cost	44
	2.3.4	Cash flow analysis and risk assessment	46
	2.3.5	Forms of contracting	46
3	Therma	l Power Plants Fired by Fossil Fuels	47
	3.1 Ste	eam Power Plants	47
	3.1.1	General configuration and function	47
	3.1.2	The Clausius Rankine steam cycle	48
	3.1.3	Modelling and simulation of thermodynamic cycles	50
	3.1.4	Main components of steam power plants	51
	3.1.4	.1 Steam generators	51
	3.1.4	2 Steam turbines	52
	3.1.4	.3 Steam–water cycle	52
	3.1.4	.4 Flue gas cleaning technologies	53
	3.2 Sir	nple Cycle Gas Turbine Power Plants	56
	3.2.1	General configuration and function	56
	3.2.2	The gas turbine cycle	57
	3.2.3	Performance vs. air inlet temperature	58
	3.2.4	Pressure ratio and fluid inlet temperature into the turbine	60

	3.2.5	Reheating or sequential combustion	61
	3.2.6	Emission control	61
	3.2.7	Maintenance of gas turbines	61
	3.3 Cor	nbined Cycle Gas Turbine Power Plants	63
	3.3.1	General configuration and function	63
	3.3.2	Thermodynamic cycle	63
	3.3.3	Selection of gas turbines	65
	3.3.4	Heat recovery steam generators	65
	3.4 Inte	ernal Combustion Engine Power Plants	66
	3.4.1	Technologies and function	66
	3.4.2	Operational characteristics of engine power generation	67
	3.4.3	Maintenance	69
	3.4.4	Emission control	70
	3.5 Eco	nomics of Fossil Fuel Fired Power Plants	70
	3.6 Fos	sil Fuels and Climate	75
4	Nuclear	Power Plants	77
	4.1 Tec	hnology Description	77
	4.1.1	Main components	
	4.1.2	Nuclear reactors on the market	
	4.1.3	Nuclear fuel	80
	4.1.4	Performance parameters of nuclear power plants	80
	4.1.5	Decommissioning and waste disposal management	82
	4.2 Eco	nomics of Nuclear Power	83
	4.3 Bal	ancing Benefits and Risks of Nuclear Power	86
5	Power G	eneration from Renewable Energies	89
	5.1 Hyd	droelectric Power Plants	89
	5.1.1	Technology description	89
	5.1.2	Economics of hydropower	
	5.2 Win	nd Power Plants	
	5.2.1	Technology description	

5.2.2	Classification of wind turbines	
5.2.3	Backup capacities to balance fluctuating power supply	
5.2.4	Yield calculation of wind turbines	100
5.2.5	Exceedance probability	101
5.2.6	Economics of wind power	102
5.2.7	Case study - Cashflow & IRR Analysis of a wind farm	104
5.3 Basi	ics of Solar Energy	106
5.3.1	Solar energy	106
5.3.2	Sun-Earth geometry	109
5.3.3	The Earth's rotation	110
5.3.4	Definition of the plants' site	111
5.3.5	Angles defining the position of the sun	112
5.4 Sola	r Power Plants with Photovoltaic Technology	114
5.4.1	The photovoltaic process	114
5.4.2	Configuration of PV systems	114
5.4.3	Performance parameters of photovoltaic systems	115
5.4.4	Techno-economic assessment	117
5.4.4.1	Energy yield calculation	117
5.4.4.2	2 Electricity generation cost	118
5.5 Sola	r Power Plants with Parabolic Trough Technology	119
5.5.1	Technology description	119
5.5.2	Main system components	120
5.5.3	Techno-economic assessment	123
5.6 Inte	grated Solar Combined Cycle Power Plant	126
5.6.1	Technology description	126
5.6.2	Techno-economic assessment	127
5.7 Sola	r Plants with Solar Tower Technology	129
5.7.1	Technology description	129
5.7.2	Techno-economic assessment	130
5.8 Sola	r Power Plants with Fresnel Technology	132

	5.9	Aspects of Integration of Renewable Power	134
	5.10	Promotion Schemes or Renewable Energy	135
6	Cog	generation of Power and Heat	137
	6.1	Introduction to the Cogeneration Cycle	137
	6.2	Types of Combined Heat and Power Plants	139
	6.2.1	1 Combustion Engine CHPs	139
	6.2.2	2 Gas turbine CHPs	140
	6.2.3	3 Steam turbine CHPs	141
	6.2.4	4 Combined cycle gas turbine CHPs	142
	6.3	Performance Parameters of Cogeneration	142
	6.3.1	1 Key performance parameters	142
	6.3.2	2 Performance parameters of selected CHP plants	147
	6.4	Splitting Cogenerated and Non-cogenerated Electricity	150
	6.5	Model for Performance Parameters Relationships	151
	6.6	Modelling a Cogen Cycle into Cond. Equivalent Cycle	153
7	Cost	st Allocation to Cogeneration Products	157
	7.1	Overview of Allocation Methods	157
	7.2	Proportional Allocation	158
	7.3	The Residual Value Method	158
	7.4	The Residual Value with Reference Power Plant	163
	7.5	The Electrical Equivalent Method	165
	7.5.1	1 Principle and application forms	165
	7.5.2	2 Application to actual condensing power plants	166
	7.5.3	3 Application for extraction-condensing CHP plants	169
	7.6	The Exergy Method	172
	7.6.1	1 What is exergy	172
	7.6.2	2 Cost allocation based on exergy, simplified model	174
	7.6.3	3 Cost allocation model based on exergy balance	176
	7.7	The Calorific Method	179
	7.8	Replacement Value	180

8	Transmis	sion and Distribution of Power	
	8.1 Basi	c Electricity	
	8.1.1	The nature of electricity	
	8.1.2	Direct current	
	8.1.3	Basic laws of electrical circuits	
	8.1.3.1	The Ohm's Law	
	8.1.3.2	The Kirchhoff's Laws	
	8.1.4	Alternating current	
	8.1.5	Three-phase alternating current	189
	8.2 The	Architecture of the Power Transport System	192
	8.2.1	Background	192
	8.2.2	Voltage levels	192
	8.3 Mai	n Components of Electric Power Systems	
	8.3.1	Overhead lines	
	8.3.2	Underground power cables	196
	8.3.3	Substations	
	8.3.3.1	Transformers	197
	8.3.3.2	Switch gears	198
	8.4 High	h Voltage Direct Current Power Transmission	
	8.5 Loa	d Structures and Performance Parameters	
	8.6 Bala	ancing Power Supply and Consumption in the Grid	
	8.6.1	Types of control power	
	8.6.2	Imbalance energy	
	8.6.3	Procurement of control and imbalance energy	
	8.7 Eco	nomics of Power Transmission and Distribution	
	8.7.1	Tariff models for wheeling power in the grid	
	8.7.2	Costing definitions and concepts	
	8.7.3	Main cost items	
	8.8 Tari	ff Formulation for Wheeling Power in the Grid	
	8.8.1	Basic requirements	

	8.8.2	Roll-over costs to subordinate voltage levels	
	8.8.3	Coincidence functions of the consumers	
	8.8.4	Use of system tariff formulation	
9	Electr	icity Trading	221
9.1	1 F	rom Monopoly to Market Economy	221
9.2	2 P	ower Market Models	222
	9.2.1	The Single Buyer model	222
	9.2.2	The Power Pool model	223
	9.2.3	The fully competitive power market model	
9.3	3 N	Iarket Places for Electricity Trade	
	9.3.1	The OTC market	
	9.3.2	The Power Exchange	
	9.3.3	The spot market in Power Exchange	
	9.3.	3.1 The day-ahead trade on the spot market	
	9.3.	3.2 The continuous intraday trade on the spot market	
	9.3.4	The derivatives market in the Power Exchange	
	9.3.	4.1 Futures and Forward contracts	
	9.3.	4.2 Power option contracts	
	9.3.	4.3 Terminology of derivatives	
	9.3.5	Clearing	
	9.3.6	Portfolio management	
10	Dev	velopment and Implementation of Projects	
10).1 P	roject Definition	
10	0.2 P	roject Phases	
10).3 P	roject Management during Project Implementation	
10).4 K	ey Agreements	
	10.4.1	Agreements for procurement and construction	
	10.4.2	Agreements for operation phase	
11	Cas	e Studies	
11	.1 R	ankine Cycle in T-s diagram calculated with FluidEXL	252

11.2	Modeling and Calculation of a Simple Rankine Cycle 255
11.3	Demo – Development History of Steam Rankine Cycle 259
11.4	Integrated Techno-Economic Model for Fossil PPs
11.5	Integrated Model - Techno-Economics of Nuclear PPs 271
11.6	Cashflow and IRR Analysis of a Wind Farm Project 276
11.7	Techno-Economic Model of Parabolic Trough PPs 282
11.8	Techno-economic Model of Solar Tower Power Plant
11.9	Cost Allocation, Electrical Equivalent 291
11.10	Cost Allocation, Exergy, Backpressure CHP 295
11.11	Modelling & Simulation Rankine Cycle, No-Reheat
11.12	Modelling & Simulation Rankine Cycle, Reheat
11.13	Simulation of Extraction-condensing CCGT cycles
Bibliogra	phy and References
Toolbox	
Annexes	
Glossary	
Acronym	s, Abbreviations and Symbols
Index	

List of Tables

Table 1-1: SI base units	3
Table 1-2: SI Selected derived units used in thermodynamics	3
Table 1-3: Reference normal conditions, DIN 1343	6
Table 1-4: Molar mass and gas constant of selected technical gases	11
Table 1-5: Isentropic exponent	14
Table 1-6: Symbols and Units of key properties of water and steam	27
Table 2-1: Types of power plants	31
Table 2-2: Reference site conditions for selected regions	33
Table 2-3: Calculation methods of electricity generation costs	42
Table 3-1: Typical parameters for utility size steam power plants	49
Table 3-2: SWOT analysis of flue gas cleaning technologies	55
Table 3-3: Guide values for maintenance of gas turbines	62
Table 3-4: Start-up time of different power generating technologies [19]	68
Table 3-5: Techno-economics of fossil fired PPs, Summary of Results	73

Table 4-1: Composition of the nuclear fuel cost components	85
Table 4-2: Techno-economics of nuclear PPs, Summary for results	86
Table 5-1: Costs of hydroelectric power plants	92
Table 5-2: Wind turbine classification acc. to IEC 61400	99
Table 5-3: Financial analysis of a Windfarm project, Summary of results	105
Table 5-4: Sun declination	113
Table 5-5: Efficiencies of PV cells and modules	115
Table 5-6: Power plant performance	123
Table 5-7: Case Study of Parabolic trough PP, Summary of results	124
Table 5-8: Case Study - Key layout and performance of solar tower PP	131
Table 5-9: Case Study – Techno-economics, Solar Tower, Results	132
Table 5-10: Installed capacities vs. electricity production in Germany	134
Table 6-1: Performance parameters of selected CHP plants	147
Table 7-1: Case Study, Cost allocation with electrical equivalent, Results	171
Table 7-2: Case Study – Cost allocation based on exergy balance	178
Table 8-1: Key parameters of electric circuits	184
Table 8-2: Voltage, current and power relations of 3-phase AC	191
Table 8-3: Typical voltage levels	
Table 8-4: Typical dimensions of 380 kV Line in m [54]	196
Table 8-5: Characteristic features of technologies, source ABB [56]	202
Table 9-1: Type of spot market contracts	
Table 10-1: Project phases	240

List of Figures

Figure 1-1: Examples of thermodynamic systems	2
Figure 1-2: Simplified cycle schematics with energy flow	
Figure 1-3: The Carnot cycle in p-V and in T-s diagram	
Figure 1-4: Carnot cycle vs. Rankine cycle in T-s diagram	19
Figure 1-5: The pressure-temperature diagram of water	25
Figure 1-6: The steam generation process in T-s and h-s diagram	26
Figure 1-7: Boiler heat balance	28
Figure 2-1: Integrated techno-economic model for electricity costs	40
Figure 2-2: Electricity generation cost vs. full load operation hours	45
Figure 3-1: Simplified heat flow diagram of a steam power plant	47
Figure 3-2: Simplified Rankine cycle illustration in h-s and T-s diagram	48
Figure 3-3: SubC vs. USC Rankine cycle in T-s diagram	49
Figure 3-4: Heat flow diagram of a simplified Rankine cycle	50
Figure 3-5: Boiler type configuration for a 600 MWe power plant	51
Figure 3-6: Steam turbine-generator set	52
Figure 3-7: Specific cost for desulfurization vs. sulfur content in fuel	55
Figure 3-8: Schematic gas turbine power plant and gas turbine section	56

Figure 3-9: The basic gas turbine cycle	. 57
Figure 3-10: Schematic of evaporative inlet air cooling system	. 60
Figure 3-11: Power output vs. inlet temperature with evap. cooling	. 60
Figure 3-12: Gas turbine cycle with sequential combustion	. 61
Figure 3-13: Simplified CCGT heat flow diagram, double pressure HRSG	. 63
Figure 3-14: Simplified CCGT heat flow diagrams, triple pressure, reheat	. 64
Figure 3-15: CCGT cycle T-s diagram, GT-reheat, triple pressure HRSG	. 64
Figure 3-16: Engine power plant in multi-unit arrangement, Wärtsilä [20]	
Figure 3-17: Electricity generation cost vs. full load hours	. 74
Figure 3-18: Structure of the electricity generation cost	. 74
Figure 3-19: CO ₂ Emissions of electricity vs. PP electrical efficiency	. 75
Figure 4-1: Simplified schematics of nuclear power plants	
Figure 5-1: Run-of-river hydro power plant (Blue Danube Austria)	
Figure 5-2: Cross-section of typical hydroelectric dam power plant	
Figure 5-3: Pump storage hydro power plant [31]	. 91
Figure 5-4: Hydro turbines and their typical applications	. 91
Figure 5-5: Cross section of wind turbine with main components [36]	. 96
Figure 5-6: Wind speed vs. elevation	. 97
Figure 5-7: Rayleigh frequency distribution of the wind speed	. 97
Figure 5-8: Performance curve of a wind turbine	. 98
Figure 5-9: Forms of solar irradiation	106
Figure 5-10: Monthly average irradiation on horizontal surface kWh/m ² a	107
Figure 5-11: Monthly average Direct Normal Irradiation – DNI	108
Figure 5-12: World map of Global Horizontal Irradiation	109
Figure 5-13: World map of Direct Normal Irradiation – DNI	109
Figure 5-14: Earth-sun positions on the orbit for the northern hemisphere	
Figure 5-15: Angles for definition of site location	111
Figure 5-16: Angels defining the sun's position	
Figure 5-17: Functional principle of photovoltaic cell	114
Figure 5-18: Current-voltage diagram of a PV module at 25°C	116
Figure 5-19: Simplified heat flow diagram of parabolic trough solar PP	120
Figure 5-20: Parabolic trough collector and single-axis tracking system	121
Figure 5-21: Thermal storage system – TES	121
Figure 5-22: Simplified heat flow diagram of a solar power plant	
Figure 5-23: Simplified heat flow diagram ISCC-plant	
Figure 5-24: Schematic of solar tower power plant	129
Figure 5-25: Simplified heat flow diagram, Solar Tower power plant	
Figure 5-26: Fresnel collector system (AREVA)	133
Figure 5-27: Solar field of linear Fresnel power plant	133
Figure 6-1: Overview of steam Cycles	137
Figure 6-2: Efficiency of useful energy generation in comparison	138

Figure 6-3: Combustion engine CHP unit	139
Figure 6-4: Gas turbine CHP	140
Figure 6-5: Steam turbine CHPs	
Figure 6-6: Combined cycle gas turbine CHP	
Figure 6-7: Performance parameter of extracted steam CHP, no reheat	148
Figure 6-8: Performance parameters of extracted steam, CHP with reheat	148
Figure 6-9: Performance parameters of extracted steam from CCGT CHP	149
Figure 6-10: Energy flow diagrams of cogen and equivalent cond. cycle 1	152
Figure 6-11: Converting extraction-cond. cycle to equivalent cond. cycle	154
Figure 7-1: Cost allocation methods for cogeneration products	157
Figure 7-2: Model for the costs allocation based on electrical equivalent1	
Figure 7-3: Exergy loss and utilization rate	174
Figure 7-4: Cost allocation model based on exergy	177
Figure 7-5: Replacement value calculation principle	181
Figure 8-1: Water and electrical circuits' analogies	184
Figure 8-2: Illustration of Kirchhoff's Laws	
Figure 8-3: AC current in sinus wave form, one cycle	186
Figure 8-4: Examples of AC circuits	187
Figure 8-5: Voltage <i>u</i> , current <i>i</i> and power <i>p</i> diagrams in AC circuits	187
Figure 8-6: Forms of power in AC circuits	
Figure 8-7: Three phase alternating current system	
Figure 8-8: Three-phase alternating current system 400/230 V	
Figure 8-9: Typical structure of the ENTSO-E power grid	
Figure 8-10: Overhead power lines, key technical parameters	
Figure 8-11: Power cables	
Figure 8-12: Power transformers	
Figure 8-13: Distribution transformers	
Figure 8-14: Gas insulated indoor switch gear	
Figure 8-15: Busbar example	
Figure 8-16: Schematics of HVDC transmission systems	
Figure 8-17: Daily load profiles, Saudi Arabia Central Operating Area	
Figure 8-18: Daily load profiles, Austrian grid	
Figure 8-19: Annual load duration curve, normalized, unsorted	
Figure 8-20: Sorted, normalized annual load duration curve	
Figure 8-21: Time frame of control energy usage, Amprion GmbH [58]	
Figure 8-22: Costs' roll-over from higher to lower kV-levels	
Figure 8-23: Typical coincidence functions of the consumers	
Figure 9-1: Single Buyer & Seller Model	
Figure 9-2: Pool Model with generator competition	
Figure 9-3: Dispatching schedules	
Figure 9-4: Simplified structure of the fully competitive market	227

Figure 9-5: Structure of the fully competitive market	. 227
Figure 9-6: Market clearing at a power pool	230
Figure 9-7: Trading contracts in derivatives market of Power Exchange	. 231
Figure 9-8: Portfolio management, daily load profile	238
Figure 10-1: Overview of activities during project implementation	246
Figure 10-2: Key agreements of large power plant projects	248

List of Examples

Example 1-1: Specific volume ideal gases	
Example 1-2: Mass content of a gas tank	. 11
Example 1-3: Density of ideal gases at actual and at normal conditions	. 12
Example 1-4: Properties of combustion air	
Example 1-5: Isochoric process, tanks containing O2 and H2	
Example 1-6: Isobaric process, preheating of combustion air	
Example 1-7: Expansion process of a fluid	
Example 1-8: Electrical efficiency of gas turbine vs. Carnot cycle	. 20
Example 1-9: Combustion air and flue gas amounts of a power plant	
Example 1-10: Heat demand for steam generation	. 27
Example 1-11: Boiler combustion losses	
Example 2-1: Weighted average cost of capital (WACC), guide values	
Example 2-2: CAPEX incl. interest during construction and reinvestment	
Example 2-3: Calculation of LEC by applying Annuity Method	. 43
Example 2-4: Calculation of LEC by applying Present Value Method	. 44
Example 3-1: Fuel costs vs. electrical efficiency	
Example 3-2: Power output and efficiency vs. site conditions	
Example 4-1 : Calculating equivalent heating value of nuclear fuel	
Example 4-2: Fuel consumption in comparison	
Example 5-1: Electricity generation cost of typical hydro power plants	
Example 5-2: Electricity generation cost of hydro power plants, eia estimates.	
Example 5-3: Reference annual electricity yield of a single Wind turbine	
Example 5-4: Exceedance probability	
Example 5-5: CAPEX estimate for onshore wind farms in Central Europe	
Example 5-6: Electricity generation costs, of wind farms	
Example 5-7: Power output of PV modules vs. operating temperature	
Example 5-8: Technical layout and yield calculation for selected sites	
Example 5-9: Levelized electricity costs of PV-plants	119
Example 5-10: Performance & cost calculation model CCGT vs. ISCC	128
Example 6-1: Electrical equivalent MWhe/MWht and MWhe/t of steam	
Example 6-2: Simplified calculation of electricity-to-heat ratio σ	
Example 6-3: Simplified calculation of the electrical equivalent β	
Example 6-4: Performance of a steam backpressure CHP	149

Example 6-5: Splitting total production in cogen + non-cogen electricity	. 151
Example 6-6: Conversion of extraction-cond. to equivalent cond. cycle	. 156
Example 7-1: Residual value allocation with electricity credit, base case	. 161
Example 7-2: Typical dual purpose reference PPs	. 164
Example 7-3: Steam cost of a dual purpose PP, based on reference PP	. 165
Example 7-4: Cost of extracted steam at different pressure levels	. 167
Example 7-5: Heat supply cost of district heating	. 168
Example 7-6: Calculation of heat rate and emissions of extracted steam	. 169
Example 7-7: Energy and exergy content of energy carriers	. 173
Example 7-8: Heat generation costs calculation with exergy	. 175
Example 7-9: Cost allocation based on the calorific method	. 180
Example 7-10: Replacement value of heat for process heat supply	. 181
Example 8-1: Ohmic loads in series and in parallel	. 185
Example 8-2: Power of 3-phase loads	. 191
Example 8-3: Load factor vs. full load hours	. 207
Example 8-4: Use of system tariff formulation	. 219
Example 9-1: Futures transaction	. 232
Example 9-2: Basic idea of an option contract in every day situation	. 234
Example 9-3: Sale of a buy option for power	. 234
Example 9-4: Large industrial consumer buys a call option	. 235

1 Basics of Technical Thermodynamics

1.1 Key Thermodynamic Concepts and Definitions

1.1.1 Energy, work and power

Technical thermodynamics deals with the processes of interconversion of energy forms into each other. It includes the behavior of related properties of substances involved in the process flow, e.g., pressure and temperature.

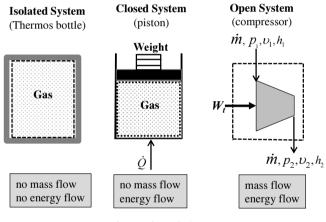
Energy E is defined as the ability to produce work; Work W is performed by moving a body with a force F at a distance l in the direction of the force $(W = F \times l)$. Power P is work divided by the time the work has been performed (P=W/t).

Based on these definitions several forms of energy are distinguished:

- Mechanical energy may occur as kinetic energy (movement energy) or potential energy (energy of the height)
- Thermal energy is contained in energy carriers as steam, hot water, thermooil etc.
- Chemical energy is contained, e.g., in fossil fuels
- Nuclear energy is contained in the nucleus of atoms
- Radiation energy such as solar irradiation

A different classification is done according to the state of energy conversion and usage chain. There are following forms:

- Primary Energy
- Secondary energy including the sub forms
 - Final energy
 - Useful energy


Primary energy is extracted from stocks of natural resources through mining or exploration such as coal, uranium, crude oil and natural gas, or captured from natural energy flows such as solar radiation or wind. Primary energy has not undergone any conversion other than separation and cleaning.

Final energy is produced from primary energy through a conversion process. The conversion process may take place in a refinery, power generation plant or a different type of energy converter. Examples include oil products as light and heavy fuel oil or gasoline, natural gas, electricity. Other forms of final energy are blast furnace gas, converter gas, district heat or chilled water.

Final energy is converted in end-use appliances into *useful energy* such as electrical light, space heating or cooling, movement or rotation of tools.

1.1.2 Thermodynamic systems

A thermodynamic system is an imaginary confined volume of matter that is separated from the surrounding by its *system boundaries*. The boundaries may be fixed or movable. The system may have some exchange of mass or energy or both with its surroundings or neither of them – Figure 1-1.

..... System boundaries

Figure 1-1: Examples of thermodynamic systems

The boundaries of thermodynamic systems are fixed in such a way that an analysis of mass and energy-exchange with the surroundings is feasible. In an open system, the space within the system boundaries is the control volume.

1.1.3 The Standard International Unit System

The Standard International (SI) Unit System comprises seven quantities and their *base units* are shown in Table 1-1. All the other units are derived from these base units by applying laws and principles of the physics – Table 1-2.

Table	1-1:	SI	base	units
-------	------	----	------	-------

Quantity	Base Unit		
Name	Symbol	Name	Unit
Name	(in italics)	Name	(in standard)
Length	l	Meter	m
Mass	т	Kilogram	kg
Time	t	Second	S
Thermodynamic temperature	Т	Kelvin	K
Amount of substance	п	Mole	mol
Electric current	Ι	Ampere	А
Luminous intensity	L	Candela	Cd

Table 1-2: SI Selected derived units used in thermodynamics

Quantity	Symbol Unit	Definition
Speed Velocity	υ, w, c m/s	Displacement of a body in a distance l m in a time t in seconds. v = l/t
Acceleration	<i>a</i> m/s ²	The change of velocity in m/s per s a = v/t
Force	F	1 N is the force which, when applied to a body having a mass of 1 kg, gives it an acceleration s of 1 m/s^2
	N - Newton	$F=m \cdot a$
	$(1N = 1 \text{ kg·m/s}^2)$	
	W	Work is force multiplied by the displacement in the direction of the
Work, Energy	J - Joule	force. $W=F \cdot l$
	J=N·m=W⋅s	
	$(1 \text{ J} = 1 \text{ kg} \cdot \text{m}^2/\text{s}^2)$ P	Power is the rate of work divided by the time it is done.
Power	W - Watt	P = W/t
	W = J/s	
	$(1 \text{ W}= 1 \text{ kg} \cdot \text{m}^2/\text{s}^3)$	
	р	Force divided by the area of its application: $p = F/A$
Pressure	Pa - Pascal	Gravity pressure: $p = \rho \cdot g \cdot h$
	$Pa = N/m^2$	
	$(1 \text{ Pa} = \text{kg} \cdot / (\text{m s}^2))$	

Note: A more detailed list of SI derived units, their prefixes, decimals and multiples as well as conversion tables are shown in **Annex 1** and **Annex 2**.

1.1.4 **Definitions and rules**

Rules for writing quantities and units (see Table 1-1 and Table 1-2):

- Symbols of quantities are written in italics, e.g.: *l, m, T, F, P, v*
- Units are written in standard characters, e.g.: m, kg, K, N, kW, m/s
- Quantities are denoted as a product of their symbol, equal sign, value and unit with a space in between e.g.: *P*=100 kW, *p*=200 Pa
- Compound units are denoted as a product or quotient, e.g.: N·m or Nm, m/s, kg·m/s²
- Subscripts might be used to distinguish quantities which have the same unit, e.g.: electrical power P_{e} , thermal power P_{t}

Mass, molar mass and amount of substance: Mass and amount of substance are related quantities. The symbol for mass is "m" and its base unit "kg". The symbol of amount of substance is "n" and its base unit "mol" where n = m/M [mol]. M is the symbol for *molar mass* with the unit kg/kmol. This is a specific physical property of substance referred to chemical elements or compounds **Annex 4.** The molar mass of compounds is calculated from that of their elements (the unit kmol instead of mol is common):

M kg/kmol: Carbon C=12; Oxygen O=16; Hydrogen H=1 *M* kg/kmol: Oxygen O₂= 32; Carbon dioxide CO₂=44; Water H₂O=18

Temperature: SI base unit for *thermodynamic temperature* and for temperature difference is Kelvin "K" denoted with the symbol "*T*" and " ΔT " respectively. In practice temperature is metered in degrees Celsius °C, the symbol is the small *t* (or θ). Where:

 $T = t \,^{\circ}\text{C} + 273.15 \,\text{K}; \quad 0 \,^{\circ}\text{C} = 237.15 \,\text{K}; \text{ or } 0 \,\text{K} = -237.5 \,^{\circ}\text{C}$ The temperature $T = 0 \,\text{K}$ (respectively -237.5 $\,^{\circ}\text{C}$) is the lowest feasible temperature and is characterized in physics as the absolute zero temperature.

In the USA and some other countries the customary unit degrees Fahrenheit $^{\circ}F$ is used for temperature (non-SI unit).

$$^{\circ}F = 9/5 \times ^{\circ}C + 32; \ ^{\circ}C = 5/9 \times (^{\circ}F - 32)$$

Pressure: SI base unit for *pressure* p is Pascal [N/m²]. In practice the unit [bar] is used.

 $1 \text{ bar} = 10^5 \text{ Pa} = 100 \text{ kPa} = 0.1 \text{ MPa}$

Pressure is always measured as *over pressure* or *gauge pressure* " p_{o} or p_{g} " on top of the atmospheric or barometric pressure p_{b} . For thermodynamic calculations the *absolute pressure* is used: $p = p_{b} + p_{o}$.

In the USA and some other countries the customary unit "psi" is used (pound per square inch – psia, psig). This is a non-SI unit.

1bar \approx 14.5 psi; 1 psi \approx 0.069 bar

Conversion tables for SI-units to imperial units are listed in Annex 3.

1.1.5 Properties and quantities, definitions, symbols and units

A *pure substance* is a matter⁴ that has a defined composition, and its physical and chemical properties are uniform and constant. *Mixtures* can consist of two or more pure substances. In thermodynamics, pure substances or mixtures are characterized by their thermal and energetic properties. They are constituents of thermodynamic systems.

Properties are intrinsic characteristics for the <u>actual state</u> of the substance or a system and can be observed, metered and quantified. *Quantities* express the magnitude of properties and have a number and a unit.

Thermal properties are: temperature T [K], pressure p [Pa, bar], mass m [kg], Volume V [m³] and density ρ [kg/m³] or specific volume υ [m³/kg]. For solid matter and for liquids usually the density ρ in kg/m³ is used, while for gases the specific volume υ in m³/kg is more common. Thermal properties are independent from the mass; they are also known as *intensive properties*.

Energetic properties are: internal energy, enthalpy, entropy and exergy. In absolute terms their symbols are specified with capitals, while mass related symbols are specified with small characters: internal energy U [kJ] or u [J/kg], enthalpy H [kJ] or h [kJ/kg], entropy S [kJ/K] or s [kJ/kg K] and exergy E [kJ] or e [J/kg]. The value of energetic properties depends on the mass included in a system. They are also known as *extensive properties*.

Process properties are heat *Q* [kJ] and mechanical work W [kW]

Time rated properties (flows) are denoted with a dot on top of the symbol:

$$\dot{m}\left[\frac{kg}{s}\right], \quad \dot{V}\left[\frac{m^3}{s}\right], \quad \dot{Q}\left[\frac{kJ}{s}\right], \quad \dot{H}\left[\frac{kJ}{s}\right]$$

Equations describing the correlations between system properties are called *equations of state*. Thermal and energetic properties of different substances are shown in **Annex 4**.

⁴ Matter is everything that has a mass and occupies space. It can occur in solid, liquid and gaseous state.

1.1.6 Mass, weight and acceleration of gravity

Mass and weight are different properties. The *mass* of matter is equal at any place on earth (or even on the moon), its unit is kg: In contrary, *weight* is the force of gravity; it is defined as mass multiplied with the acceleration of gravity; it has the unit of a force 1 N.

Weight:
$$F_G = m[kg] \times g[m/s^2] [N]$$

The *acceleration of gravity* depends on the latitude and altitude of a certain place. At the equator at sea level (altitude 0) it is 9.78 m/s^2 , while in the poles it is 9.932 m/s^2 . For technical calculations the value of 9.81 m/s^2 is used. This corresponds to the acceleration of gravity at latitude of 45° and sea level.

1.1.7 Normal reference conditions

Ambient temperature, atmospheric pressure and humidity are different in different places on earth and change also during the time of the day and elevation. Therefore it is necessary to define standard reference conditions in order to enable testing and comparison of the performance of machinery and to define amounts of matter and of commodities (e.g. natural gas). There are different definitions of normal conditions. The most common is the definition according DIN 1343 commonly used in Continental Europe and most other countries:

Symbol	State
T_n	273.15 K (or 0 °C)
p_n	1.01325 bar (1 atm)
φ_n	0%
V_{mn}	22.41383 m ³ /kmol
	T_n p_n φ_n

Table 1-3: Reference normal conditions, DIN 1343

*) referred to ideal gas

In Imperial and US customary system, normal conditions are defined:

Temperature: 60 °F (15.6°C), pressure 14.969 psia (1atm). The reference temperature is different compared to the DIN definition. Hence, also the normal conditions are not identical.

ISO conditions of gas turbines: The performance parameters of gas turbines are defined according to ISO for the following reference conditions:

- Ambient temperature: 15°C
- Ambient pressure: 1.013 bar
- Relative humidity: 60%

1.2 The Principal Laws of Thermodynamics

(

1.2.1 The First Law of thermodynamics

The First Law of thermodynamics states that energy can neither be created nor be destroyed, but one form of energy can be converted into another form. The total energy associated with an energy conversion remains constant. The First Law is also known as the law of energy conservation. It is applied differently for closed and open systems.

The energy balance for a **closed system** that undergoes a change of state from its initial state 1 to the final state 2 is according to First Law:

$$Q_{12} + W_{12} = U_2 - U_1 \tag{1.1}$$

The heat Q_{12} and work W_{12} , transferred into a system, are utilized to increase its internal energy U_2 - U_1 . Internal energy U [kJ] or u [kJ/kg] is the total energy contained in a closed system after the state of equilibrium is reached. Thereby the following conventions apply:

- Heat transfer into the system (Q > 0, +), out of the system (Q < 0, -)
- Work transfer into the system (W > 0, +), out of the system (W < 0, -)

The work is defined $W_{12} = -p \cdot (V_1 - V_2) = W_{V12}$ as the volume expansion work (note: subscript v) also known as *pressure-volume* (*PV*) work; it is utilized in a closed system with movable boundaries to increase its volume (see Figure 1-1). The equation (1.1) transformed becomes:

$$Q_{V12} = U_2 - U_1 + p \cdot (V_1 - V_2)$$
 or $dQ_V = dU + p \cdot dV$ (1.2)

For *V* constant is *dV*=0, and the above equation becomes:

$$Q_{V12} = U_2 - U_1 = m \cdot c_v \cdot (T_2 - T_1)$$
(1.3)

Where: c_v [J/(kg K)] is *the specific heat capacity* at a constant volume. This is the amount of heat required to raise the temperature of one kg of a substance by 1 K (values of c_v see Annex 5).

For **open systems** that also include mass flow, the enthalpy is preferred instead of internal energy. *Enthalpy* denoted with *H* or *h* is defined:

$$H = U + p \cdot V [kJ]$$
 or in specific form: $h = u + p \cdot v \left\lfloor \frac{kJ}{kg} \right\rfloor$ (1.4)

The energy balance for an open system that undergoes a change of state from its initial state 1 to the final state 2 is according to First Law:

$$Q_{12} + W_{S12} = H_2 - H_1 [kJ] \text{ or } q_{12} + w_{S12} = h_2 - h_1 \left[\frac{kJ}{kg}\right]$$
 (1.5)

Where $W_{S12} = \int_{1}^{2} V \cdot dp$ is *the shaft work*. This is the work transferred into or out

of a system by a shaft. It is also known as *technical work*. Thereby equation (1.5) becomes:

$$dH = dQ + V \cdot dp \tag{1.6}$$

For constant pressure is dp = 0, $W_{S12} = 0$ and equation (1.5) becomes:

$$Q_{12} = H_2 - H_1 = m \cdot c_p \cdot (T_2 - T_1)$$
(1.7)

where c_p is the *specific heat capacity at constant pressure*. The following conventions and relations exist:

- Specific capacity for solids and liquids is practically constant $c_p = c_v = c$
- Specific capacities of gases depend on the temperature
- Relation $c_p = c_v + R$

Specific heat capacities for different substances see Annex 5.

For an open system mostly *time rates* are used. Equation (1.5) expressed in time rates, becomes:

$$\dot{Q}_{12}\left[\frac{\mathrm{kJ}}{\mathrm{s}}\right] + P[\mathrm{kW}] = \dot{m} \cdot \left(h_2 - h_1\right)\left[\frac{\mathrm{kJ}}{\mathrm{s}}\right] \tag{1.8}$$

Note: kJ/s = kW the former unit is used for heat, the latter for power. Instead, it can also be written kW_m (m for mechanical) and kW_t (t for thermal). Time rates of quantities are denoted with a dot on the symbol, e.g.:

$$\dot{Q}$$
[kJ/s], \dot{H} [kJ/s], \dot{m} [kg/s], \dot{V} [m³/s]

1.2.2 The Second Law of thermodynamics

The First Law of thermodynamics is known as the law of the conservation of energy; it states that all forms of energy are equivalent and can be mutually converted one into another as long as energy is not created or destroyed.

We know from experience, however, that mutual conversion of different energies is limited and that real processes follow a distinct direction, namely:

- While mechanical energy can be fully converted to thermal energy, heat can never be fully converted to mechanical energy
- Heat cannot be transferred by itself from a lower (heat sink) to a higher temperature level (heat source)
- Mass cannot be transferred by itself from a lower to a higher pressure level
- Work cannot be created solely from internal energy of a system

The Second Law of thermodynamics, in contrary to the First Law, restricts the convertibility of energy forms by introducing the *privileged process direction* and the irreversibility of processes.

The Second Law distinguishes between reversible and irreversible processes. For *reversible* processes it is deemed that the initial state of the system can be fully restored solely by changing the direction without any energy expense. In contrary, *irreversible* processes occur in one direction only, and the initial state can only be restored by expense of energy. The Second Law is also known as the *law of the preferential process direction*.

The Second Law further states that there is a property of state known as *entropy*, denoted with the symbol *S* [kJ/K] or *s* [kJ/kg K], that in a closed system undergoing a change of state never decreases. All natural processes are irreversible; they are characterized by entropy increase. Entropy is mathematically defined as the ratio of heat transfer to the thermodynamic temperature of a system.

$$dS = \frac{dQ}{T} \ge 0 \quad \left[\frac{kJ}{K}\right] \tag{1.9}$$

The following conventions apply for thermodynamic systems undergoing a process:

- dS < this is a technically not feasible process
- dS = this is an ideal, reversible process
- dS> = this is a technically feasible, real, irreversible process

Under consideration of equation (1.9) the main equations of thermodynamics (1.2) and (1.6) become:

$$dU = T \cdot dS - p \cdot dV$$
 and $dH = T \cdot dS + V \cdot dp$ (1.10)

The entropy is an essential parameter for cycle calculations with Mollier h-s diagrams.

1.3 Gas Thermodynamics

1.3.1 The equation of state of the ideal gas

The state of a gas is defined by the properties of state pressure p, volume V and thermodynamic temperature T. The equation of state of the ideal gas is:

Specific form: $p \cdot v = R_i \cdot T$ or $p \cdot V = m \cdot R_i \cdot T$ (1.11)

Molar form: $p \cdot V = n \cdot \overline{R} \cdot T$ or $p \cdot \overline{v} = \overline{R} \cdot T$ (1.12)

Where:

P: Pressure [N/m²]

V: $\upsilon[m^3/kg]$: Gas volume, specific volume $[m^3]$

T: Thermodynamic temperature [K]

 R_i : Specific gas constant of the gas i [kJ/kg+K]:

 \overline{R} : Universal gas constant [KJ/kmol·K]

m: Mass of the gas i [kg]

 $n=m/M_i$ Amount of substance [kmol], M_i Molar mass of the gas *i* [kg/kmol]

 $\overline{\upsilon}$ Molar volume [m³/kmol]

Ideal gases are gases which satisfy the above equations (1.11) and (1.12) !whereas *real gases* satisfy the above equations only approximately. For technical applications, however, with atmospheric air or flue gases and some other technical gases the margin of accuracy is sufficient.

Universal gas constant
$$\overline{R} = M \cdot R = 8.31451 \left[\frac{\text{kJ}}{\text{kmol} \times \text{K}} \right]$$

Molar volume: $\overline{\upsilon} = \frac{\overline{R} \cdot T}{p} = \frac{M \cdot R \cdot T}{p} = M \cdot \upsilon \quad \left[\frac{\text{m}^3}{\text{kmol}} \right]$ (1.13)

The specific molar volume of all ideal gases at the same temperature and pressure is the same.

The molar volume $\overline{\nu}_n$ of all ideal gases for normal conditions (273 K, 1.01325 bar)⁵ is 22.4141 m³/kmol:

$$\overline{\nu}_n = \frac{\overline{R} \cdot T_n}{p_n} = \frac{8.314 \cdot 10^3 \cdot 273.15}{1.01325 \cdot 10^5} \left[\frac{\text{kg} \cdot \text{m}^2 \cdot \text{K} \cdot \text{m} \cdot \text{s}^2}{\text{s}^2 \cdot \text{kmol} \cdot \text{K} \cdot \text{kg}} \right] = 22.4141 \left[\frac{\text{m}^3}{\text{kmol}} \right] (1.14)$$

The specific volume can be obtained from equations (1.11) or (1.14) and is:

⁵ see Table 1-2 for unit control

$$\upsilon_i = \frac{V}{m} = \frac{R_i \cdot T}{p_i} = \frac{\overline{\upsilon}}{M_i} \left[\frac{\mathrm{m}^3}{\mathrm{kg}} \right]$$
(1.15)

Important Note: Thermodynamic calculations include parameters with complex compound units. It is therefore <u>highly recommended and necessary</u> to conduct <u>unit control</u> as it is done in equation (1.14).

	Exac	t Value	Technical Applications		
Gas	Molar mass Gas constant		Molar mass	Gas constant	
	kg / kmol	Nm / kg K	kg / kmol	Nm / kg K	
Atmospheric air	28.964	287.1	29.0	287.0	
Hydrogen H ₂	2.016	4,124.4	2.0	4,124.4	
Nitrogen N ₂	28.013	296.8	28.0	297.0	
Oxygen O ₂	31.999	259.8	32.0	260.0	
Carbon dioxide CO ₂	44.010	188.9	44.0	189.0	
Water vapor (super heated)	18.015	461.5	18.0	461.5	

Table 1-4: Molar mass and gas constant of selected technical gases

Example 1-1: Specific volume ideal gases

Find the molar volume of ideal gases at a pressure of 5 bar and 120 $^{\circ}$ C (393 K) and the specific volume of Oxygen (32 kg/kmol).

$$\overline{\upsilon} = \frac{\overline{R} \cdot T}{p} = \frac{8,314 \left\lfloor \frac{N \text{ m}}{\text{kmol} \times \text{K}} \right\rfloor \cdot 393.15 \left[\text{K} \right]}{5 \cdot 10^5 \left[\frac{N}{\text{m}^2} \right]} = 6.54 \left[\frac{\text{m}^3}{\text{kmol}} \right]$$
$$\upsilon = \frac{\overline{\upsilon}}{M} = \frac{6.54 \left[\frac{\text{m}^3}{\text{kmol}} \right]}{32 \left[\frac{\text{kg}}{\text{kmol}} \right]} = 0.204 \quad \left[\frac{\text{m}^3}{\text{kg}} \right]$$

Example 1-2: Mass content of a gas tank

Two tanks of 3 m^3 each contain hydrogen and oxygen at a pressure of 25 bar_a. Find the mass content in the tanks. Conduct also unit control⁶.

⁶ see Table 1-2 for unit control

Item		Unit	Hydrogen	Oxygen			
Given:							
Tank content		m ³	3.0	3.0			
Pressure	25 bar	N/m ²	2.50E+06	2.50E+06			
Temperature	20 °C	°C	293.15	293.15			
Gas constant		Nm/ (kg K)	4124.4	259.83			
Sought							
Mass $m = p \cdot V/R \cdot T$	Tn=273.15	kg	6.20	98.47			
$m = \frac{p\left[N/m^{2}\right] \cdot V\left[m^{3}\right]}{R\left[Nm/kgK\right] \cdot T\left[K\right]} [kg]$							

Example 1-3: Density of ideal gases at actual and at normal conditions

Item		Unit	Hydrogen	Oxygen	Air
Given:					
Temperature t	150 °C	K	423 °C		
Pressure p	25 bar	bar	2.5.E+06		
Molar mass M		kg / kmol	2.016 31.999 28.9		28.964
Gas constant R		Nm / (kg K)	4124.4	259.83	287.06
Molar volume of ideal gas		m ³ / kmol	22.41		
Results					
Density at normal conditions		kg / m ³	0.09	1.43	1.29
Density at actual condition	S	kg / m ³	1.43 22.74 20.58		

1.3.2 Mixtures of ideal gases

In technical thermodynamics usually working fluids are mixtures of gases such as combustion air or flue gas.

According to *Dalton's law* each gas of a mixture occupies the whole available volume as if there were no other gases. Each gas of the mixture exerts a *partial pressure*. The sum of the partial pressures is the total pressure. The following equations apply (subscripts: *i* for gas, *m* for mixture):

Volume fraction:
$$\upsilon_i = \frac{V_i}{V_m} = \frac{p_i}{p_m} = \frac{M_i}{M_m} \sum \upsilon_i = 1$$
 (1.16)

(1.19)

 $\mu_i = \frac{m_i}{m_m} = \nu_i \cdot \frac{M_i}{M_m} \quad \sum \mu_i = 1$ Mass fraction: (1.17)

Molar mass
$$M_m = \sum v_i \cdot M_i$$
 (1.18)
Gas constant $R_m = \sum \mu_i \cdot R_i$ (1.19)

Gas constant

Example 1-4: Properties of combustion air

Combustion air is assumed to be composed of 79% nitrogen (N₂) and 21% oxygen (O₂). Where:

N₂: *M*=28 kg/kmol; *R*=297 J/(kg K)

O₂: M=32 kg/kmol; R=260 J/(kg K)

Properties of mixture:

Molar mass:

 $M_m = \Sigma \upsilon_i \cdot M_i = 0.79 \cdot 28 + 0.21 \cdot 32 = 28.84 \text{ kg/kmol}$

Mass fractions:

 $\mu = \nu_i \cdot M_i/M_m$: $\mu_{N2} = 0.79 \cdot 28/28.84 = 0.767$; $\mu_{02} = 0.21 \times 32/28.84 = 0.233$ Gas constant: $R_m = \Sigma \mu_i \cdot R_i = 0.767 \cdot 297 + 0.233 \cdot 260 = 288.4 \text{ J/(kg K)}$

1.3.3 Thermodynamic processes

A thermodynamic process is an operation in which a thermodynamic system changes its properties of state and passes from one equilibrium to another. A thermodynamic system is in equilibrium when all its properties of state remain constant. In the course of a thermodynamic process conversion of thermal energy and work takes place.

Thermodynamic processes are distinguished according to the property of the system that remains constant during the process (denoted with prefix "iso") namely: isochoric (constant volume), isobaric (constant pressure), isothermal (constant temperature), and isentropic (constant entropy). Based on the equation of state of the ideal gas the following equations apply [1] [2] [3]:

Isochoric process, V constant:
$$\frac{p_1}{T_1} = \frac{p_2}{T_2}$$
 (1.20)

$$W_{V12}=0; \quad W_{S12}=V \cdot (p_2 - p_1) = m \cdot R \cdot T \cdot (T_2 - T_1)$$
 (1.21)

$$Q_{12} = m \cdot c_{\nu} \cdot (T_2 - T_1) \tag{1.22}$$

Technical application: e.g. heat storage

Isobaric process, *p* constant: $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ (1.23)

$$W_{V12} = -p \cdot (V_2 - V_1) = -m \cdot R \cdot (T_2 - T_1); \quad -W_{S12} = 0 \quad (1.24)$$

$$Q_{12} = m \cdot c_p \cdot (T_2 - T_1) \tag{1.25}$$

Technical application: Heat exchanger (friction loss)

Isothermal process, T constant: $p_1 \cdot V_1 = p_2 \cdot V_2$ (1.26)

$$W_{V12} = m \cdot R \cdot T \cdot \left(\frac{p_2}{p_1}\right) = -R \cdot T \cdot \ln \frac{V_2}{V_1} = W_{S12} = -Q$$
 (1.27)

Technical application: ideally cooled compressor

Adiabatic process, heat Q=0: $p_1 \cdot V_1^{\kappa} = p_2 \cdot V_2^{\kappa}$ (1.28)

Approximately is:
$$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{\kappa-1}{\kappa}} = \left(\frac{V_1}{V_2}\right)^{k-1}$$
 and $\frac{p_2}{p_1} = \left(\frac{T_2}{T_1}\right)^{\frac{\kappa}{\kappa-1}}$ (1.29)
 $W = m \cdot \frac{R}{r} \cdot (T - T) = m \cdot c \cdot (T - T) \cdot W_{r} = m \cdot c \cdot (T - T) (1.30)$

$$W_{V12} = m \cdot \frac{\kappa}{\kappa - 1} \cdot (T_2 - T_1) = m \cdot c_v \cdot (T_2 - T_1); \quad W_{S12} = m \cdot c_p \cdot (T_2 - T_1) \quad (1.30)$$

Technical application: e.g. adiabatic process (q=0), pumps, compressors, turbines;

Isentropic process is a reversible adiabatic process at constant entropy (Q=0; S=constant).

 Table 1-5:
 Isentropic exponent

Type of gas	Gas examples	Isentropic exponent		
Monoatomic	Inert gases, He, Ar, Ne	κ=1.67		
Diatomic	N ₂ , O ₂ , CO, atm., air	κ=1.4		
Triatomic	CO ₂ , H ₂ O, SO ₂	к=1.33		

Relation $\kappa = c_P/c_v$

Polytropic process, *p*, *V*, *T* changing:
$$p_1 \cdot V_1^n = p_2 \cdot V_2^n$$
 (1.31)

$$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{n-1}{n}} = \left(\frac{V_1}{V_2}\right)^{n-1} \text{ and } \frac{p_2}{p_1} = \left(\frac{T_2}{T_1}\right)^{\frac{n}{n-1}}$$
(1.32)

$$W_{V12} = m \cdot \frac{R}{n-1} \cdot \left(T_2 - T_1\right) = m \cdot \frac{R \cdot T_1}{n-1} \cdot \left[\left(\frac{p_2}{p_1}\right)^{\frac{n-1}{n}} - 1\right]; \quad W_{S12} = n \cdot W_{V12} \quad (1.33)$$

$$Q_{12} = c_{\nu} \cdot \frac{n-\kappa}{n-1} \cdot (T_2 - T_1)$$
(1.34)

**Polytropic exponent: 1

Technical application: e.g., cooled compressor**

Isenthalpic process: $H_2 = H_1$ $W_{V12} = W_{S12} = 0$ (1.35)Pressure reduction without generation of work, virtually destruction of work

Ideal gas: $H_2 - H_1 = m \cdot c_n \cdot (T_2 - T_1) = \text{constant} \implies T_2 = T_1$ (1.36)Technical application: Throttling of fluids to reduce pressure

Example 1-5: Isochoric process, tanks containing O2 and H2

Two tanks with the same volume contain oxygen and hydrogen respectively. Due to direct exposure to solar radiation their temperature increases. Calculate mass content, pressure, final pressure and the heat transfer. Note: Properties to be taken from Annex 4.

ltem	Symbol	Unit	Values	
Given				
Substance	-	-	Oxygen	Hydrogen
Volume	V	m ³	0.25	0.25
Initial pressure	р ₁	bar	5.0	5.0
Initial temperature 25 °C	Τ ₁	K	298.15	298.15
Final temperature 60 °C	Τ2	K	333.15	333.15
Properties				
Density (0°C)	ρ	kg /m ³	1.43	0.09
Gas constant	R	J/kg K	259.80	4,124.80
Heat capacity	Cp	kJ/kg K	0.92	14.30
Heat capacity	c _ = c R	kJ/kg K	0.66	10.18
Results				
Mass	m=pV/RT	kg	1.61	0.10
Pressure, isochoric process	$p_2 = T_2 \cdot p_1/p_2$	bar	5.59	5.59
Heat transfer	Q= <i>m</i> ⋅ c _v ⋅ (T ₂ -T ₁)	kJ	37.3	36.2

Comments: Although the properties of the two gases are completely different, the two gases absorb almost the same amount of heat.

Example 1-6: Isobaric process, preheating of combustion air

The combustion air of a small industrial boiler is preheated with some waste heat from an industrial process. Calculate the heat flow for the given temperature increase.

ltem		Symbol	Unit	Values
Given				
Boiler capacity		Q	kJ/s	20,000
Air	20,000 m3/h	V	m ³ /s	5.56
Pressure, constant	1 bar	p	bar	1.00E+05
Temperature	20 °C	Τ ₁	К	293 °C
Temperature	80 °C	Τ2	К	353 °C
Air Properties				
Gas constant		R	J/kg K	287.1
specific heat		Cp	kJ/kg K	1.00
Results				
Mass flow of air		m=pV/RT	kg/s	6.60
Heat flow		$Q=m \cdot c_{p} \cdot (T_{2} - T_{1})$	kJ/s	396

Note: Temperature dependency of $c_{\mbox{\tiny p}}$ is neglected

Example 1-7: Expansion process of a fluid

Atmospheric air contained in a vessel of 20 liter and at a pressure of 12 bar expands to environmental pressure of 1 bar. Calculate the final volume, temperature, volume expansion work and heat transfer if the expansion is isothermal, adiabatic or polytropic.

Item		Symbol	Unit	Isothermal	Adiabatic	Polytropic
Given						
Volume, air	20 liter	V 1	m³		0.02	
Initial pressure	12	р ₁	N/m ²	1.2.E+06		
Final pressure	1	p 2		1.E+05		
Temperature	25 °C	Τ ₁	K	298.15		
Properties						
Gas constant		R	kJ/kg K	0.287		
Specific heat	cp= 1.00	$c_{v}=c_{p}-R$	kJ/kg K	-	0.713	0.71
Exponent		к, п	-	1.00	1.40	1.30
Results						
Mass		$m=p \cdot V/R \cdot T$	kg	0.280		
Final volume		V 2	m³	0.240	0.122	0.142
Final temperatur	e in K	Τ2	K	298.2	144.4	165.6
Final temperatur	re in °C	t 2	°C	25.0 -128.7 -10		-107.6
Volume expans	ion work	W _{V12}	kJ	-59.6 -30.9 -3		-35.6
Heat transfer		Q 12	kJ	59.6	0.0	8.8

Note: Formulas are different in the columns

Notes: Properties to be taken from **Annex 4**, Equations for process calculations are available in section 1.3.3. Note: Formulas are different in the columns! Work leaving the system is negative, heat transferred into the system is positive. Carrying out unit control of all calculations is indispensable.