Skip to main content

Search for Exotic Higgs Boson Decays to Merged Diphotons

A Novel CMS Analysis Using End-to-End Deep Learning

  • Book
  • © 2023

Overview

  • Describes first application at CMS of deep learning directly on low-level, "raw" detector data
  • Reports on first direct search for exotic Higgs boson decays involving boosted particle decays
  • Uses domain continuation technique to reconstruct particle decays with invariant mass below detector resolution

Part of the book series: Springer Theses (Springer Theses)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (10 chapters)

Keywords

About this book

This book describes the first application at CMS of deep learning algorithms trained directly on low-level, “raw” detector data, or so-called end-to-end physics reconstruction. Growing interest in searches for exotic new physics in the CMS collaboration at the Large Hadron Collider at CERN has highlighted the need for a new generation of particle reconstruction algorithms. For many exotic physics searches, sensitivity is constrained not by the ability to extract information from particle-level data but by inefficiencies in the reconstruction of the particle-level quantities themselves. The technique achieves a breakthrough in the reconstruction of highly merged photon pairs that are completely unresolved in the CMS detector. This newfound ability is used to perform the first direct search for exotic Higgs boson decays to a pair of hypothetical light scalar particles H→aa, each subsequently decaying to a pair of highly merged photons a→yy, an analysis once thought impossible to perform. The book concludes with an outlook on potential new exotic searches made accessible by this new reconstruction paradigm.

Authors and Affiliations

  • Department of Physics, Carnegie Mellon University, Pittsburgh, USA

    Michael Andrews

About the author

Michael Andrews completed his Ph.D. in Physics at Carnegie Mellon University where he was involved with the CMS collaboration at the Large Hadron Collider at CERN. He worked at CERN in Geneva, Switzerland, from 2015 to 2019 where he served as Run Coordinator for the CMS electromagnetic calorimeter group. For his distinguished service to CMS detector operations, he received the CMS Achievement Award in 2018.

Michael’s physics research focuses on the application advanced deep learning techniques to problems in LHC physics. He played a leading role in the development of deep learning algorithms trained directly on low-level detector data, so-called end-to-end physics reconstruction. His work on end-to-end physics reconstruction led to the first CMS results demonstrating the breakthrough potential of this technique over traditional methods for the reconstruction of boosted decays to highly merged photons. For his contributions, summarized in his Ph.D. thesis, he was awardedthe CMS Ph.D. Thesis Award in 2021.

Bibliographic Information

  • Book Title: Search for Exotic Higgs Boson Decays to Merged Diphotons

  • Book Subtitle: A Novel CMS Analysis Using End-to-End Deep Learning

  • Authors: Michael Andrews

  • Series Title: Springer Theses

  • DOI: https://doi.org/10.1007/978-3-031-25091-0

  • Publisher: Springer Cham

  • eBook Packages: Physics and Astronomy, Physics and Astronomy (R0)

  • Copyright Information: The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

  • Hardcover ISBN: 978-3-031-25090-3Published: 03 March 2023

  • Softcover ISBN: 978-3-031-25093-4Published: 03 March 2024

  • eBook ISBN: 978-3-031-25091-0Published: 02 March 2023

  • Series ISSN: 2190-5053

  • Series E-ISSN: 2190-5061

  • Edition Number: 1

  • Number of Pages: XIII, 188

  • Number of Illustrations: 10 b/w illustrations, 77 illustrations in colour

  • Topics: Particle and Nuclear Physics, Artificial Intelligence, Elementary Particles, Quantum Field Theory

Publish with us